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Abstract

There are many scientific, medical and industrial imag-

ing applications where users have full control of the scene

illumination and color reproduction is not the primary ob-

jective. For example, it is possible to co-design sensors and

spectral illumination in order to classify and detect changes

in biological tissues, organic and inorganic materials, and

object surface properties. In this paper, we propose two

different approaches to illuminant spectrum selection for

surface classification. In the first approach, a supervised

framework, we formulate a biconvex optimization problem

where we alternate between optimizing support vector clas-

sifier weights and optimal illuminants. In the second ap-

proach, an unsupervised dimensionality reduction, we de-

scribe and apply a new sparse Principal Component Anal-

ysis (PCA) algorithm. We efficiently solve the non-convex

PCA problem using a convex relaxation and Alternating Di-

rection Method of Multipliers (ADMM). We compare the

classification accuracy of a monochrome imaging sensor

with optimized illuminants to the classification accuracy of

conventional RGB cameras with natural broadband illumi-

nation.

1. Introduction

The spectral power distribution of the illumination

source plays a fundamental role in how objects objects are

imaged and analyzed by a digital camera [34]. In consumer

digital photography, the spectral properties of scene illumi-

nation are unknown at capture and the main challenge in

color balancing (white balancing) is estimating the spectral

power of the illuminant [35].

There are many applications where color reproduction

is not the primary goal of imaging systems, for example

laparoscopic surgery, endoscopy, microscopy or industrial

quality control [4, 17]. In these cases the spectrum of light

is a design parameter that can be optimized for tasks such

as detecting object features or classifying surfaces [7]. De-

pending on the application it may be more advantageous to
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Figure 1: The spectral power distribution of the illuminant

has a big impact on the data captured by an imaging system.

It can be difficult for a machine learning algorithm to dis-

criminate between a real and fake apple based on the data

from an RGB camera and broadband illumination (left).

In contrast a camera capturing the scene with customized

lights produces better data for discrimination (right) even

though the light optimal for feature discrimination or clas-

sification may not produce accurate color matching effects.

adjust the spectral power distribution of the illuminant to

enhance the visibility of features of interest, at the expense

of accurate color rendering. Specifically, scene data cap-

tured under natural, broadband light sources and with con-

ventional RGB cameras can be less useful in classification

problems than the data acquired with monochrome cameras

and highly customized, narrowband illuminants (Fig. 1).

The customized set of illuminants will produce a more ro-

bust set of features that can be later leveraged by machine

learning algorithms to improve classification performance.

In this paper we describe and evaluate two novel algo-

rithms to effectively and systematically search for spectral

power distributions of optimal lights that improve material

classification. The lights are optimized for a particular clas-

sification task, for example apple classification. We formu-

late the problem of illuminant spectral power distribution

selection in two different frameworks: supervised and un-

supervised learning. Our methods are designed to explicitly
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estimate spectral power distributions, rather than to select

the best illuminant from a given set. The methods are also

constrained to produce solutions that are physically realiz-

able.

In the supervised context we assume that the reflectance

data is labeled and we formulate a penalty function incor-

porating the image formation model, classifier parameters,

and the spectral power distribution of light. Such an objec-

tive function is bi-convex and locally optimal solutions can

be found via alternating minimization.

In the unsupervised context we approach optimal illumi-

nant spectral power distribution design from the dimension-

ality reduction perspective. Here the objective is to project

high dimensional reflectance data onto a smaller number

of dimensions that preserve the information necessary for

classification. Optimized projection directions better cap-

ture the characteristics of the underlying data preserving

more variance in the projected data set. Larger variance

in the data set generally translates to better performance of

the classification algorithms. The classical algorithm for

dimensionality reduction is Principal Component Analysis

(PCA). This algorithm computes a set of orthogonal projec-

tion directions along which the variance in the data set is

the largest [12].

The space of physically realizable spectral power distri-

butions of light is limited by certain physical constraints.

First, light cannot be negative. Second, the shapes of the

spectrum cannot be arbitrary, typically these are smooth

functions. All these restrictions need to be taken into con-

sideration when searching for the optimal illuminant.

