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Abstract

3D Morphable Models (3DMMs) are powerful statistical

models of 3D facial shape and texture, and among the state-

of-the-art methods for reconstructing facial shape from sin-

gle images. With the advent of new 3D sensors, many 3D fa-

cial datasets have been collected containing both neutral as

well as expressive faces. However, all datasets are captured

under controlled conditions. Thus, even though powerful

3D facial shape models can be learnt from such data, it is

difficult to build statistical texture models that are sufficient

to reconstruct faces captured in unconstrained conditions

(“in-the-wild”). In this paper, we propose the first, to the

best of our knowledge, “in-the-wild” 3DMM by combining

a powerful statistical model of facial shape, which describes

both identity and expression, with an “in-the-wild” texture

model. We show that the employment of such an “in-the-

wild” texture model greatly simplifies the fitting procedure,

because there is no need to optimise with regards to the illu-

mination parameters. Furthermore, we propose a new fast

algorithm for fitting the 3DMM in arbitrary images. Fi-

nally, we have captured the first 3D facial database with

relatively unconstrained conditions and report quantitative

evaluations with state-of-the-art performance. Complemen-

tary qualitative reconstruction results are demonstrated on

standard “in-the-wild” facial databases.

1. Introduction

During the past few years, we have witnessed signifi-

cant improvements in various face analysis tasks such as

face detection [19, 42] and 2D facial landmark localisation

on static images [40, 21, 6, 38, 43, 4, 5, 36]. This is pri-

marily attributed to the fact that the community has made

a considerable effort to collect and annotate facial images

captured under unconstrained conditions [24, 45, 9, 32, 31]

(commonly referred to as “in-the-wild”) and to the discrim-
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Figure 1. Our “in-the-wild” Morphable Model is capable of recov-

ering accurate 3D facial shape for a wide variety of images.

inative methodologies that can capitalise on the availability

of such large amount of data. Nevertheless, discriminative

techniques cannot be applied for 3D facial shape estimation

“in-the-wild”, due to lack of ground-truth data.

3D facial shape estimation from single images has at-

tracted the attention of many researchers the past twenty

years. The two main lines of research are (i) fitting a 3D

Morphable Model (3DMM) [11, 12] and (ii) applying Shape

from Shading (SfS) techniques [34, 35, 22]. The 3DMM fit-

ting proposed in the work of Blanz and Vetter [11, 12] was

among the first model-based 3D facial recovery approaches.

The method requires the construction of a 3DMM which is a

statistical model of facial texture and shape in a space where

there are explicit correspondences. The first 3DMM was

built using 200 faces captured in well-controlled conditions

displaying only the neutral expression. That is the reason

why the method was only shown to work on real-world, but

not “in-the-wild”, images. State-of-the-art SfS techniques

capitalise on special multi-linear decompositions that find

an approximate spherical harmonic decomposition of the il-

lumination. Furthermore, in order to benefit from the large
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availability of “in-the-wild” images, these methods jointly

reconstruct large collections of images. Nevertheless, even

though the results of [34, 22] are quite interesting, given

that there is no prior of the facial surface, the methods only

recover 2.5D representations of the faces and particularly

smooth approximations of the facial normals.

3D facial shape recovery from a single image under “in-

the-wild” conditions is still an open and challenging prob-

lem in computer vision mainly due to the fact that:

• The general problem of extracting the 3D facial shape

from a single image is an ill-posed problem which is

notoriously difficult to solve without the use of any sta-

tistical priors for the shape and texture of faces. That

is, without prior knowledge regarding the shape of the

object at-hand there are inherent ambiguities present

in the problem. The pixel intensity at a location in an

image is the result of a complex combination of the

underlying shape of the object, the surface albedo and

normal characteristics, camera parameters and the ar-

rangement of scene lighting and other objects in the

scene. Hence, there are potentially infinite solutions to

the problem.

• Learning statistical priors of 3D facial shape and tex-

ture for “in-the-wild” images is very difficult even us-

ing modern acquisition devices. That is, even though

there is a considerable improvement in 3D acquisition

devices, they still cannot operate in arbitrary condi-

tions. Hence, all the current 3D facial databases have

been captured in controlled conditions.

With the available 3D facial data, it is feasible to learn

a powerful statistical model of the facial shape that gen-

eralises well for both identity and expression [14, 30, 13].

