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Abstract

Fast and accurate upper-body and head pose estima-

tion is a key task for automatic monitoring of driver at-

tention, a challenging context characterized by severe il-

lumination changes, occlusions and extreme poses. In this

work, we present a new deep learning framework for head

localization and pose estimation on depth images. The core

of the proposal is a regressive neural network, called PO-

SEidon, which is composed of three independent convolu-

tional nets followed by a fusion layer, specially conceived

for understanding the pose by depth. In addition, to re-

cover the intrinsic value of face appearance for understand-

ing head position and orientation, we propose a new Face-

from-Depth model for learning image faces from depth. Re-

sults in face reconstruction are qualitatively impressive. We

test the proposed framework on two public datasets, namely

Biwi Kinect Head Pose and ICT-3DHP, and on Pandora,

a new challenging dataset mainly inspired by the automo-

tive setup. Results show that our method overcomes all re-

cent state-of-art works, running in real time at more than

30 frames per second.

1. Introduction

Nowadays, we are witnessing a revolution in the automo-

tive field, where ICT technologies are becoming sometimes

more important than the engine itself.

New solutions are required to solve many human-centered

problems: semi-autonomous driving, driver behavior un-

derstanding, human-machine-interaction for entertainment,

driver attention analysis for safe driving are just some ex-

amples. All of them, lay on the basic task of estimating

driver pose, and in particular of the face and upper body

parts, which are the mainly visible items of a driver. Com-

puter vision research [37, 50, 5, 16, 13] achieved encour-

aging results, even if they are still not completely satisfac-

tory due to some strong constraints of the context: reliabil-

ity with strong pose changes, robustness to large occlusions

(e.g. glasses), in conjunction with non-intrusive capabili-

ties, real time and low cost requirements (Fig. 1). In addi-

Figure 1. Some real situations in which head and upper-body pose

estimation are useful to monitor driver’s attention level: from the

top-left, driver is talking with passengers, is playing with smart-

phone, is falling sleep and is looking at the rear-view mirror.

tion, standard techniques based on intensity images are not

always applicable, due to the poor illumination conditions

during the night and the continuous illumination changes

during the day. For this reasons, computer vision solutions

based on illumination-insensitive data sources such as ther-

mal [51] or depth [35] cameras are emerging.

Therefore, we propose a complete framework for driver

monitoring based on depth images only, that can be easily

acquired by commercial low-cost sensors placed inside the

vehicles. Starting from head localization, the ultimate goal

of the framework is the estimation of the head and shoul-

der pose, measured as pitch, roll and yaw rotation angles.

To this aim, a new triple regressive Convolutional Neural

Network architecture, called POSEidon, is proposed, that

combines depth, motion images and appearance.

One of the most innovative contribution is a Face-from-

Depth network, that is able to reconstruct gray-level faces

directly from head depth images. This solution derives from

the awareness that intensity face images are very useful to

detect head pose [1, 17]: without having intensity data we

would like to have similar benefits. Gray-level faces ex-

tracted by depth images have a qualitatively impressive sim-
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Figure 2. Examples of gray-level face images (bottom) recon-

structed from the depth maps (middle). The corresponding ground

truth is also shown (top). The first four subjects have been included

in the training set, while the last two are completely new.

ilarity (Fig. 2). Summarizing, the novel contributions of the

paper are the following:

1. A complete and accurate framework, from head local-

ization to head and shoulder pose estimation, based

only on depth data, working in real time (30 fps);

2. A new Faces-from-Depth architecture, to reconstruct

gray-level face images directly from depth maps. To

the best of our knowledge, this is the first proposal of

this kind of approach;

3. A new dataset, called Pandora, the first containing

high resolution depth data with head and shoulder pose

annotations.

2. Related Work

Head pose estimation approaches can rely on different

input types: intensity images, depth maps, or both. In order

to discuss related work, we adopt the classification proposed

in [35, 19], updated and summarized in three main cat-

egories, namely feature-based, appearance-based and 3D

model registration approaches.

