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Abstract

Fast and accurate upper-body and head pose estima-
tion is a key task for automatic monitoring of driver at-
tention, a challenging context characterized by severe il-
lumination changes, occlusions and extreme poses. In this
work, we present a new deep learning framework for head
localization and pose estimation on depth images. The core
of the proposal is a regressive neural network, called PO-
SEidon, which is composed of three independent convolu-
tional nets followed by a fusion layer, specially conceived
for understanding the pose by depth. In addition, to re-
cover the intrinsic value of face appearance for understand-
ing head position and orientation, we propose a new Face-
from-Depth model for learning image faces from depth. Re-
sults in face reconstruction are qualitatively impressive. We
test the proposed framework on two public datasets, namely
Biwi Kinect Head Pose and ICT-3DHP, and on Pandora,
a new challenging dataset mainly inspired by the automo-
tive setup. Results show that our method overcomes all re-
cent state-of-art works, running in real time at more than
30 frames per second.

1. Introduction

Nowadays, we are witnessing a revolution in the automo-
tive field, where ICT technologies are becoming sometimes
more important than the engine itself.

New solutions are required to solve many human-centered
problems: semi-autonomous driving, driver behavior un-
derstanding, human-machine-interaction for entertainment,
driver attention analysis for safe driving are just some ex-
amples. All of them, lay on the basic task of estimating
driver pose, and in particular of the face and upper body
parts, which are the mainly visible items of a driver. Com-
puter vision research [37, 50, 5, 16, 13] achieved encour-
aging results, even if they are still not completely satisfac-
tory due to some strong constraints of the context: reliabil-
ity with strong pose changes, robustness to large occlusions
(e.g. glasses), in conjunction with non-intrusive capabili-
ties, real time and low cost requirements (Fig. 1). In addi-

Figure 1. Some real situations in which head and upper-body pose
estimation are useful to monitor driver’s attention level: from the
top-left, driver is talking with passengers, is playing with smart-
phone, is falling sleep and is looking at the rear-view mirror.

tion, standard techniques based on intensity images are not
always applicable, due to the poor illumination conditions
during the night and the continuous illumination changes
during the day. For this reasons, computer vision solutions
based on illumination-insensitive data sources such as ther-
mal [51] or depth [35] cameras are emerging.

Therefore, we propose a complete framework for driver
monitoring based on depth images only, that can be easily
acquired by commercial low-cost sensors placed inside the
vehicles. Starting from head localization, the ultimate goal
of the framework is the estimation of the head and shoul-
der pose, measured as pitch, roll and yaw rotation angles.
To this aim, a new triple regressive Convolutional Neural
Network architecture, called POSEidon, is proposed, that
combines depth, motion images and appearance.

One of the most innovative contribution is a Face-from-
Depth network, that is able to reconstruct gray-level faces
directly from head depth images. This solution derives from
the awareness that intensity face images are very useful to
detect head pose [, 17]: without having intensity data we
would like to have similar benefits. Gray-level faces ex-
tracted by depth images have a qualitatively impressive sim-
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Figure 2. Examples of gray- level face images (bottom) recon-
structed from the depth maps (middle). The corresponding ground

truth is also shown (top). The first four subjects have been included
in the training set, while the last two are completely new.

ilarity (Fig. 2). Summarizing, the novel contributions of the
paper are the following:

1. A complete and accurate framework, from head local-
ization to head and shoulder pose estimation, based
only on depth data, working in real time (30 fps);

2. A new Faces-from-Depth architecture, to reconstruct
gray-level face images directly from depth maps. To
the best of our knowledge, this is the first proposal of
this kind of approach;

3. A new dataset, called Pandora, the first containing
high resolution depth data with head and shoulder pose
annotations.

2. Related Work

Head pose estimation approaches can rely on different
input types: intensity images, depth maps, or both. In order
to discuss related work, we adopt the classification proposed
in [35, 19], updated and summarized in three main cat-
egories, namely feature-based, appearance-based and 3D
model registration approaches.