However, it is not possible to construct a statistical model

of the facial texture that generalises well for “in-the-wild”

images and is, at the same time, in correspondence with the

statistical shape model. That is the reason why current state-

of-the-art 3D face reconstruction methodologies rely solely

on fitting a statistical 3D facial shape prior on a sparse set

of landmarks [2, 16].

In this paper, we make a number of contributions that

enable the use of 3DMMs for “in-the-wild” face reconstruc-

tion (Fig. 1). In particular, our contributions are:

• We propose a methodology for learning a statisti-

cal texture model from “in-the-wild” facial images,

which is in full correspondence with a statistical shape

prior that exhibits both identity and expression varia-

tions. Motivated by the success of feature-based (e.g.,

HOG [15], SIFT [25]) Active Appearance Models

(AAMs) [3, 4] we further show how to learn feature-

based texture models for 3DMMs. We show that the

advantage of using the “in-the-wild” feature-based tex-

ture model is that the fitting strategy is much simplified

since there is not need to optimise with respect to the

illumination parameters.

• By capitalising on the recent advancements in fitting

statistical deformable models [29, 37, 4, 1], we pro-

pose a novel and fast algorithm for fitting “in-the-wild”

3DMMs. Furthermore, we make the implementation

of our algorithm publicly available, which we believe

can be of great benefit to the community, given the

lack of robust open-source implementations for fitting

3DMMs.

• Due to lack of ground-truth data, the majority of the

3D face reconstruction papers report only qualitative

results. In this paper, in order to provide quantita-

tive evaluations, we collected a new dataset of 3D fa-

cial surfaces, using Kinect Fusion [18, 28], which has

many “in-the-wild” characteristics, even though it is

captured indoors.

The remainder of the paper is structured as follows.

In Section 2 we elaborate on the construction of our “in-

the-wild” 3DMM, whilst in Section 3 we outline the pro-

posed optimisation for fitting “in-the-wild” images with our

model. Section 4 describes our new dataset, the first of its

kind, to provide images with a ground-truth 3D facial shape

that exhibit many “in-the-wild” characteristics. We outline

a series of quantitative and qualitative experiments in Sec-

tion 5, and end with conclusions in Section 6.

2. Model Training

A 3DMM consists of three parametric models: the

shape, camera and texture models.

2.1. Shape Model

Let us denote the 3D mesh (shape) of an object with N

vertexes as a 3N × 1 vector

s =
[

xT

1 , . . . ,x
T

N

]T

= [x1, y1, z1, . . . , xN , yN , zN ]
T

(1)

where xi = [xi, yi, zi]
T

are the object-centered Cartesian

coordinates of the i-th vertex. A 3D shape model can be

constructed by first bringing a set of 3D training meshes

into dense correspondence so that each is described with

the same number of vertexes and all samples have a shared

semantic ordering. The corresponded meshes, {si}, are

then brought into a shape space by applying Generalized

Procrustes Analysis and then Principal Component Anal-

ysis (PCA) is performed which results in {s̄,Us}, where

s̄ ∈ R
3N is the mean shape vector and Us ∈ R

3N×ns is the

orthonormal basis after keeping the first ns principal com-

ponents. This model can be used to generate novel 3D shape

49



1

2

3

4

1

2

3

4

SIFT RGB 

Figure 2. Left: The mean and first four shape and SIFT texture

principal components of our “in-the-wild” SIFT texture model.

Right: To aid in interpretation we also show the equivalent RGB

basis.

instances using the function S : Rns → R
3N as

S(p) = s̄+Usp (2)

where p = [p1, . . . , pns
]
T

are the ns shape parameters.

2.2. Camera Model

The purpose of the camera model is to map (project)

the object-centered Cartesian coordinates of a 3D mesh in-

stance s into 2D Cartesian coordinates on an image plane.

In this work, we employ a pinhole camera model, which

utilizes a perspective transformation. However, an ortho-

graphic projection model can also be used in the same way.

Perspective projection. The projection of a 3D point

x = [x, y, z]
T

into its 2D location in the image plane x′ =

[x′, y′]
T

involves two steps. First, the 3D point is rotated

and translated using a linear view transformation, under the

assumption that the camera is still

[vx, vy, vz]
T
= Rvx+ tv (3)

where Rv ∈ R
3×3 and tv = [tx, ty, tz]

T
are the 3D rota-

tion and translation components, respectively. Then, a non-

linear perspective transformation is applied as

x′ =
f

vz

[

vx
vy

]

+

[

cx
cy

]

(4)

where f is the focal length in pixel units (we assume that

the x and y components of the focal length are equal) and

[cx, cy]
T

is the principal point that is set to the image center.