Feature-based methods need facial (e.g. nose, eyes) or

pose-dependent features, that should be visible in all poses:

consequently, these methods fail when features are not de-

tected. In [31] an accurate nose localization is used for head

tracking and pose estimation on depth data. Breitenstein et

al. [8] used geometric features to identify nose candidates

to produce the final pose estimation. HOG features [14]

were extracted from RGB and depth images in [55, 44], then

a Multi Layer Perceptron and a linear SVM were used for

feature classification, respectively. Also [53, 56, 34] needed

well visible facial features on RGB input images, and [48]

on 3D data.

Appearance-based methods rely on one or more classi-

fiers that use raw input images, trained to perform head pose

estimation. In [46] RGB and depth data were combined, ex-

ploiting a neural network to perform head pose prediction.

Fanelli et al. [19, 20, 18] trained Random Regression Forest

for both head detection and pose estimation on depth im-

ages. Tulyakov et al. [52] used a cascade of tree classifiers

to tackle extreme head pose estimation task. A Convolu-

tional Neural Network (CNN) based on RGB input images

is exploited in [1]. Recently, in [36] a multimodal CNN

was proposed to estimate gaze direction: a regression ap-

proach was only approximated through a 360-classes clas-

sifier. Synthetic datasets were used to train CNNs, that gen-

erally require a huge amount of data, e.g. [28].

3D model registration approaches create a head model

from the acquired data; frequently, a manual initialization

is required. In [41] facial point clouds were matched with

pose candidates, through a triangular surface patch descrip-

tor. In [3] intensity and depth data were used to build a 3D

constrained local method for robust facial feature tracking.

In [23] a 3D morphable model is fitted, using both RGB

and depth data to predict head pose. Also [3, 9, 6, 10, 7, 43]

built 3D facial model for head tracking, animation and pose

estimation.

Remaining methods regard head pose estimation task as

an optimization problem: [39] used the Particle Swarm Op-

timization (PSO) [25]; [4] exploited the Iterative Closest

Point algorithm (ICP) [30]; [35] combined PSO and ICP

techniques. [26] used a least-square technique to minimize

the difference between the input depth change rate and the

prediction rate. Besides, other works use linear or nonlinear

regression with extremely low resolution images [11]. HOG

features and a Gaussian locally-linear mapping model were

used in [17]. Finally, recent works produce head pose esti-

mations performing face alignment task [58].

Several works based on head pose estimation do not

take in consideration head localization task. To propose a

complete head pose estimation framework, it is necessary

to perform a head detection, finding the complete head or

a particular point, for example the head center. With RGB

images Viola and Jones [54] face detector is often exploited,

e.g. in [23, 9, 43, 3, 46]. A different approach demands the

head location to a classifier, e.g. [19, 52]. As reported in

[35], these approaches suffer due to the lack of generaliza-

tion capabilities with different acquisition devices.

Only few works in literature tackle the problem of driver

body pose estimation focusing only on upper-body part or

in automotive context. Ito et al. [24] adopting an intru-

sive approach, placed six marker points on driver body to

predict some typical driving operations. A 2D driver body

tracking system was proposed in [15], but a manual initial-

ization of the tracking model is strictly required. In [51] a

thermal long-wavelength infrared video camera was used to

analyze occupant position and posture. In [49] an approach

for upper body tracking system using 3D head and hands

movements was developed.
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Figure 3. Overview of the whole POSEidon framework. Depth input images are acquired by low cost sensors (black) and provided to a

head localization CNN (blue) to suitably crop the images around the upper-body or head regions. The first is exploited by the shoulder pose

estimation task (green), while the second is selected for the head pose estimation (red) obtained through the POSEidon network (orange).