In summary, our contributions include:

• Two new algorithms optimizing the spectral power dis-

tributions of illuminants for classification tasks and

producing distributions that can be generated with real

light sources.

• A new sparse nonnegative PCA algorithm with a single

tuning parameter.

• A framework for analyzing imaging system classifica-

tion performance using different number and spectra

of optimized illuminants.

2. Related work

There exist few methods that solve the problem dis-

cussed in this paper. The most relevant algorithm is that

of Liu and Guo [21], who used cost function minimization

to select the color, position and intensity of LEDs in their

capture device that enhance material classification accuracy.

Unlike the methods we describe, the authors do not analyze

the data in the wavelength domain and do not restrict their

solution to non-negative intensities.

Many other approaches involve brute force selection

strategies using exhaustive search over the entire parame-

ter space [26]. This is tractable for small problems, but the

complexity grows exponentially and thus makes the method

computationally impractical. One way to reduce the solu-

tion space of brute-force methods is to use genetic algo-

rithms [6]. The methods we present involve continuous

valued function minimization rather than search strategies

making them more computationally tractable.

Optimal light spectral power distribution selection shares

many similarities with camera responsivity design. Cam-

era responsivities, however, are most frequently optimized

for color matching tasks [14, 28, 30, 31], low light perfor-

mance [8, 19] or spectral reconstruction [25, 27]. The idea

of adapting camera spectral characteristics to the particular

properties of the imaged scene was presented in [20] where

the authors manually changed the characteristics of a liquid

crystal tunable filter (LCTF) as a function of the distribution

of scene radiance. In a similar effort [10] describe an adap-

tive spectroscopy algorithm which takes repeated measure-

ments of the scene and adjusts the sensitivity of the spec-

trometer as a function of prior observations. This approach

conditions the shape of optimal responsivity curves on the

results of earlier measurements and thus cannot be used to

derive a fixed set of spectral curves independent of specific

measurement outcomes.

Dimensionality reduction techniques designed for hyper-

spectral data have been developed in the remote sensing

community [5, 16, 18]. In these applications the weights are

not constrained and are allowed to be negative and therefore

wavelength distributions of those weights do not represent

physically realizable light spectra.

The existing sparse PCA [1, 15, 24] or nonnegative

sparse PCA [32, 36] algorithms cannot be directly used to

design physically realizable illuminants. These methods do

not allow nonnegativity constraints on linearly transformed

variables, which is necessary to assure physical realizabil-

ity of optimized illuminant spectra. Some of the methods

are also impractical due to large numbers of tuning parame-

ters that need to be adjusted. We overcome these limitations

by proposing a new, flexible nonnegative sparse PCA algo-

rithm with a single tuning parameter.

3. Image formation model

The response of a camera’s photodetector mj,k is a linear

function of the scene illuminant xk, surface reflectance r
and the spectral responsivity of the jth camera color channel

cj [34]

mj,k =

∫

cj(λ)r(λ)xk(λ)dλ. (1)

For most natural images, the spectral curves are smooth

and slowly varying, therefore a discretization to n spectral

bands simplifies modeling with little impact on the accuracy

mj,k = ∆λcTj diag(r)xk = eTj xk (2)
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where ej = ∆λ(r1cj,1, r2cj,2, . . . .rncj,n), ej ∈ Rn is the

wavelength-wise product between the surface spectral re-

flectance and the camera responsivity function of the jth

channel. In this work, we propose a method to choose the

vector xk, given a set of labeled or unlabeled vectors ej so

that those vectors projected onto a subspace spanned by xk,

k ∈ 1, . . . ,K preserve the discriminative information from

e in m. A classification algorithm then uses the projected

data m, i.e. pixel intensities, to derive decision boundaries

in this low dimensional subspace.

Spectral curves are often approximated using linear

models

x = Bw, (3)

where the columns of B ∈ Rn×nb represent model compo-

nents and w ∈ Rnb are the corresponding weights. Model

components can be derived using two different approaches.