Quaternions. We parametrise the 3D rotation with

quaternions [23, 39]. The quaternion uses four parameters

q = [q0, q1, q2, q3]
T

in order to express a 3D rotation as

Rv = 2





1

2
− q22 − q23 q1q2 − q0q3 q1q3 + q0q2

q1q2 + q0q3
1

2
− q21 − q23 q2q3 − q0q1

q1q3 − q0q2 q2q3 + q0q1
1

2
− q21 − q22





(5)

Note that by enforcing a unit norm constraint on the quater-

nion vector, i.e. qTq = 1, the rotation matrix con-

straints of orthogonality with unit determinant are with-

held. Given the unit norm property, the quaternion can be

seen as a three-parameter vector [q1, q2, q3]
T

and a scalar

q0 =
√

1− q2
1
− q2

2
− q2

3
. Most existing works on 3DMM

parametrise the rotation matrix Rv using the three Eu-

ler angles that define the rotations around the horizontal,

vertical and camera axes. Even thought Euler angles are

more naturally interpretable, they have strong disadvantages

when employed within an optimisation procedure, most no-

tably the solution ambiguity and the gimbal lock effect.

Parametrisation based on quaternions overcomes these dis-

advantages and further ensures computational efficiency, ro-

bustness and simpler differentiation.

Camera function. The projection operation performed

by the camera model of the 3DMM can be expressed with

the function P(s, c) : R
3N → R

2N , which applies the

transformations of Eqs. 3 and 4 on the points of provided

3D mesh s with

c = [f, q1, q2, q3, tx, ty, tz]
T

(6)

being the vector of camera parameters with length nc = 7.

For abbreviation purposes, we represent the camera model

of the 3DMM with the functionW : Rns,nc → R
2N as

W(p, c) ≡ P (S(p), c) (7)

where S(p) is a 3D mesh instance using Eq. 2.

2.3. “IntheWild” FeatureBased Texture Model

The generation of an “in-the-wild” texture model is a

key component of the proposed 3DMM. To this end, we

take advantage of the existing large facial “in-the-wild”

databases that are annotated in terms of sparse landmarks.

Assume that for a set of M “in-the-wild” images {Ii}
M
1

,

we have access to the associated camera and shape param-

eters {pi, ci}. Let us also define a dense feature extraction

function

F : RH×W → R
H×W×C (8)

where C is the number of channels of the feature-based im-

age. For each image, we first compute its feature-based rep-

resentation as Fi = F(Ii) and then use Eq. 7 to sample

it at each vertex location to build back a vectorized texture

sample ti = Fi (W(pi, ci)) ∈ R
CN . This texture sample

will be nonsensical for some regions mainly due to self-

occlusions present in the mesh projected in the image space
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Figure 3. Building an ITW texture model

W(pi, ci). To alleviate these issues, we cast a ray from the

camera to each vertex and test for self-intersections with the

triangulation of the mesh in order to learn a per-vertex oc-

clusion mask mi ∈ R
N for the projected sample.

Let us create the matrix X = [t1, . . . , tM ] ∈ R
CN×M

by concatenating the M grossly corrupted feature-based

texture vectors with missing entries that are represented by

the masks mi. To robustly build a texture model based

on this heavily contaminated incomplete data, we need to

recover a low-rank matrix L ∈ R
CN×M representing the

clean facial texture and a sparse matrix E ∈ R
CN×M ac-

counting for gross but sparse non-Gaussian noise such that

X = L+E. To simultaneously recover both L and E from

incomplete and grossly corrupted observations, the Princi-

pal Component Pursuit with missing values [33] is solved

argmin
L,E

‖L‖∗ + λ‖E‖1

s.t. PΩ(X) = PΩ(L+E),
(9)

where ‖·‖∗ denotes the nuclear norm, ‖·‖1 is the matrix ℓ1-

norm and λ > 0 is a regularizer. Ω represents the set of

locations corresponding to the observed entries of X (i.e.,

(i, j) ∈ Ω if mi = mj = 1). Then, PΩ(X) is defined as

the projection of the matrix X on the observed entries Ω,

namely PΩ(X)ij = xij if (i, j) ∈ Ω and PΩ(X)ij = 0
otherwise. The unique solution of the convex optimization

problem in Eq. 9 is found by employing an Alternating Di-

rection Method of Multipliers-based algorithm [10].