In the center, the Face-from-Depth net (yellow) which produces gray-level images of the face from the depth map. [best in color]

3. The POSEidon framework

An overview of the POSEidon framework is depicted

in Figure 3. The final goal is the estimation of the pose

of the driver’s head and shoulders, defined as the mass

center position and the corresponding orientation relatively

to the reference frame of the acquisition device [37]. The

orientation is represented using three pitch, roll and yaw

rotation angles. POSEidon directly processes the stream

of depth frames captured in real time by a commercial

sensor (e.g., Microsoft Kinect). Position and size of the

head in the foreground are estimated by a head localization

module based on a regressive CNN (Sect. 5.1). The

output provided is used to crop the input frames around

the head or the shoulder bounding boxes, depending on

the further pipeline type. Frames cropped around the

head are fed to the head pose estimation block, while the

others are exploited to estimate the shoulders pose. The

core components of the system are the Face-from-Depth

network (Sect. 4), and POSEidon (Sect. 5.2), the network

which gives the name to the whole framework. Its trident

shape is due to the three included CNNs, each working

on likewise sources: depth, Face-from-Depth and motion

images data. The first one – i.e., the CNN directly working

on depth data – plays the main role on the pose estimation,

while the other two cooperate to reduce the estimation error.

4. Face-from-Depth network

Face-from-Depth (FfD) is one of the most innovative el-

ements of the framework. Due to illumination issues, the

appearance of the face is not always available in many sce-

narios, e.g. inside a vehicle. On the contrary, depth maps

are invariant to illumination conditions but lacks of texture

details. We aim to investigating if it is possible to imag-

ine the appearance of a face given the corresponding depth

data. The Face-from-Depth network has been created to this

goal, even if the output is not always realistic and visually

pleasant: however, the promising results confirm their pos-

itive contribution in the estimation of the head pose.

The proposed architecture fuses the key aspects of autoen-

coders [33] and fully convolutional [29] neural networks: it

is composed by 14 convolutional layers, plus a fully con-

nected layer at the end (Fig. 4). A single 2×2 max-pooling

layer has been inserted after the second layer, and a corre-

sponding up-sampling layer after the thirteenth. Besides,

two zero-padding layers are added after the first and the

second convolutional layers, respectively. We train the net-

work in a single stage, with input head images resized to

64 × 64 pixels. The hyperbolic tangent activation function

is used and best training performances are reached through

the self adaptive Adadelta optimizer [57]. A specific loss

function is exploited to highlight the central area of the im-

age, where the face is supposed to be after the cropping step,

and takes in account the distance between the reconstructed

image and the corresponding gray-level ground truth:

L =
1

R · C

R
∑

i

C
∑

j

(

||yij − ȳij ||
2

2
· wN

ij

)

(1)

where R,C are the number of rows and columns of the in-

put images, respectively. yij , ȳij ∈ Rch are the intensity

values from ground truth (ch = 1) and predicted appear-

ance images. Finally, the term wN
ij introduces a bivariate

Gaussian prior mask. Best results have been obtained us-

ing µ = [R
2
, C
2
]T and Σ = I · [(R/α)

2
, (C/β)

2
]T with

α and β empirically set to 3.5, 2.5 for squared images of

R = C = 64. Some visual examples of input, output and

ground-truth images are reported in Figure 2.
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Figure 4. Architecture of the Face-from-Depth network.

5. Pose Estimation from depth

5.1. Head Localization Network

In this step we design a network to perform head local-

ization, relying on the main assumption that a single person

is in the foreground. The desired network outputs are the

image coordinates (xH , yH) of the head center, or rather,

the average position of all head points in the frame [47]. De-

tails on the deep architecture adopted are reported in Figure

5. A limited depth and small sized filters have been cho-

sen to meet real time constraint while keeping satisfactory

performance. For the same reason, input images are firstly

resized to 160×132 pixels. A max-pooling layer is run after

each of the first four convolutional layers, while a dropout

regularization (σ = 0.5) is exploited in fully connected lay-

ers. The hyperbolic tangent activation (tanh) function is

adopted, in order to map continuous output values to a pre-

defined range [−∞,+∞] → [−1,+1]. The network has

been trained by Stochastic Gradient Descent (SGD) [27]

and the L2 loss function.

Given the head position (xH , yH) in the frame, a dy-

namic size algorithm provides the head bounding box with

barycenter (xH , yH) and width wH and height hH , around

which the frames are cropped:

wH =
fx ·Rx

D
, hH =

fy ·Ry

D
(2)

where fx, fy are the horizontal and the vertical focal lengths

in pixels of the acquisition device, respectively. Rx, Ry are

the average width and height of a face (for head pose task

Rx = Ry = 320) and D is the distance between the head

center and the acquisition device, computed averaging the

depth values around the head center.