The first approach takes advantage of the fact that spectrally

smooth curves lie on a low dimensional subspace [23]. The

span of this subspace is described by the columns of B,

which, by definition, form an orthogonal set, i.e. BTB = I .

This modeling usually aims to simplify the problem by re-

ducing the number of variables used to describe a light spec-

trum.

The second approach is to make columns of B directly

represent a collection of spectral power distributions of all

light sources the user controls. For example B can be cre-

ated from spectral power distributions of all LEDs on offer

by a manufacturer. The task now becomes selection of these

spectra that are optimal. In such cases B forms a dictionary

and often becomes ‘fat‘, i.e. contains more columns than

rows. This means that some of the dictionary entries are

linear combinations of each other, and BTB is no longer

full rank.

We assume that a physically realizable illuminant is non-

negative and that is spanned by the columns of B. Our ap-

proach to finding the optimal light does not rely on partic-

ular properties of B, specifically B can be ‘fat‘ and BTB
non-invertible.

We also note that if one could use a large number of il-

luminants (K ≥ n) the optimal strategy would be to pick

monochromatic lights. In this case, acquisition of K images

would correspond to capturing the full spectral characteris-

tic of the surface, as if imaged with a hyperspectral camera.

This means that in general, preferred solutions should have

little overlap across spectral channels, and many zero en-

tries.

4. Supervised framework

Many classical supervised learning algorithms attempt

to find a set of hyperplanes that define boundaries between

points in the feature space representing different classes.

For example, to classify a set of vectors e with labels y, the

parameters describing separating hyperplanes θ are found

by minimizing a cost function f subject to constraints g on

those parameters

minimize f(θ; e, y)

subject to g(θ; e, y) ≤ 0. (4)

Often the input data e are not guaranteed to be linearly sep-

arable in the original n dimensional space. The data may

be projected, using operator Φ(e), to a higher dimensional

space in which such linear separability can be achieved

minimize f(θΦ; Φ(e), y)

subject to g(θΦ,Φ(e), y) ≤ 0. (5)

We note that in the context of optimal illumination design

the projection operator Φ naturally arises in the formula-

tion of the image formation model, though it projects data

to a subspace with fewer dimensions. Observe that the mea-

sured pixel intensities satisfy m = XT e = Φ(e), where the

columns of X = [x1, . . . , xK ] represent the spectral power

distributions of K illuminants, and e are defined as in (2).

The problem is to find such linear projection directions X
that facilitate class separability in the Φ(e) vector space, i.e.

camera pixel measurement space.

To illustrate the approach, consider a classifier where f
and g correspond to a multiclass, one-vs-all, Support Vector

Classifier (SVC) [13]. The linear decision boundaries pt for

each of the t classes are given by a solution to the convex

optimization problem

minimize
∑

t

‖pt‖
2
2 + C

∑

i,t 6=yi

ξti (6)

subject to pTyi
Φ(ei) + byi

≥ pTt Φ(ei) + bt + 2− ξti

ξti ≥ 0, i = 1, . . . , L, t ∈ {1, . . . , T} \ yi,

where {yi, ei} represent the label and the reflectance-

camera responsivity product of the ith data point respec-

tively with the size of the training set given by L. The scalar

C controls how many data points are allowed to be misclas-

sified during training.

In order to find the optimal illuminant spectral power dis-

tributions we re-formulate the SVC problem by replacing

the projection Φ(ei) = (BW )T ei and adding constraints

on the illuminant power distributions BW assuring physical

realizability. The resulting biconvex optimization problem

minimize
∑

k

‖pk‖
2
2 + C

∑

i,k 6=yi

ξki + αz(BW ) (7)

subject to pTyi
(BW )T ei + byi

≥ pTk (BW )T ei + bk + 2− ξki

ξki ≥ 0, i = 1, . . . , L, k ∈ {1, . . . ,K} \ yi,

BW ≥ 0,
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can be solved through alternating minimization over p, b, ξ
and b, ξ,W . The matrix W describes the illuminant spec-

tra in terms of the linear basis weights (3). Note that the

cost function has been augmented with a function z, con-

trolled with a tuning parameter α, penalizing certain types

of solutions. We promote sparsity with an l1 penalty

z(X) = ‖X‖1 =
∑

i,j

|xi,j | (8)

where the l1 norm is generalized to matrices and computes

the sum of the absolute values of all matrix entries.