The final texture model is created by applying PCA

on the set of reconstructed feature-based textures acquired

from the previous procedure. This results in {t̄,Ut}, where

t̄ ∈ R
CN is the mean texture vector and Ut ∈ R

CN×nt

is the orthonormal basis after keeping the first nt prin-

cipal components. This model can be used to generate

novel 3D feature-based texture instances with the function

T : Rnt → R
CN as

T (λ) = t̄+Utλ (10)

where λ = [λ1, . . . , λnt
]
T

are the nt texture parameters.

Finally, an iterative procedure can be used to refine the

texture. That is, starting with the 3D fits provided by us-

ing only the 2D landmarks [20], a texture model can be

learned using the above procedure. This texture model used

with the proposed 3DMM fitting algorithm on the same data

establishes improved correspondences, refining the texture

model.

3. Model Fitting

We propose to fit the 3DMM on an input image using a

Gauss-Newton iterative optimisation. To this end, herein,

we first formulate the cost function and then present two

optimisation procedures.

3.1. Cost Function

The overall cost function of the proposed 3DMM for-

mulation consists of a texture-based term, an optional error

term based on sparse 2D landmarks, and an optional regu-

larisation terms on the parameters.

Texture reconstruction cost. The main term of the opti-

misation problem is the one that aims to estimate the shape,

texture and camera parameters that minimise the ℓ2
2 norm

of the difference between the image feature-based texture

that corresponds to the projected 2D locations of the 3D

shape instance and the texture instance of the 3DMM. Let

us denote by F = F(I) the feature-based representation

with C channels of an input image I using Eq. 8. Then, the

texture reconstruction cost is expressed as

argmin
p,c,λ

‖F (W(p, c))− T (λ)‖2 (11)

Note that F (W(p, c)) ∈ R
CN denotes the operation of

sampling the feature-based input image on the projected 2D

locations of the 3D shape instance acquired by the camera

model (Eq. 7).

Regularisation. In order to avoid over-fitting effects,

we augment the cost function with two optional regulari-

sation terms over the shape and texture parameters. Let

us denote as Σs ∈ R
ns×ns and Σt ∈ R

nt×nt the diago-

nal matrices with the eigenvalues in their main diagonal for

the shape and texture models, respectively. Based on the

PCA nature of the shape and texture models, it is assumed

that their parameters follow normal prior distributions, i.e.

p ∼ N (0,Σs) and λ ∼ N (0,Σt). We formulate the

regularisation terms as the ℓ2
2 of the parameters’ vectors

weighted with the corresponding inverse eigenvalues, i.e.

argmin
p,λ

cs ‖p‖
2

Σ
−1

s
+ ct ‖λ‖

2

Σ
−1

t

(12)

where cs and ct are constants that weight the contribution

of the regularisation terms in the cost function.

2D landmarks cost. In order to rapidly adapt the cam-

era parameters in the cost of Eq. 11, we further expand the

optimisation problem with the term

argmin
p,c

cl ‖Wl(p, c)− sl‖
2

(13)
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where sl = [x1, y1, . . . , xL, yL]
T

denotes a set of L sparse

2D landmark points (L≪ N ) defined on the image coordi-

nate system andWl(p, c) returns the 2L × 1 vector of 2D

projected locations of these L sparse landmarks. Intuitively,

this term aims to drive the optimisation procedure using the

selected sparse landmarks as anchors for which we have the

optimal locations sl. This optional landmarks-based cost is

weighted with the constant cl.

Overall cost function. The overall 3DMM cost function

is formulated as the sum of the terms in Eqs. 11, 12, 13, i.e.

argmin
p,c,λ

‖F (W(p, c))− T (λ)‖2 + cl ‖Wl(p, c)− sl‖
2
+

+ cs ‖p‖
2

Σ
−1

s
+ ct ‖λ‖

2

Σ
−1

t

(14)

The landmarks term as well as the regularisation terms are

optional and aim to guide the optimisation procedure to con-

verge faster and to a better minimum. Note that thanks to

the proposed “in-the-wild” feature-based texture model, the

cost function does not include any parametric illumination

model similar to the ones in the relative literature [11, 12],

which greatly simplifies the optimisation.