Some examples of the bounding boxes estimated by the net-

work are superimposed in Figure 9.

5.2. POSEidon

The POSEidon network is mainly obtained as a fusion

of three CNNs and has been developed to perform a regres-

sion on the 3D pose angles. As a result, continuous Euler

values – corresponding to the yaw, pitch and roll angles –

are estimated (right part of Fig. 3). The three POSEidon

components have the same shallow architecture based on 5

convolutional layers with kernel size of 5×5, 4×4 and 3×3,

max-pooling is conducted only on the first three layers. The

first four convolutional layers have 32 filters each, the last

one has 128 filters. At the end of the network, there are 3

fully connected layers, with 128, 84 and 3 neurons, respec-

tively. Also in this case tanh function is exploited: we are

aware that ReLU [38] converges faster, but we obtain better

performance in term of accuracy prediction. The three net-

works are fed with different input data types: the first one,

directly takes as input the head-cropped depth images; the

second one is connected to the Face-from-Depth output and

the last one operates on motion images, obtained applying

the standard Farneback algorithm [21] on pairs of consecu-

tive depth frames. A fusion step combines the contributions

of the three above described networks: in this case, the last

fully connected layer of each component is removed. Dif-

ferent fusion approaches that have been proposed [42] are

investigated. Given two feature maps xa, xb with a certain

width w and height h, for every feature channel dxa, d
x
b and

y ∈ Rw×h×d:

• Multiplication: computes the element-wise product of

two feature maps, as ymul = xa ◦ xb, dy = dxa = dxb

• Concatenation: stacks two features maps, without any

blend ycat = [xa|xb], dy = dxa + dxb

• Convolution: stacks and convolves feature maps with

a filter k of size 1×1×(dxa+dxb )/2 and β as bias term,

yconv = ycat ∗ k + β, dy = (dxa + dxb )/2

Final POSEidon framework exploits a combination of two

fusing methods, in particular a convolution followed by a

concatenation. After the fusion step, three fully connected

layers composed of 128, 84 and 3 activations respectively

and two dropout regularization (σ = 0.5) complete the ar-

chitecture. POSEidon is trained with a double-step proce-

dure. First, each individual network is trained with the fol-

Figure 5. Architecture of the head localization network.
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lowing Lw
2

weighted loss:

Lw
2
=

3
∑

i=1

∥

∥wi · (yi − f(xi))
∥

∥

2
(3)

where wi ∈ [0.2, 0.35, 0.45]: this weight distribution gives

more importance to the yaw angle, which is preponderant

in the selected automotive context. During the individual

training step, the last fully connected layer of each network

is preserved, then is removed to perform the second training

phase: holding the weights learned for the trident compo-

nents, the new training phase is carried out on the last three

fully connected layers of POSEidon, with the loss function

Lw
2

reported in Equation 3. In all training steps, the SGD

optimizer [27] is exploited, the learning rate is set initially

to 10−1 and then is reduced by a factor 2 every 15 epochs.

5.3. Shoulder pose estimation network

The framework is completed with an additional network

for the estimation of the shoulder pose. We employ the

same architecture adopted for the head (Section 5.2), per-

forming regression on the same three pose angles. Starting

from the head center position (Section 5.1), the depth in-

put images are crop around the driver neck, using a bound-

ing box {xS , yS , wS , hS} with barycenter (xS = xH , yS =
yH − (hH/4)), and width and height obtained as described

in Equation 2, but with different values of Rx, Ry to pro-

duce a rectangular crop: these values are tested and dis-

cussed in Section 7. The network is trained with SGD opti-

mizer [27], using the weighted Lw
2

loss function described

above (see Eq. 3). Hyperbolic tangent is exploited as acti-

vation functions as usual.