5. Unsupervised framework

Principal Component Analysis (PCA) is a standard tech-

nique used in machine learning to compactly represent a

data set. The PCA algorithm finds a set of projection vec-

tors along which the original data has the largest variance.

These projections are given by the principal eigenvectors

of the data set covariance matrix. In the context of illumi-

nant spectrum selection, we note that the measured pixel

intensity represents the projection of the reflectance-camera

responsivity product onto a vector describing the spectral

distribution of the illuminant.

For convenience, we express PCA as an iterative algo-

rithm. Let Σ ∈ Sn
+ represent the positive semi-definite sam-

ple covariance matrix of vectors e from (2). The ith optimal

PCA direction is a solution to the problem

maximize xTΣ(i−1)x
subject to xTx = 1,

(9)

where Σ(i−1) is the covariance matrix estimate from the

previous step. Before proceeding to the next iteration Σ
needs to be recomputed to account for the removal of the

solution dimension (i.e. deflated).

The iterative PCA algorithm can be modified to produce

nonnegative and sparse directions by introducing additional

constraints into the optimization problem (9)

maximize xTΣ(i−1)x
subject to xTx = 1

card(x) ≤ δ
x ≥ 0,

(10)

where δ is a sparsity parameter and card(x) specifies the

number of nonzero entries in x. Equation (10) is nonconvex

due to the incorporation of sparsity and nonnegativity con-

straints. Hence, eigen decomposition is no longer a valid

method for finding a solution.

5.1. Convex relaxation

A useful approach to solving nonconvex problems is to

perform an approximation with a similar convex problem

i.e. relaxation. For example, using the PCA relaxations de-

scribed in [9, 33], the original nonconvex problem can be

approximated with

maximize tr(ΣX)− α‖X‖1
subject to 0 � X � I,

tr(X) = 1
X ≥ 0

(11)

(we drop the superscript (i − 1) for clarity). The function

tr(X) is the trace operator, i.e. the sum of the entries of

X along the diagonal, and α controls the sparsity enforcing

penalty.

The first constraint forces X to be positive, semi-definite

and X − I to be negative, semi-definite. The last constraint

restricts the solution to a set of matrices with nonnegative

entries. The optimal projection direction is given by the

principal eigenvector of a solution X⋆ = x⋆x⋆T . Note that

the matrix entry-wise inequality enforces all the entries of

x⋆ to have the same sign, therefore if x⋆ is a solution so is

−x⋆.

In order to express the PCA problem in terms of the basis

weights, X = xxT = Bw(Bw)T = BWBT is substituted

into (11) yielding

maximize tr(ΣBWBT )− α‖BWBT ‖1
subject to 0 � BWBT � I,

tr(BWBT ) = 1
BWBT ≥ 0,

(12)

where W = wwT .

The above optimization problem can be efficiently

solved using the Alternating Direction Method of Multi-

pliers (ADMM) [3, 33]. The computational steps of this

approach are summarized in Algorithm 1, derivation details

are available in the Supplemental Material. This algorithm

requires the user to provide the desired accuracy ǫ and a

learning rate ρ. Following the recommendation of [33] we

used an update heuristic proposed in [3]. It may happen that

the function computing the largest eigenvector of Y
(t+1)
1

will return a vector with all nonpositive entries. In this case

the sign of such a solution should be reversed.