3.2. GaussNewton Optimisation

Inspired by the extensive literature in Lucas-Kanade 2D

image alignment [7, 27, 29, 37, 4, 1], we formulate a Gauss-

Newton optimisation framework. Specifically, given that

the camera projection model is applied on the image part of

Eq. 14, the proposed optimisation has a “forward” nature.

Parameters update. The shape, texture and camera pa-

rameters are updated in an additive manner, i.e.

p← p+∆p, λ← λ+∆λ, c← c+∆c (15)

where ∆p, ∆λ and ∆c are their increments estimated at

each fitting iteration. Note that in the case of the quaternion

used to parametrise the 3D rotation matrix, the update is

performed as the multiplication

q←(∆q)q =

[

∆q0
∆q1:3

] [

q0
q1:3

]

=

=

[

∆q0q0 −∆qT

1:3q1:3

∆q0q1:3 + q0∆q1:3 +∆q1:3 × q1:3

] (16)

However, we will still denote it as an addition for simplicity.

Finally, we found that it is beneficial to keep the focal length

constant in most cases, due to its ambiguity with tz .

Linearisation. By introducing the additive incremental

updates on the parameters of Eq. 14, the cost function is

expressed as

argmin
∆p,∆c,∆λ

‖F (W(p+∆p, c+∆c))− T (λ+∆λ)‖2 +

+ cl ‖Wl(p+∆p, c+∆c)− sl‖
2
+

+ cs ‖p+∆p‖2
Σ

−1

s
+ ct ‖λ+∆λ‖2

Σ
−1

t

(17)

Note that the texture reconstruction and landmarks con-

straint terms of this cost function are non-linear due to

the camera model operation. We need to linearised them

around (p, c) using first order Taylor series expansion at

(p+∆p, c+∆c) = (p, c)⇒ (∆p,∆c) = 0. The lineari-

sation for the image term gives

F (W(p+∆p, c+∆c)) ≈F (W(p, c))+

+ JF,p∆p+ JF,c∆c
(18)

where JF,p = ∇F ∂W
∂p

∣

∣

∣

p=p
and JF,c = ∇F ∂W

∂c

∣

∣

c=c
are

the image Jacobians with respect to the shape and cam-

era parameters, respectively. Note that most dense feature-

extraction functions F(·) are non-differentiable, thus we

simply compute the gradient of the multi-channel feature

image ∇F. Similarly, linearisation of the sparse landmarks

projection term gives

Wl(p+∆p, c+∆c) ≈ Wl(p, c) + JWl,p∆p+ JWl,c∆c

(19)

where JWl,p = ∂Wl

∂p

∣

∣

∣

p=p
and JWl,c = ∂Wl

∂c

∣

∣

c=c
are the

camera Jacobians. Please refer to the supplementary mate-

rial for more details on the computation of these derivatives.

3.2.1 Simultaneous

Herein, we aim to simultaneously solve for all parameters’

increments. By substituting Eqs. 18 and 19 in Eq. 17 we get

argmin
∆p,∆c,∆λ

‖F (W(p, c)) + JF,p∆p+ JF,c∆c− T (λ+∆λ)‖2 +

+ cl ‖Wl(p, c) + JWl,p∆p+ JWl,c∆c− sl‖
2
+

+ cs ‖p+∆p‖2
Σ

−1

s
+ ct ‖λ+∆λ‖2

Σ
−1

t

(20)

Let us concatenate the parameters and their increments as

b = [pT, cT,λT]
T

and ∆b = [∆pT,∆cT,∆λ
T]

T

. By tak-

ing the derivative of the final linearised cost function with

respect to ∆b and equalising with zero, we get the solution

b = −H−1
(

JT

FeF + clJ
T

Wl
el + csΣ

−1

s p+ ctΣ
−1

t λ
)

(21)

where H = JF
TJF+ clJWl

TJWl
+ csΣ

−1
s + ctΣ

−1

t is the

Hessian with

JF =
[

JT

F,p,J
T

F,c,−U
T

t

]T

JWl
=

[

JT

Wl,p
,JT

Wl,c
,0nt×2L

]T
(22)

and
eF = F (W(p, c))− T (λ)

el =Wl(p, c)− sl
(23)
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are the residual terms. The computational complexity of

the Simultaneous algorithm per iteration is dominated by

the texture reconstruction term as O((ns + nc + nt)
3 +

CN(ns + nc + nt)
2), which in practice is too slow.