6. Datasets

Network training and testing phases have been done ex-

ploiting two publicly available datasets, namely Biwi Kinect

Head Pose and ICT-3DHP. In addition, we collect a new

dataset, called Pandora, which also contains shoulder pose

annotations. Data augmentation techniques are employed

to enlarge the training set, in order to achieve space invari-

ance and avoid over fitting [27]. Random translations on

vertical, horizontal and diagonal directions, jittering, zoom-

in and zoom-out transformation of the original images have

been exploited. Percentile-based contrast stretching, nor-

malization and scaling of the input images are also applied

to produce zero mean and unit variance data.

Follows a detailed description of the three adopted datasets.

6.1. Biwi Kinect Head Pose dataset

Fanelli et al. [19] introduced this dataset in 2013. It

is acquired with the Microsoft Kinect sensor, a structured

IR light device. It contains about 15k frame, with RGB

Figure 6. Sample frames from the Pandora dataset.

(640× 480) and depth maps (640× 480). Twenty subjects

have been involved in the recordings: four of them were

recorded twice, for a total of 24 sequences. The ground

truth of yaw, pitch and roll angles is reported together with

the head center and the calibration matrix. The original pa-

per does not report the adopted split between training and

testing sets; fair comparisons are thus not guarantee. To

avoid this, we clearly report the adopted split in the follow-

ing.

6.2. ICT­3DHP dataset

ICT-3DHP dataset has been introduced by Baltrusaitis et

al. in 2012 [3]. It is collected using the Microsoft Kinect

sensor and contains RGB images and depth maps of about

14k frames, divided in 10 sequences. The image resolution

is 640 × 480 pixels. An hardware sensor (Polhemus Fas-

track) is exploited to generate the ground truth annotation.

The device is placed on a white cap worn by each subject,

visible in both RGB and depth frames. Moreover, the pres-

ence of few subjects and the limited number of frames make

this dataset unsuitable for deep learning approaches.

6.3. Pandora dataset

We collect a new challenging dataset, called Pandora.

The dataset has been specifically created for the tasks de-

scribed in the paper (i.e., head center localization, head pose

and shoulder pose estimation) and is inspired by the auto-

motive context. A frontal fixed device acquires the upper

body part of the subjects, simulating the point of view of

camera placed inside the dashboard. Among the others, the

subjects also perform driving-like actions, such as grasping

the steering wheel, looking to the rear-view or lateral mir-

rors, shifting gears and so on. Pandora contains 110 anno-

tated sequences using 10 male and 12 female actors. Each

subject has been recorded five times.

Pandora is the first publicly available dataset which com-

bines the following features:

• Shoulder angles: in addition to the head pose anno-

tation, Pandora contains the ground truth data of the

shoulder pose expressed as yaw, pitch and roll.

• Wide angle ranges: subjects perform wide head

(±70◦ roll, ±100◦ pitch and ±125◦ yaw) and shoulder

(±70◦ roll, ±60◦ pitch and ±60◦ yaw) movements.
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HEAD POSE ESTIMATION ERROR [EULER ANGLES]

Method Year Data Pitch Roll Yaw Avg

Fanelli [19] 2011 Depth 8.5 ± 9.9 7.9 ± 8.3 8.9 ± 13.0 8.43 ± 10.4

Yang [55] 2012 RGB + Depth 9.1 ± 7.4 7.4 ± 4.9 8.9 ± 8.3 8.5 ± 6.9

Padeleris [39] 2012 Depth 6.6 6.7 11.1 8.1

Rekik [43] 2013 RGB + Depth 4.3 5.2 5.1 4.9

Baltrusaitis [3] 2012 RGB + Depth 5.1 11.3 6.3 7.6

Ahn [1]* 2014 RGB 3.4 ± 2.9 2.6 ± 2.5 2.8 ± 2.4 2.9 ± 2.6

Martin [32]* 2014 Depth 2.5 2.6 3.6 2.9

Saeed [44] 2015 RGB + Depth 5.0 ± 5.8 4.3 ± 4.6 3.9 ± 4.2 4.4 ± 4.9

Papazov [41] 2015 Depth 2.5 ± 7.4 3.8 ± 16.0 3.0 ± 9.6 4.0 ± 11.0

Drouard [17] 2015 RGB 5.9 ± 4.8 4.7 ± 4.6 4.9 ± 4.1 5.2 ± 4.5

Meyer [35] 2015 Depth 2.4 2.1 2.1 2.2

Liu [28] 2016 RGB 6.0 ± 5.8 5.7 ± 7.3 6.1 ± 5.2 5.9 ± 6.1

POSEidon 2016 Depth 1.6 ± 1.7 1.8 ± 1.8 1.7 ± 1.5 1.7 ± 1.7

Table 1. Results on Biwi dataset. Input cropping is done using the ground truth head position.