5.2. Matrix deflation

The iterative approach to PCA makes it necessary to de-

flate the current sample covariance matrix estimate Σ(i−1)

before proceeding to the next iteration. The commonly used

Hotelling’s deflation scheme may not preserve the semidefi-

niteness of Σ(i) if the projection direction xi is not an eigen-

vector of Σ(i−1) [29]. To avoid such issues we used a gen-

eralized deflation algorithm proposed in [22]. Algorithm 2

summarizes this deflation method and outlines the steps re-

quired to compute r sparse nonnegative PCA directions for

a particular data set.
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Algorithm 1 Single nonnegative sparse PCA direction.

function FINDDIRECTION(Σ,B, α, ǫ, ρ)

Y
(0)
1 ← 0, U

(0)
1 ← 0, Y

(0)
2 ← 0, U

(0)
2 ← 0

repeat

W (t+1) ← argmin
(

‖BWBT − Y
(t)
1 + U

(t)
1 ‖

2
F + ‖BWBT − Y

(t)
2 + U

(t)
2 ‖

2
F

)

Y
(t+1)
1 ← PF (BW (t+1)BT + U

(t)
1 +Σ/ρ), Y

(t+1)
2 ← Hα/ρ(BW (t+1)BT + U

(t)
2 )

U
(t+1)
1 ← U

(t)
1 +W (t+1) − Y

(t+1)
1 , U

(t+1)
2 ← U

(t)
2 +BW (t+1)BT − Y

(t+1)
2

t← t+ 1
until max{‖BW (t+1)BT − Y

(t+1)
1 ‖2F , ‖BW (t+1)BT − Y

(t+1)
2 ‖2F , ρ

2‖Y
(t+1)
1 − Y

(t)
1 ‖

2
F }, ρ

2‖Y
(t+1)
2 − Y

(t)
2 ‖

2
F } ≤ ǫ

return Eigenvector of Y
(t+1)
1 corresponding to the largest eigenvalue.

end function

Algorithm 2 Nonnegative sparse PCA

Require: Σ ∈ Sn
+, α ≥ 0, ǫ ≥ 0, ρ ≥ 0, r ∈ N, B

Q(0) ← I,Σ(0) ← Σ
for t = 1, . . . , r do

xt ← FINDDIRECTION(Σ(t−1),B, α, ǫ, ρ)

qt ← Q(t−1)xt

Σ(t) ← (I − qtq
T
t )Σ

(t−1)(I − qtq
T
t )

Q(t) ← Q(t−1)(I − qtq
T
t )

xt ← xt/‖xt‖
end for

return x1, . . . , xr

6. Experiments

To evaluate the proposed approaches we conducted a set

of experiments where we captured images of known test tar-

gets under different illumination conditions and used stan-

dard machine learning algorithms to classify captured data.

We implemented all computations in Matlab, and our code

repository is available online1.

First, we measured the performance of classification al-

gorithms on data captured with conventional RGB cameras

and under a single broadband illuminant. This condition

represents the typical imaging scenario where a color cam-

era with three types of color pixels is used to capture a single

image in natural lighting conditions (i.e. J = 3, K = 1).

Overall, we evaluate the performance of 34 cameras with

different spectral properties (see Supplemental Material for

the list of evaluated camera models). For simplicity we will

refer to this mode of data capture as conventional camera.

Next, we captured the data using a monochrome cam-

era and optimized illuminants. To make comparisons

between conventional and optimized systems meaning-

ful we projected spectral measurements onto a three-

dimensional space. To obtain this representation with our

optimized setup we captured three successive frames with a

1https://github.com/hblasins/optIll
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Figure 2: A comparison between spectral properties of a

GoPro Hero 5 RGB camera (solid lines) and their approxi-

mation with narrowband lights (dashed lines). For a given

scene, pixel values produced by an RGB camera (inset, cap-

tured) can be reproduced with a mochorome camera and ap-

propriately adjusted narrowband lights that match the spec-

tral responsivities of the camera (inset, emulated).

monochrome camera, each under different, optimized light

(i.e. J = 1, K = 3) derived with either supervised or unsu-

pervised approach. We refer to this capture mode as optimal

camera.