Feature-based methods need facial (e.g. nose, eyes) or
pose-dependent features, that should be visible in all poses:
consequently, these methods fail when features are not de-
tected. In [31] an accurate nose localization is used for head
tracking and pose estimation on depth data. Breitenstein et
al. [8] used geometric features to identify nose candidates
to produce the final pose estimation. HOG features [14]
were extracted from RGB and depth images in [55, 44], then
a Multi Layer Perceptron and a linear SVM were used for
feature classification, respectively. Also [53, 56, 34] needed
well visible facial features on RGB input images, and [48]
on 3D data.

Appearance-based methods rely on one or more classi-
fiers that use raw input images, trained to perform head pose
estimation. In [46] RGB and depth data were combined, ex-
ploiting a neural network to perform head pose prediction.

Fanelli et al. [19, 20, 18] trained Random Regression Forest
for both head detection and pose estimation on depth im-
ages. Tulyakov et al. [52] used a cascade of tree classifiers
to tackle extreme head pose estimation task. A Convolu-
tional Neural Network (CNN) based on RGB input images
is exploited in [1]. Recently, in [36] a multimodal CNN
was proposed to estimate gaze direction: a regression ap-
proach was only approximated through a 360-classes clas-
sifier. Synthetic datasets were used to train CNNss, that gen-
erally require a huge amount of data, e.g. [28].

3D model registration approaches create a head model
from the acquired data; frequently, a manual initialization
is required. In [41] facial point clouds were matched with
pose candidates, through a triangular surface patch descrip-
tor. In [3] intensity and depth data were used to build a 3D
constrained local method for robust facial feature tracking.
In [23] a 3D morphable model is fitted, using both RGB
and depth data to predict head pose. Also [3, 9, 6, 10, 7, 43]
built 3D facial model for head tracking, animation and pose
estimation.

Remaining methods regard head pose estimation task as
an optimization problem: [39] used the Particle Swarm Op-
timization (PSO) [25]; [4] exploited the Iterative Closest
Point algorithm (ICP) [30]; [35] combined PSO and ICP
techniques. [26] used a least-square technique to minimize
the difference between the input depth change rate and the
prediction rate. Besides, other works use linear or nonlinear
regression with extremely low resolution images [ |]. HOG
features and a Gaussian locally-linear mapping model were
used in [17]. Finally, recent works produce head pose esti-
mations performing face alignment task [58].

Several works based on head pose estimation do not
take in consideration head localization task. To propose a
complete head pose estimation framework, it is necessary
to perform a head detection, finding the complete head or
a particular point, for example the head center. With RGB
images Viola and Jones [54] face detector is often exploited,
e.g. in[23,9,43, 3, 46]. A different approach demands the
head location to a classifier, e.g. [19, 52]. As reported in
[35], these approaches suffer due to the lack of generaliza-
tion capabilities with different acquisition devices.

Only few works in literature tackle the problem of driver
body pose estimation focusing only on upper-body part or
in automotive context. Ito et al. [24] adopting an intru-
sive approach, placed six marker points on driver body to
predict some typical driving operations. A 2D driver body
tracking system was proposed in [15], but a manual initial-
ization of the tracking model is strictly required. In [51] a
thermal long-wavelength infrared video camera was used to
analyze occupant position and posture. In [49] an approach
for upper body tracking system using 3D head and hands
movements was developed.
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Figure 3. Overview of the whole POSEidon framework. Depth input images are acquired by low cost sensors (black) and provided to a
head localization CNN (blue) to suitably crop the images around the upper-body or head regions. The first is exploited by the shoulder pose
estimation task (green), while the second is selected for the head pose estimation (red) obtained through the POSEidon network (orange).
In the center, the Face-from-Depth net (yellow) which produces gray-level images of the face from the depth map. [best in color]