For each subject, two sequences are performed with

constrained movements, changing the yaw, pitch and

roll angles separately, while three additional sequences

are completely unconstrained.

• Challenging camouflage: garments as well as vari-

ous objects are worn or used by the subjects to create

head and/or shoulder occlusions. For example, people

wear prescription glasses, sun glasses, scarves, caps,

and manipulate smartphones, tablets or plastic bottles.

• Deep-learning oriented: the dataset contains more

than 250k full resolution RGB (1920×1080) and depth

images (512×424) with the corresponding annotation.

• Time-of-Flight (ToF) data: a Microsoft Kinect One

device is used to acquire depth data, with a better qual-

ity than other datasets created with the first Kinect ver-

sion [45].

Each frame of the dataset is composed of the RGB appear-

ance image, the corresponding depth map, the 3D coordi-

nates of the skeleton joints corresponding to the upper body

part, including the head center and the shoulder positions.

For convenience’s sake, the 2D coordinates of the joints on

both color and depth frames are provided as well as the head

and shoulder pose angles with respect to the camera refer-

ence frame. Shoulder angles are obtained through the con-

version to Euler angles of a corresponding rotation matrix,

obtained from a user-centered system [40] and defined by

the following unit vectors (N1, N2, N3):

N1 = pRS−pLS

‖pRS−pLS‖ U = pRS−pSB

‖pRS−pSB‖

N3 = N1×U
‖N1×U‖ N2 = N1 ×N3

(4)

where pLS , pRS and pSB are the 3D coordinates of the left

shoulder, right shoulder and spine base joints. The anno-

tation of the head pose angles has been collected using a

wearable Inertial Measurement Unit (IMU) sensor. The

sensor has been worn by the subjects in a non visible po-

sition (i.e., on the rear of the head) to avoid distracting ar-

tifacts on both color and depth images. IMU sensor has

been calibrated and aligned at the beginning of each se-

quence, assuring the reliability of the provided angles. The

dataset is publicly available (http://imagelab.ing.

unimore.it/pandora/).

(a) left (b) top (c) right (d) bottom (e) middle

Figure 7. Visual examples of the simulated occlusion types applied

on a Biwi frame.

7. Experimental results

The proposed framework has been deeply tested using

dataset described in Section 6. Besides, an ablation study

has been evaluated on Pandora.

Sequences of subjects 10, 14, 16 and 20 have been used for

testing, the remaining for training. Table 2 reports an in-

ternal evaluation, providing mean and standard deviation of

the estimation errors obtained on each angle and for each

system configuration. Similar to Fanelli et al. [19], we also

report the mean accuracy as percentage of good estimations

(i.e., angle error below 15◦). The first line of Table 2 shows

the performance of a baseline system, obtained using the

pose estimation network only and input depth frames are

directly fed to the network without processing and crop.

The crop step is included instead in the configurations of

the other rows, using the ground truth head position as cen-

ter. Results obtained using single networks, couples of them

and the complete POSEidon architecture are shown. The
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HEAD POSE ESTIMATION ERROR [EULER ANGLES]