We investigated a simple classification task; assigning

labels to image pixels based on raw image data. We origi-

nally designed these algorithms for use with biological mul-

tispectral data, however for presentation clarity we chose

much simpler targets requiring no domain specific knowl-

edge. In our tests we used genuine and visually similar

artificial fruit pairs: apples, pears and lemons. Our goal

was to discriminate between different objects. For this pur-

pose we constructed three test scenes. Two of them con-

tained two pairs of differently colored fruit of the same type;

red and green apples (Apples) and yellow and green pears

(Pears). The Lemons scene contained a single pair of ob-

jects; lemons.

Scenes were assembled in a Thouslite LEDCube2 light

booth. The LEDCube contained three broadband and eight

narrowband LEDs whose intensities could be independently

2http://www.thouslite.com/show.asp?id=16
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(a) RGB Image
(b) RGB

classification

(c) Unsupervised

classification

(d) Unsupervised

spectra
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spectra

Figure 3: Pixel classification accuracy is increased when the scene is illuminated with optimal lights. Columns present the

RGB rendering of the scene (a), pixel classification maps for conventional illumination (b), and optimal lights derived with

unsupervised (c) and supervised (e) approaches. Color in (b, c, e) encodes pixels where the SVM classifier assigned correct

labels, all errors are not represented. The spectral power distributions of the optimal illuminants (d, f, thick lines) overlap

with areas of increased variability in the surface spectral reflectance (d, f, thin lines).

adjusted thus changing the overall spectrum of the illumi-

nant. The spectral power distributions of the individual

LEDs formed columns in the model matrix B (3).

We measured the surface spectral reflectance of all tar-

gets as well as spectral power distributions of the LEDs in

the 400 to 800nm range at 4nm increments using a Spec-

traScan PR715 spectrophotometer. We calibrated the LED-

Cube LED spectra by taking measurements of the light ra-

diance reflected from a reference white, Spectralon test tar-

get. Similarly, we estimated the surface spectral reflectance

by illuminating the surface of fruits with broadband tung-

sten light, taking 10 radiance measurements followed by

one measurement of a Spectralon sample, and by computing

the ratio between the two at every wavelength [2].

Given a set of reflectance curves we used the supervised

and unsupervised approaches to generate optimal illumi-

nants for a particular setting of algorithm tuning parameters.

We then programmed those spectra into the LEDCube and

captured images of the so illuminated target with a Point-

Grey FL3-U3-13Y3M-C, 1.3MP monochrome camera with

a Schneider Optics Xenoplan 1.4/23mm lens. The aperture

was set to f#/11 in order to limit depth of field effects.

Next, we manually segmented 100× 100 (200× 200 for

binary classification) pixel regions of interest (ROI) within

each fruit sample and used this set for classification. The

classifiers used single pixel intensity data. The data was

split into training (70%) and test (30%) sets using the strati-

fied approach, i.e. preserving the distribution of class labels

[11]. For fairness of comparisons we preserve data separa-

tion across all classifiers and conditions. In our evaluations

we used five standard machine learning classifiers: Sup-

port Vector Machines (SVM), K-Nearest Neighbors (KNN),

Linear Discriminant Analysis (DA), Decision Trees (Tree)

and Naive Bayes (NB).

Finally, we repeated the procedure; optimal illuminant

computation followed by image capture and classifier cross

validation, for different settings of illuminant selection al-

gorithms tuning parameters (refer to source code for de-

tails). In all cases training data set was used for training

and parameter selection only, and all performance numbers

we report were calculated using the test set.

Rather than using physical RGB cameras in our evalu-

ations, we instead emulated their spectral properties with

narrowband LEDs from LEDCube and the PointGrey

monochrome camera. We approximated the effective spec-

tral responsivity (i.e. the wavelength-wise product between

spectral responsivity and the illuminant) of red, green and

blue camera channels with an appropriate weighted sum of

the LEDCube LEDs, accounting for the monochrome sen-

sor quantum efficiency (see Supplemental Material for de-

tails). Figure 2 shows an example comparison between the

actual responsivity curves and their approximations using
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Table 1: Single pixel per cent classification accuracy for the

Pears data (four-way classification).