3. The POSEidon framework

An overview of the POSEidon framework is depicted
in Figure 3. The final goal is the estimation of the pose
of the driver’s head and shoulders, defined as the mass
center position and the corresponding orientation relatively
to the reference frame of the acquisition device [37]. The
orientation is represented using three pitch, roll and yaw
rotation angles. POSEidon directly processes the stream
of depth frames captured in real time by a commercial
sensor (e.g., Microsoft Kinect). Position and size of the
head in the foreground are estimated by a head localization
module based on a regressive CNN (Sect. 5.1). The
output provided is used to crop the input frames around
the head or the shoulder bounding boxes, depending on
the further pipeline type. Frames cropped around the
head are fed to the head pose estimation block, while the
others are exploited to estimate the shoulders pose. The
core components of the system are the Face-from-Depth
network (Sect. 4), and POSEidon (Sect. 5.2), the network
which gives the name to the whole framework. Its trident
shape is due to the three included CNNs, each working
on likewise sources: depth, Face-from-Depth and motion
images data. The first one — i.e., the CNN directly working
on depth data — plays the main role on the pose estimation,
while the other two cooperate to reduce the estimation error.

4. Face-from-Depth network

Face-from-Depth (FfD) is one of the most innovative el-
ements of the framework. Due to illumination issues, the
appearance of the face is not always available in many sce-
narios, e.g. inside a vehicle. On the contrary, depth maps
are invariant to illumination conditions but lacks of texture

details. We aim to investigating if it is possible to imag-
ine the appearance of a face given the corresponding depth
data. The Face-from-Depth network has been created to this
goal, even if the output is not always realistic and visually
pleasant: however, the promising results confirm their pos-
itive contribution in the estimation of the head pose.

The proposed architecture fuses the key aspects of autoen-
coders [33] and fully convolutional [29] neural networks: it
is composed by 14 convolutional layers, plus a fully con-
nected layer at the end (Fig. 4). A single 2 x 2 max-pooling
layer has been inserted after the second layer, and a corre-
sponding up-sampling layer after the thirteenth. Besides,
two zero-padding layers are added after the first and the
second convolutional layers, respectively. We train the net-
work in a single stage, with input head images resized to
64 x 64 pixels. The hyperbolic tangent activation function
is used and best training performances are reached through
the self adaptive Adadelta optimizer [57]. A specific loss
function is exploited to highlight the central area of the im-
age, where the face is supposed to be after the cropping step,
and takes in account the distance between the reconstructed
image and the corresponding gray-level ground truth:

R C
1 _
L= T.oZ:%:(”% —Gall-wy) @

where R, C are the number of rows and columns of the in-
put images, respectively. y;;,7;; € R°" are the intensity
values from ground truth (ch = 1) and predicted appear-
ance images. Finally, the term w{}/ introduces a bivariate
Gaussian prior mask. Best results have been obtained us-
ingp = B, ST and & = T- [(R/a)?,(C/8)*)T with
o and B empirically set to 3.5,2.5 for squared images of
R = C = 64. Some visual examples of input, output and

ground-truth images are reported in Figure 2.
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Figure 4. Architecture of the Face-from-Depth network.

5. Pose Estimation from depth
5.1. Head Localization Network

In this step we design a network to perform head local-

ization, relying on the main assumption that a single person
is in the foreground. The desired network outputs are the
image coordinates (g, yg) of the head center, or rather,
the average position of all head points in the frame [47]. De-
tails on the deep architecture adopted are reported in Figure
5. A limited depth and small sized filters have been cho-
sen to meet real time constraint while keeping satisfactory
performance. For the same reason, input images are firstly
resized to 160 x 132 pixels. A max-pooling layer is run after
each of the first four convolutional layers, while a dropout
regularization (o = 0.5) is exploited in fully connected lay-
ers. The hyperbolic tangent activation (tanh) function is
adopted, in order to map continuous output values to a pre-
defined range [—oo, +00] — [—1,+1]. The network has
been trained by Stochastic Gradient Descent (SGD) [27]
and the Lo loss function.
Given the head position (xp,ypm) in the frame, a dy-
namic size algorithm provides the head bounding box with
barycenter (x g, yy) and width wy and height h g, around
which the frames are cropped:

wig = Tty = @)
where f,, f, are the horizontal and the vertical focal lengths
in pixels of the acquisition device, respectively. IR, R, are
the average width and height of a face (for head pose task
R, = Ry = 320) and D is the distance between the head
center and the acquisition device, computed averaging the
depth values around the head center.

Some examples of the bounding boxes estimated by the net-
work are superimposed in Figure 9.

5.2. POSEidon

The POSEidon network is mainly obtained as a fusion
of three CNNss and has been developed to perform a regres-
sion on the 3D pose angles. As a result, continuous Euler
values — corresponding to the yaw, pitch and roll angles —
are estimated (right part of Fig. 3). The three POSEidon

components have the same shallow architecture based on 5
convolutional layers with kernel size of 5x 5, 4 x4 and 3 x 3,
max-pooling is conducted only on the first three layers. The
first four convolutional layers have 32 filters each, the last
one has 128 filters. At the end of the network, there are 3
fully connected layers, with 128, 84 and 3 neurons, respec-
tively. Also in this case fanh function is exploited: we are
aware that ReLU [38] converges faster, but we obtain better
performance in term of accuracy prediction. The three net-
works are fed with different input data types: the first one,
directly takes as input the head-cropped depth images; the
second one is connected to the Face-from-Depth output and
the last one operates on motion images, obtained applying
the standard Farneback algorithm [21] on pairs of consecu-
tive depth frames. A fusion step combines the contributions
of the three above described networks: in this case, the last
fully connected layer of each component is removed. Dif-
ferent fusion approaches that have been proposed [42] are
investigated. Given two feature maps =, 2* with a certain
width w and height h, for every feature channel d,, dj and
y € wahxd:

e Multiplication: computes the element-wise product of
two feature maps, as ym"l =z%o0 xb, dv =di =df

e Concatenation: stacks two features maps, without any
blend ¢t = [2¢|2%],d¥ = d% + d¥

e Convolution: stacks and convolves feature maps with
afilter k of size 1 x 1 x (df +df)/2 and S as bias term,
YO = gtk B, dY = (d7 + d) 2

Final POSEidon framework exploits a combination of two
fusing methods, in particular a convolution followed by a
concatenation. After the fusion step, three fully connected
layers composed of 128, 84 and 3 activations respectively
and two dropout regularization (¢ = 0.5) complete the ar-
chitecture. POSEidon is trained with a double-step proce-
dure. First, each individual network is trained with the fol-

30
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Figure 5. Architecture of the head localization network.
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lowing LY weighted loss:

3
Ly =" fwi (v = f@) |l (3)
=1

where w; € [0.2,0.35,0.45]: this weight distribution gives
more importance to the yaw angle, which is preponderant
in the selected automotive context. During the individual
training step, the last fully connected layer of each network
is preserved, then is removed to perform the second training
phase: holding the weights learned for the trident compo-
nents, the new training phase is carried out on the last three
fully connected layers of POSEidon, with the loss function
5 reported in Equation 3. In all training steps, the SGD
optimizer [27] is exploited, the learning rate is set initially
to 10! and then is reduced by a factor 2 every 15 epochs.

5.3. Shoulder pose estimation network

The framework is completed with an additional network
for the estimation of the shoulder pose. We employ the
same architecture adopted for the head (Section 5.2), per-
forming regression on the same three pose angles. Starting
from the head center position (Section 5.1), the depth in-
put images are crop around the driver neck, using a bound-
ing box {zs, ys, ws, hg} with barycenter (zs = x5, ys =
yu — (hpg/4)), and width and height obtained as described
in Equation 2, but with different values of R,, %, to pro-
duce a rectangular crop: these values are tested and dis-
cussed in Section 7. The network is trained with SGD opti-
mizer [27], using the weighted L% loss function described
above (see Eq. 3). Hyperbolic tangent is exploited as acti-
vation functions as usual.