Architecture Input Cropping Fusion Head Accuracy

Pitch Roll Yaw

Single CNN

depth - 8.1 ± 7.1 6.2 ± 6.3 11.7 ± 12.2 0.553

depth
√

- 6.5 ± 6.6 5.4 ± 5.1 10.4 ± 11.8 0.646

FfD
√

- 6.8 ± 7.0 5.7 ± 5.7 10.5 ± 14.6 0.647

gray-level
√

- 7.1 ± 6.6 5.6 ± 5.8 9.0 ± 10.9 0.639

MI
√

- 7.7 ± 7.5 5.3 ± 5.7 10.0 ± 12.5 0.609

Double CNN
depth + FfD

√
concat 5.6 ± 5.0 4.9 ± 5.0 9.8 ± 13.4 0.698

depth + MI
√

concat 6.0 ± 6.1 4.5 ± 4.8 9.2 ±11.5 0.690

POSEidon

depth + FfD + MI
√

concat 6.3 ± 6.1 5.0 ± 5.0 10.6 ±14.2 0.657

depth + FfD + MI
√

mul+concat 5.6 ± 5.6 4.9 ± 5.2 9.1± 11.9 0.712

depth + FfD + MI
√

conv+concat 5.7 ± 5.6 4.9 ± 5.1 9.0 ± 11.9 0.715

Table 2. Results of the head pose estimation on Pandora comparing different system architectures. The baseline is a single CNN working

on the source depth map. The accuracy is the percentage of correct estimations (err <15
◦). FfD: Face-from-Depth, MI: Motion Images.

last row highlights the best performance reached using conv

fusion of couples of input types, followed by the concat

step. Even if the choice of the fusion method has a limited

effect (as deeply investigated in [42, 22]), the most signif-

icant improvement of the system is reached exploiting the

three input types together.

Figure 8 shows a comparison of the estimation errors made

by each trident component: each graph plots the error dis-

tribution of a specific network configuration with respect to

the ground truth value. Depth data allows to reach the low-

est error rates for frontal heads, while the other input data

types are better in presence of rotated poses. The graphs

highlight the averaging capabilities of POSEidon too.

Table 2 includes an indirect evaluation of the reconstruction

capabilities of the Face-from-Depth network. The results

reported on the third and fourth rows are obtained using the

network described in Section 5.2 with the reconstructed ap-

pearance image and the original gray-level images as input,

respectively. The similar results confirm that the obtained

image reconstruction is sufficiently accurate, at least for the

pose estimation task. We compared the results of POSEidon

with state-of-art, using the Biwi dataset. According with

Fanelli et al. [19], 18 subjects are used to train the sys-

tem while two for the test. More specifically, we exploited

Occluded part Head

Pitch Roll Yaw

(a) left 2.6± 3.0 4.0 ± 2.9 7.8 ± 8.1

(b) top 42.5 ± 21.2 12.3 ± 9.3 10.2 ± 7.6

(c) right 2.1 ± 1.8 2.8 ± 2.6 8.4 ± 8.5

(d) bottom 4.2 ± 3.3 4.3 ± 3.5 4.0 ± 3.0

(e) middle 11.0 ± 5.3 3.0 ± 2.8 6.1 ± 4.9

random 12.5 ± 18.3 5.3 ± 6.1 7.4 ± 7.1

Table 3. Estimation errors of POSEidon in presence of simulated

occlusions. The system is fed with images from the Biwi dataset

occluded using the masks illustrated in figure 7. Results of the last

line are obtained by applying a random mask to each frame.

the sequences 11 and 12 for testing and the remaining for

training. Table 1 reports the corresponding results as indi-

cated in the cited papers. POSEidon achieves impressive

results on Biwi dataset: the mean error is under 2◦ for all of

the three angles, with a small standard deviation. The sys-

tem overcomes all the reported methods, included the recent

proposal by Meyer et al. [35]. The performance are better

than other approaches based on deep learning, 3D data and

regression [1, 36]. Moreover, POSEidon also overcomes

the approaches working on appearance data. The proposals

marked with a star (*) do not follow the same split or ap-

ply a different testing procedure: thus, the comparison with

them may not be fair. Results of [39] reported in table have

been taken from [35] for the sake of comparability.

As already mentioned, in real situations the driver head

may be affected by severe occlusions caused by hands and

objects such as smartphones, scarves, bottles and so on. For

this reason, we have carried out a specific set of experiments

to test the reliability of POSEidon in presence of occlusions

or missing data. We artificially applied the masks depicted

in Figure 7 to remove parts of the input frames and simulate

occlusions. The corresponding performance of POSEidon

is shown in Table 3, which confirms the reliability of the

system also in these cases. The absence of the upper body

part of the head strongly impacts with the system perfor-

mance, in particular for the estimation of the pitch angle.