Camera
Classifier

SVM KNN DA Tree NB

RGB (worst) 92.3 92.7 91.2 90.7 66.0

RGB (avg.) 94.6 95.2 93.6 94.1 67.8

RGB (best) 98.4 98.4 97.9 97.8 74.2

Ours (Unsup.) 97.2 97.9 96.9 97.8 82.8

Ours (Sup.) 99.9 99.9 98.9 99.8 76.6

LEDs. Insets in this figure present an image of a Macbeth

chart captured with a conventional RGB camera and com-

pares it to a view of the same chart rendered with the data

from the proposed emulation approach.

There are several advantages to using the emulation ap-

proach. First, the geometry of the setup remains fixed

and any differences between various test conditions arise

only from illumination rather than image alignment or re-

sampling between different cameras. Second, the same sen-

sor is used throughout all experiments and so the noise

properties remain fixed. Finally, the resolution and optics

remain constant throughout all experiments.

6.1. Classification performance

Figure 3 presents the results of pixel classification out-

comes for three test scenes captured under daylight and op-

timized illuminants. Classification maps were created by

applying classifiers trained on the training data to all pixels

in the image. For clarity we show and label only correctly

identified pixels. In general, maps obtained for the opti-

mized illumination cases correctly classify larger number

of pixels. We also observed that those maps have more con-

tiguous object segmentation and less ’salt and pepper’ clas-

sification noise. However, the optimal illuminant selection

strategies do not always increase the number of correctly

classified pixels. They can also make some pixels easier to

classify at the expense of others. Take the Apple scene as

an example. Under optimized illuminants the increased ac-

curacy in recognizing the bottom right apple (green label)

is offset by erroneously classifying parts of the bottom left

apple (purple label) that had been correctly classified by a

conventional camera.

We also present the optimal illuminant spectra derived

for each condition (Fig. 3d and 3f). The curves derived

by supervised and unsupervised approaches differ, but they

share a common characteristic. In all cases light energy

is concentrated at wavelengths with significant amount of

variability in the surface reflectance data.

The quantitative performance of the proposed ap-

proaches is presented in Tables 1, 2 and 3 which summarize

the pixel based classification accuracy achieved with the op-

Table 2: Single pixel per cent classification accuracy for the

Apples data (four-way classification).

Camera
Classifier

SVM KNN DA Tree NB

RGB (worst) 75.2 78.4 74.9 73.6 66.0

RGB (avg.) 84.6 82.3 84.1 84.2 68.7

RGB (best) 85.6 83.3 85.3 85.8 72.7

Ours (Unsup.) 87.1 89.4 86.4 89.2 83.7

Ours (Sup.) 91.5 92.6 91.2 91.2 79.5

Table 3: Single pixel per cent classification accuracy for the

Lemons data (binary classification).

Camera
Classifier

SVM KNN DA Tree NB

RGB (worst) 92.2 96.4 90.0 85.9 58.8

RGB (avg.) 97.5 99.0 96.3 96.6 62.0

RGB (best) 99.9 100.0 99.8 99.9 75.6

Ours (Unsup.) 99.8 99.8 99.6 98.3 63.1

Ours (Sup.) 100.0 100.0 99.9 98.8 70.9

timal and conventional cameras. For every classification al-

gorithm, we report the average accuracy computed over 34
RGB cameras as well as the accuracy of the best and worst

performing model for a particular algorithm. The model

of the camera achieving the highest classification accuracy

varied across different scenes and classifiers. This metric

represents the performance of illuminant spectral power dis-

tributions found using a brute force search algorithm and

serves as a baseline for comparisons with our methods.

We experimented with illuminating our scenes with the

emission spectra of black body radiators at different tem-

peratures; 2000, 4000, 6500, and 10000K. These spectra of-

fer good approximations to light distributions occurring in

natural environments. For a particular classification algo-

rithm, performance differences between these illuminants

were minor (see Supplemental Material for details). The

black body emission at 6500K closely resembles the stan-

dard D65 illuminant (daylight), and in general provided

the best, or close second best classification accuracy. Fur-

thermore, many conventional RGB cameras are designed

to faithfully reproduce colors specifically under this illumi-

nant. For these reasons we use this condition as reference

in numerical comparisons.