6. Datasets

Network training and testing phases have been done ex-
ploiting two publicly available datasets, namely Biwi Kinect
Head Pose and ICT-3DHP. In addition, we collect a new
dataset, called Pandora, which also contains shoulder pose
annotations. Data augmentation techniques are employed
to enlarge the training set, in order to achieve space invari-
ance and avoid over fitting [27]. Random translations on
vertical, horizontal and diagonal directions, jittering, zoom-
in and zoom-out transformation of the original images have
been exploited. Percentile-based contrast stretching, nor-
malization and scaling of the input images are also applied
to produce zero mean and unit variance data.

Follows a detailed description of the three adopted datasets.

6.1. Biwi Kinect Head Pose dataset

Fanelli et al. [19] introduced this dataset in 2013. It
is acquired with the Microsoft Kinect sensor, a structured
IR light device. It contains about 15k frame, with RGB

TN AR o
AP TR A¥.

Figure 6. Sample frames from the Pandora dataset.

(640 x 480) and depth maps (640 x 480). Twenty subjects
have been involved in the recordings: four of them were
recorded twice, for a total of 24 sequences. The ground
truth of yaw, pitch and roll angles is reported together with
the head center and the calibration matrix. The original pa-
per does not report the adopted split between training and
testing sets; fair comparisons are thus not guarantee. To
avoid this, we clearly report the adopted split in the follow-
ing.

6.2. ICT-3DHP dataset

ICT-3DHP dataset has been introduced by Baltrusaitis et
al. in 2012 [3]. It is collected using the Microsoft Kinect
sensor and contains RGB images and depth maps of about
14k frames, divided in 10 sequences. The image resolution
is 640 x 480 pixels. An hardware sensor (Polhemus Fas-
track) is exploited to generate the ground truth annotation.
The device is placed on a white cap worn by each subject,
visible in both RGB and depth frames. Moreover, the pres-
ence of few subjects and the limited number of frames make
this dataset unsuitable for deep learning approaches.

6.3. Pandora dataset

We collect a new challenging dataset, called Pandora.
The dataset has been specifically created for the tasks de-
scribed in the paper (i.e., head center localization, head pose
and shoulder pose estimation) and is inspired by the auto-
motive context. A frontal fixed device acquires the upper
body part of the subjects, simulating the point of view of
camera placed inside the dashboard. Among the others, the
subjects also perform driving-like actions, such as grasping
the steering wheel, looking to the rear-view or lateral mir-
rors, shifting gears and so on. Pandora contains 110 anno-
tated sequences using 10 male and 12 female actors. Each
subject has been recorded five times.

Pandora is the first publicly available dataset which com-
bines the following features:

e Shoulder angles: in addition to the head pose anno-
tation, Pandora contains the ground truth data of the
shoulder pose expressed as yaw, pitch and roll.

e Wide angle ranges: subjects perform wide head
(£70° roll, 100° pitch and £125° yaw) and shoulder
(£70° roll, £60° pitch and £60° yaw) movements.
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HEAD POSE ESTIMATION ERROR [EULER ANGLES]