3.2.2 Project-Out

We propose to use a Project-Out optimisation approach that

is much faster than the Simultaneous. The main idea is to

optimise on the orthogonal complement of the texture sub-

space which will eliminate the need to solve for the tex-

ture parameters increment at each iteration. By substituting

Eqs. 18 and 19 into Eq. 17 and removing the incremental

update on the texture parameters as well as the texture pa-

rameters regularisation term, we end up with the problem

argmin
∆p,∆c,λ

‖F (W(p, c)) + JF,p∆p+ JF,c∆c− T (λ)‖2 +

+ cl ‖Wl(p, c) + JWl,p∆p+ JWl,c∆c− sl‖
2
+

+ cs ‖p+∆p‖2
Σ

−1

s

(24)

The solution of Eq. 24 with respect to λ is readily given by

λ = Ut
T (F(W(p, c)) + JF,p∆p+ JF,c∆c− t̄) (25)

By plugging Eq. 25 into Eq. 24, we get

argmin
∆p,∆c

‖F (W(p, c)) + JF,p∆p+ JF,c∆c− t̄‖
2

P
+

+ cl ‖Wl(p, c) + JWl,p∆p+ JWl,c∆c− sl‖
2
+

+ cs ‖p+∆p‖2
Σ

−1

s

(26)

where P = E−UtUt
T is the orthogonal complement of the

texture subspace that functions as the “project-out” operator

with E denoting the CN × CN unitary matrix. Note that

in order to derive Eq. 26, we use the properties PT = P

and PTP = P. By differentiating Eq. 26 and equalizing to

zero, we get the solution

∆p = Hp
−1

(

JT

F,pPeF + clJ
T

Wl,p
el + csΣ

−1

s p
)

∆c = Hc
−1

(

JT

F,cPeF + clJ
T

Wl,c
el
) (27)

where

Hp = JT

F,pPJF,p + clJ
T

Wl,p
JWl,p + csΣ

−1

Hc = JT

F,cPJF,c + clJ
T

Wl,c
JWl,c

(28)

are the Hessian matrices and

eF = F (W(p, c))− t̄

el =Wl(p, c)− sl
(29)

are the residual terms. The texture parameters can be esti-

mated at the end of the iterative procedure using Eq. 25.

Note that the most expensive operation is JT

F,pP. How-

ever, if we first do JT

F,pUt and then multiply this result

with UT

t , the total cost becomes O(CNntns). The same

stands for JT

F,cP. Consequently, the cost per iteration is

O((ns + nc)
3 +CNnt(ns + nc) +CN(ns + nc)

2) which

is much faster than the Simultaneous algorithm.

Residual masking. In practice, we apply a mask on the

texture reconstruction residual of the Gauss-Newton optimi-

sation, in order to speed-up the 3DMM fitting. This mask is

constructed by first acquiring the set of visible vertexes us-

ing z-buffering and then randomly selecting K of them. By

keeping the number of vertexes small (K ≈ 5000 ≪ N ),

we manage to greatly speed-up the fitting process without

any accuracy penalty.

4. KF-ITW Dataset

For the evaluation of the 3DMM, we have constructed

KF-ITW, the first dataset of 3D faces captured under rela-

tively unconstrained conditions. The dataset consists of 17
different subjects recorded under various illumination con-

ditions performing a range of expressions (neutral, happy,

surprise). We employed the KinectFusion [18, 28] frame-

work to acquire a 3D representation of the subjects with a

Kinect v1 sensor.

The fused mesh for each subject serves as a 3D face

ground-truth in which we can evaluate our algorithm and

compare it to other methods. A voxel grid of size 6083 was

utilised to get the detailed 3D scans of the faces. In order

to accurately reconstruct the entire surface of the faces, a

circular motion scanning pattern was carried out. Each sub-

ject was instructed to stay still in a fixed pose during the

entire scanning process. The frame rate for every subject

was constant to 8 frames per second. After getting the 3D

scans from the KinectFusion framework we fit our shape

model in a non-rigid manner to get a clean mesh with a dis-

tinct number of vertexes for the evaluation process. Finally,

each mesh was manually annotated with the iBUG 49 sparse

landmark set.