The imaging system using illuminant spectral power dis-

tributions derived with our supervised method consistently

outperforms conventional RGB cameras and broadband il-

luminants for the SVM, KNN, DA and Tree classification

algorithms. It comes second only when the Tree classifier

is applied to the Lemons scene. These gains are due to direct
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incorporation of the search for optimal spectra into the clas-

sification objective function, and are achieved despite non-

convexity of the problem and local optimality of the solu-

tion. Interestingly, the supervised selection method is typ-

ically outperformed by a combination of the Naive Bayes

classifier with the unsupervised approach.

Our unsupervised selection method is better than the av-

erage conventional RGB camera, and its accuracy is typi-

cally on par with that of the best RGB camera. Note that this

selection strategy works best together with a Naive Bayes

classifier. The unsupervised approach is a variant of PCA,

which provides a set of uncorrelated features. In our case

we use a constrained version; it also decorrelates data, but

to a lesser extent. The Naive Bayes classifier implicitly as-

sumes feature conditional independence, which means that

the unsupervised approach provides the type of data the

classifier expects.

6.2. Number of illuminants

We investigated the relationship between classification

accuracy and the number of different illuminants under

which a scene is captured. Optimization over the illumi-

nant spectrum offers another system design parameter. For

example, a suitable illuminant could eliminate the need for

a color filter array thus increasing the effective sensor reso-

lution.

Increasing the number of optimal illuminants from 1 to

10 increases the classification performance, irrespective of

the selection method used. Figure 4 presents the classifi-

cation accuracy in the Apples set as a function of the num-

ber of optimal illuminants. The supervised selection algo-

rithm maintains a small advantage over the unsupervised

approach across all conditions. The classification accuracy

asymptotes at about 95%, ten percentage points above the

accuracy of the best conventional RGB camera. However,

at about 3–4 illuminants the curves plateau; using more il-

luminants offers modest gains in performance that may not

be worth pursuing given other limitations such as acquisi-

tion time. Note that the classification accuracy of an opti-

mal two-illuminant system, i.e. representing pixel data with

two numbers, is comparable to that of the best conventional

RGB camera and a broadband illuminant, which represent

pixel data with three numbers. Both systems achieve about

86% classification accuracy. This reduction in data dimen-

sionality can translate to smaller data storage requirements

or fewer processor cycles necessary for computation.

7. Conclusions

We presented two new approaches to selecting spectral

power distributions of illuminants used during the image

capture process that increase the accuracy of pixel classi-

fication algorithms applied to captured data. Our methods
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Figure 4: Pixel classification accuracy increases when a

scene (Apples) is captured under more optimized illumi-

nants, with supervised selection outperforming the unsu-

pervised algorithm. Using just two optimally chosen lights

allows to achieve the performance level of a conventional,

three channel RGB system.

produce physically realizable distributions that can be gen-

erated using off-the-shelf LEDs.

We evaluated the optimal lights produced by our selec-

tion methods in a simple surface classification task through

a series of laboratory experiments using real targets, illumi-

nants, and cameras. In all cases classifier performance on

pixel data obtained under optimized lights is greater than the

performance of the same algorithm on data captured with a

conventional RGB camera and broadband illuminants. We

showed that the supervised selection method achieves the

best performance, but it requires a set of labeled training re-

flectance spectra. In comparison the unsupervised method

is a close second in terms of accuracy, but can work with

unlabeled object spectral reflectance curves.

Both algorithms are useful in analyzing the impact of

additional imaging channels on classification performance.

This is an important consideration because, we have shown,

under the constraints of physical realizability having more

channels may provide only modest performance gains that

may be deemed not worth pursuing given the increased sys-

tem complexity and other design trade-offs such as speed,

resolution or computation.

Finally, the methodology we present in this work can be

extended to other spectral selection problems in imaging

system design. For example, the same algorithms can be

applied to selecting the responsivity functions of the color

filter array or could be used to select transmissive filters for

biological image analysis.
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