Method Year Data Pitch Roll Yaw Avg
Fanelli [19] 2011 Depth 85+99 79483 89+13.0 8431104
Yang [55] 2012 RGB+Depth 9.1+74 74+£49 89+£83 85+6.9
Padeleris [39] 2012 Depth 6.6 6.7 11.1 8.1
Rekik [43] 2013  RGB + Depth 4.3 52 5.1 49
Baltrusaitis [3] 2012  RGB + Depth 5.1 11.3 6.3 7.6
Ahn [1]* 2014 RGB 34+£29 26+25 28+24 29426
Martin [32]* 2014 Depth 2.5 2.6 3.6 29
Saeed [44] 2015 RGB+Depth 50+58 43+46 39+£42 44+49
Papazov [41] 2015 Depth 25+£74 38+£160 30£96 40+£11.0
Drouard [17] 2015 RGB 59+48 47+46 49+41 52+45
Meyer [35] 2015 Depth 24 2.1 2.1 2.2
Liu [28] 2016 RGB 60+58 57+73 6.1 £52 59+6.1
POSEidon 2016 Depth 1.6+17 18+18 1.7+1.5 1.7 £ 1.7

Table 1. Results on Biwi dataset. Input cropping is done using the ground truth head position.

For each subject, two sequences are performed with
constrained movements, changing the yaw, pitch and
roll angles separately, while three additional sequences
are completely unconstrained.

e Challenging camouflage: garments as well as vari-
ous objects are worn or used by the subjects to create
head and/or shoulder occlusions. For example, people
wear prescription glasses, sun glasses, scarves, caps,
and manipulate smartphones, tablets or plastic bottles.

e Deep-learning oriented: the dataset contains more
than 250k full resolution RGB (1920 x 1080) and depth
images (512 x 424) with the corresponding annotation.

o Time-of-Flight (ToF) data: a Microsoft Kinect One
device is used to acquire depth data, with a better qual-
ity than other datasets created with the first Kinect ver-
sion [45].

Each frame of the dataset is composed of the RGB appear-
ance image, the corresponding depth map, the 3D coordi-
nates of the skeleton joints corresponding to the upper body
part, including the head center and the shoulder positions.
For convenience’s sake, the 2D coordinates of the joints on
both color and depth frames are provided as well as the head
and shoulder pose angles with respect to the camera refer-
ence frame. Shoulder angles are obtained through the con-
version to Euler angles of a corresponding rotation matrix,
obtained from a user-centered system [40] and defined by
the following unit vectors (N1, N2, N3):

N, = RRS=PLs _ _PRS—PsB

lprs—prsll lprs—psall
4)

N3 Ny xU N2:N1 XN3

= T U]l

where prs, prs and pgsp are the 3D coordinates of the left
shoulder, right shoulder and spine base joints. The anno-
tation of the head pose angles has been collected using a

wearable Inertial Measurement Unit (IMU) sensor. The
sensor has been worn by the subjects in a non visible po-
sition (i.e., on the rear of the head) to avoid distracting ar-
tifacts on both color and depth images. IMU sensor has
been calibrated and aligned at the beginning of each se-
quence, assuring the reliability of the provided angles. The
dataset is publicly available (http://imagelab.ing.
unimore.it/pandora/).

Ix1%Q

(a) left (b) top (c) right (d) bottom (e) middle

Figure 7. Visual examples of the simulated occlusion types applied
on a Biwi frame.

7. Experimental results

The proposed framework has been deeply tested using
dataset described in Section 6. Besides, an ablation study
has been evaluated on Pandora.

Sequences of subjects 10, 14, 16 and 20 have been used for
testing, the remaining for training. Table 2 reports an in-
ternal evaluation, providing mean and standard deviation of
the estimation errors obtained on each angle and for each
system configuration. Similar to Fanelli ef al. [19], we also
report the mean accuracy as percentage of good estimations
(i.e., angle error below 15°). The first line of Table 2 shows
the performance of a baseline system, obtained using the
pose estimation network only and input depth frames are
directly fed to the network without processing and crop.
The crop step is included instead in the configurations of
the other rows, using the ground truth head position as cen-
ter. Results obtained using single networks, couples of them
and the complete POSEidon architecture are shown. The
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HEAD POSE ESTIMATION ERROR [EULER ANGLES]