5. Experiments

To train our model, which we label as ITW, we use a vari-

ant of the Basel Face Model (BFM) [30] that we trained to

contain both identities drawn from the original BFM model

along with expressions provided by [14]. We trained the

“in-the-wild” texture model on the images of iBUG, LFPW

& AFW datasets [31] as described in Sec. 2.3 using the 3D

shape fits provided by [44]. Additionally, we elect to use the

project-out formulation for the throughout our experiments

due its superior run-time performance and equivalent fitting

performance to the simultaneous one.
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Figure 4. Accuracy results for facial shape estimation on KF-ITW

database. The results are presented as Cumulative Error Distribu-

tions of the normalized dense vertex error. Table 1 reports addi-

tional measures.

5.1. 3D Shape Recovery

Herein, we evaluate our “in-the-wild” 3DMM (ITW) in

terms of 3D shape estimation accuracy against two pop-

ular state-of-the-art alternative 3DMM formulations. The

first one is a classic 3DMM with the original Basel labo-

ratory texture model and full lighting equation which we

term Classic. The second is the texture-less linear model

proposed in [16, 17] which we refer to as Linear. For Lin-

ear code we use the Surrey Model with related blendshapes

along with the implementation given in [17].

We use the ground-truth annotations provided in the KF-

ITW dataset to initialize and fit all three techniques to the

“in-the-wild” style images in the dataset. The mean mesh

of each model under test is landmarked with the same 49-

point markup used in the dataset, and is registered against

the ground truth mesh by performing a Procrustes alignment

using the sparse annotations followed by Non-Rigid Iter-

ative Closest Point (N-ICP) to iteratively deform the two

surfaces until they are brought into correspondence. This

provides a per-model ‘ground-truth’ for the 3D shape re-

covery problem for each image under test. Our error metric

is the per-vertex dense error between the recovered shape

and the model-specific corresponded ground-truth fit, nor-

malized by the inter-ocular distance for the test mesh. Fig. 4

shows the cumulative error distribution for this experiment

for the three models under test. Table 1 reports the corre-

sponding Area Under the Curve (AUC) and failure rates.

The Classic model struggles to fit to the “in-the-wild” con-

ditions present in the test set, and performs the worst. The

texture-free Linear model does better, but the ITW model is

most able to recover the facial shapes due to its ideal feature

basis for the “in-the-wild” conditions.

Figure 6 demonstrates qualitative results on a wide range

of fits of “in-the-wild” images drawn from the Helen and

Method AUC Failure Rate (%)

ITW 0.678 1.79

Linear 0.615 4.02

Classic 0.531 13.9
Table 1. Accuracy results for facial shape estimation on KF-ITW

database. The table reports the Area Under the Curve (AUC) and

Failure Rate of the Cumulative Error Distributions of Fig. 4.
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Figure 5. Results on facial surface normal estimation in the form

of Cumulative Error Distribution of mean angular error.

300W datasets [31, 32] that qualitatively highlight the ef-

fectiveness of the proposed technique. We note that in a

wide variety of expression, identity, lighting and occlusion

conditions our model is able to robustly reconstruct a real-

istic 3D facial shape that stands up to scrutiny.

5.2. Quantitative Normal Recovery

As a second evaluation, we use our technique to find

per-pixel normals and compare against two well estab-

lished Shape-from-Shading (SfS) techniques: PS-NL [8]

and IMM [22]. For experimental evaluation we employ im-

ages of 100 subjects from the Photoface database [41]. As

a set of four illumination conditions are provided for each

subject then we can generate ground-truth facial surface

normals using calibrated 4-source Photometric Stereo [26].

In Fig. 5 we show the cumulative error distribution in terms

of the mean angular error. ITW slightly outperforms IMM

even though both IMM and PS-NL use all four available im-

ages of each subject.

6. Conclusion

We have presented a novel formulation of 3DMMs re-

imagined for use in “in-the-wild” conditions. We capitalise

on the annotated “in-the-wild” facial databases to propose

a methodology for learning an “in-the-wild” feature-based

texture model suitable for 3DMM fitting without having to

optimise for illumination parameters. Furthermore, we pro-

pose a novel optimisation procedure for 3DMM fitting. We
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Figure 6. Examples of in the wild fits of our ITW 3DMM taken from 300W [31].

show that we are able to recover shapes with more detail

than is possible using purely landmark-driven approaches.

Our newly introduced “in-the-wild” KinectFusion dataset

allows for the first time a quantitative evaluation of 3D fa-

cial reconstruction techniques in the wild, and on these eval-

uations we demonstrate that our in the wild formulation is

state of the art, outperforming classical 3DMM approaches

by a considerable margin.
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