Similarly, the head part around the nose plays a crucial role

in the pose estimation, as highlighted by the errors gener-

Parameters Shoulders Accuracy

Rx Ry Pitch Roll Yaw

No crop 2.5 ± 2.3 3.0 ±2.6 3.7 ± 3.4 0.877

700 250 2.9 ± 2.6 2.6 ±2.5 4.0 ± 4.0 0.845

850 250 2.4 ± 2.2 2.5 ±2.2 3.1 ± 3.1 0.911

850 500 2.2 ± 2.1 2.3 ±2.1 2.9 ± 2.9 0.924

Table 4. Estimation errors and mean accuracy of the shoulder pose

estimation on Pandora
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Figure 8. Error distribution of each POSEidon components on

Pandora dataset. On x-axis are reported the ground truth angles,

on y-axis the distribution of error for each input type.

ated by the occlusion type (e).

The network performing the shoulder pose estimation has

been tested on Pandora only, due to the lack of the cor-

responding annotations in the other datasets. Results are

reported in Table 4, where different image crops are com-

pared (Section 5.3). The reported results are very promis-

ing, reaching an accuracy over 92%.

In order to have a fair comparison, results reported in Ta-

bles 1 and 2 are obtained using the ground truth head po-

sition as input to the crop procedure. We finally test the

whole pipeline, including the head localization network de-

scribed in section 5.1, using also ICT-3DHP dataset. The

mean error of the head localization (in pixels) and the pose

estimation errors are summarized in Table 5. Sometimes,

the estimated position generates a more effective crop of

the head. As a result, the whole pipeline performs better on

the head pose estimation over the Biwi dataset. POSEidon

reaches valuable results also on the ICT-3DHP dataset and it

provides comparable results with respect to state of the art

methods working on both depth and RGB data (4.9±5.3,

4.4±4.6, 5.1±5.4 [44], 7.06, 10.48, 6.90 [3], for pitch, roll

and yaw respectively).

The complete framework has been implemented and tested

on a desktop computer equipped with a NVidia Quadro

k2200 GPU board and on a laptop with a NVidia GTX 860M,

exploiting Keras [12] with Theano [2] backend. Real time

performance has been obtained in both cases, with a pro-

cessing rate of more than 30 frames per second, with a lim-

ited dedicated graphical memory requirement. Some exam-

ples of the system output are reported in Figure 9, where

the six pose angles are visually shown using colored bars.

In addition, the original depth map, the Face-from-Depth

reconstruction and the motion data given in input to PO-

SEidon are placed on the left of each frame. Pre-trained

networks and models are publicly available.

Dataset Loc. Head

Pitch Roll Yaw

Biwi 3.27±2.19 1.5±1.4 1.7±1.7 2.3±2.1

ICT-3DHP - 5.0±4.3 3.5±3.5 7.1±6.1

Pandora 4.27±3.25 7.6±8.5 4.8±4.8 10.6±12.7

Table 5. Results on Biwi, ICT-3DHP and Pandora dataset of the

complete POSEidon pipeline (i.e., head localization, cropping and

pose estimation).

8. Conclusions and future work

A complete framework for head localization and driver

pose estimation called POSEidon is presented. No previ-

ous computation of specific facial features is required. The

system has shown real time and impressive results also in

presence of occlusions, extreme poses of head and shoul-

ders. Besides, the use of only depth data enhances the effi-

cacy under different illumination conditions. All these as-

pects make the proposed framework suitable to particular

challenging contexts, such as automotive. A new and high

quality 3D dataset, Pandora, is then proposed and publicly

released. The system has been developed with a modular

architecture: if it is possible to capture both RGB and depth

images during the training, the complete architecture can be

used. Otherwise, the Face-from-Depth module should be re-

moved from the system, using the depth+MI combination,

reaching worst but still satisfactory performances.

Figure 9. Visual examples of the proposed framework output.

Head (H) and shoulder (S) pose angles are reported as bars cen-

tered at 0◦. Depth maps, Face-from-Depth and motion image in-

puts are depicted on the left of each frame. [best in colors]
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