Architecture Input Cropping Fusion Head Accuracy
Pitch Roll Yaw
depth 81+71 62+63 11.7+122 0.553
depth v 65+£66 54+51 104+11.8 0.646
Single CNN FfD Vv 68+70 57457 105+14.6 0.647
gray-level Vv 71+£66 56+58 9.0£109 0.639
MI v 77+£75 53+£57 10.0£125 0.609
depth + FfD concat 56+50 49+50 98+134 0.698
Double CNN depth + MI \\? concat  60+61 45+148 92%I15 0.690
depth + FfD + MI Vv concat 63+61 50+50 10.6+142 0.657
POSEidon depth + FfD + MI v mul+concat 5.6+56 49+52 9.1£ 119 0.712
depth + FfD + MI Vv conv+concat 5.7£5.6 49+51 9.0+119 0.715

Table 2. Results of the head pose estimation on Pandora comparing different system architectures. The baseline is a single CNN working
on the source depth map. The accuracy is the percentage of correct estimations (err <15°). FfD: Face-from-Depth, MI: Motion Images.

last row highlights the best performance reached using conv
fusion of couples of input types, followed by the concat
step. Even if the choice of the fusion method has a limited
effect (as deeply investigated in [42, 22]), the most signif-
icant improvement of the system is reached exploiting the
three input types together.

Figure 8 shows a comparison of the estimation errors made
by each trident component: each graph plots the error dis-
tribution of a specific network configuration with respect to
the ground truth value. Depth data allows to reach the low-
est error rates for frontal heads, while the other input data
types are better in presence of rotated poses. The graphs
highlight the averaging capabilities of POSEidon too.
Table 2 includes an indirect evaluation of the reconstruction
capabilities of the Face-from-Depth network. The results
reported on the third and fourth rows are obtained using the
network described in Section 5.2 with the reconstructed ap-
pearance image and the original gray-level images as input,
respectively. The similar results confirm that the obtained
image reconstruction is sufficiently accurate, at least for the
pose estimation task. We compared the results of POSEidon
with state-of-art, using the Biwi dataset. According with
Fanelli et al. [19], 18 subjects are used to train the sys-
tem while two for the test. More specifically, we exploited

Occluded part Head
Pitch Roll Yaw
(a) left 2.6+ 3.0 40+£29 7.8 £8.1
(b) top 425+212 1234+93 102+7.6
(c) right 21+£1.38 28 +£26 84+85
(d) bottom 42+33 43+£35 40+£3.0
(e) middle 11.0+£53 3.0£28 6.1 £49
random 125+ 183 53+£6.1 74+£7.1

Table 3. Estimation errors of POSEidon in presence of simulated
occlusions. The system is fed with images from the Biwi dataset
occluded using the masks illustrated in figure 7. Results of the last
line are obtained by applying a random mask to each frame.

the sequences 11 and 12 for testing and the remaining for
training. Table | reports the corresponding results as indi-
cated in the cited papers. POSEidon achieves impressive
results on Biwi dataset: the mean error is under 2° for all of
the three angles, with a small standard deviation. The sys-
tem overcomes all the reported methods, included the recent
proposal by Meyer et al. [35]. The performance are better
than other approaches based on deep learning, 3D data and
regression [1, 36]. Moreover, POSEidon also overcomes
the approaches working on appearance data. The proposals
marked with a star (*) do not follow the same split or ap-
ply a different testing procedure: thus, the comparison with
them may not be fair. Results of [39] reported in table have
been taken from [35] for the sake of comparability.

As already mentioned, in real situations the driver head
may be affected by severe occlusions caused by hands and
objects such as smartphones, scarves, bottles and so on. For
this reason, we have carried out a specific set of experiments
to test the reliability of POSEidon in presence of occlusions
or missing data. We artificially applied the masks depicted
in Figure 7 to remove parts of the input frames and simulate
occlusions. The corresponding performance of POSEidon
is shown in Table 3, which confirms the reliability of the
system also in these cases. The absence of the upper body
part of the head strongly impacts with the system perfor-
mance, in particular for the estimation of the pitch angle.
Similarly, the head part around the nose plays a crucial role
in the pose estimation, as highlighted by the errors gener-

Parameters Shoulders Accuracy
R. R, | Pitch Roll Yaw

No crop 25423 3.0+£26 37+34 0.877
700 250 | 29+26 264£25 4.0+40 0.845
850 250 | 24+22 25422 31+£31 0911
850 500 | 224+21 23+21 29+29 0.924

Table 4. Estimation errors and mean accuracy of the shoulder pose
estimation on Pandora
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Figure 8. Error distribution of each POSEidon components on
Pandora dataset. On x-axis are reported the ground truth angles,
on y-axis the distribution of error for each input type.

ated by the occlusion type (e).

The network performing the shoulder pose estimation has
been tested on Pandora only, due to the lack of the cor-
responding annotations in the other datasets. Results are
reported in Table 4, where different image crops are com-
pared (Section 5.3). The reported results are very promis-
ing, reaching an accuracy over 92%.

In order to have a fair comparison, results reported in Ta-
bles 1 and 2 are obtained using the ground truth head po-
sition as input to the crop procedure. We finally test the
whole pipeline, including the head localization network de-
scribed in section 5.1, using also ICT-3DHP dataset. The
mean error of the head localization (in pixels) and the pose
estimation errors are summarized in Table 5. Sometimes,
the estimated position generates a more effective crop of
the head. As a result, the whole pipeline performs better on
the head pose estimation over the Biwi dataset. POSEidon
reaches valuable results also on the /ICT-3DHP dataset and it
provides comparable results with respect to state of the art
methods working on both depth and RGB data (4.9+5.3,
4.4+4.6, 5.14+5.4 [44], 7.06, 10.48, 6.90 [3], for pitch, roll
and yaw respectively).

The complete framework has been implemented and tested
on a desktop computer equipped with a NVidia Quadro
k2200 GPU board and on a laptop with a NVidia GTX 860M,
exploiting Keras [12] with Theano [2] backend. Real time
performance has been obtained in both cases, with a pro-
cessing rate of more than 30 frames per second, with a lim-
ited dedicated graphical memory requirement. Some exam-
ples of the system output are reported in Figure 9, where
the six pose angles are visually shown using colored bars.
In addition, the original depth map, the Face-from-Depth
reconstruction and the motion data given in input to PO-
SEidon are placed on the left of each frame. Pre-trained
networks and models are publicly available.

Dataset Loc. Head

Pitch Roll Yaw
Biwi 3274219 1.5+14 1.7£1.7 23+2.1
ICT-3DHP - 5.0+4.3 3.5+£35 7.1+6.1
Pandora 4.27£325 7.6+8.5 4.8+4.8 10.6£12.7

Table 5. Results on Biwi, ICT-3DHP and Pandora dataset of the
complete POSEidon pipeline (i.e., head localization, cropping and
pose estimation).

8. Conclusions and future work

A complete framework for head localization and driver
pose estimation called POSEidon is presented. No previ-
ous computation of specific facial features is required. The
system has shown real time and impressive results also in
presence of occlusions, extreme poses of head and shoul-
ders. Besides, the use of only depth data enhances the effi-
cacy under different illumination conditions. All these as-
pects make the proposed framework suitable to particular
challenging contexts, such as automotive. A new and high
quality 3D dataset, Pandora, is then proposed and publicly
released. The system has been developed with a modular
architecture: if it is possible to capture both RGB and depth
images during the training, the complete architecture can be
used. Otherwise, the Face-from-Depth module should be re-
moved from the system, using the depth+MI combination,
reaching worst but still satisfactory performances.

Figure 9. Visual examples of the proposed framework output.
Head (H) and shoulder (S) pose angles are reported as bars cen-
tered at 0°. Depth maps, Face-from-Depth and motion image in-
puts are depicted on the left of each frame. [best in colors]
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