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Abstract

Behavior analysis provides a crucial non-invasive and

easily accessible diagnostic tool for biomedical research.

A detailed analysis of posture changes during skilled mo-

tor tasks can reveal distinct functional deficits and their

restoration during recovery. Our specific scenario is based

on a neuroscientific study of rodents recovering from a large

sensorimotor cortex stroke and skilled forelimb grasping is

being recorded. Given large amounts of unlabeled videos

that are recorded during such long-term studies, we seek

an approach that captures fine-grained details of posture

and its change during rehabilitation without costly manual

supervision. Therefore, we utilize self-supervision to au-

tomatically learn accurate posture and behavior represen-

tations for analyzing motor function. Learning our model

depends on the following fundamental elements: (i) limb

detection based on a fully convolutional network is ini-

tialized solely using motion information, (ii) a novel self-

supervised training of LSTMs using only temporal permu-

tation yields a detailed representation of behavior, and (iii)

back-propagation of this sequence representation also im-

proves the description of individual postures. We establish a

novel test dataset with expert annotations for evaluation of

fine-grained behavior analysis. Moreover, we demonstrate

the generality of our approach by successfully applying it to

self-supervised learning of human posture on two standard

benchmark datasets.

1. Introduction

Motor behavior is the main form of an individual to ex-

press and interact with the environment. Analysis and pre-

cise quantification of motor kinematics, therefore, provide

a detailed, non-invasive understanding of functional deficits

of the sensorimotor cortex. Furthermore, videos of behav-

ior recorded during long-term studies on the recovery af-

∗Indicates equal contribution

Figure 1: Overview of our self-supervised approach for

posture and sequence representation learning using CNN-

LSTM. After the initial training with motion-based detec-

tions we retrain our model for enhancing the learning of the

representations.

ter neurological diseases provide an easily available, rich

source of information to evaluate and adjust drug applica-

tion and rehabilitative paradigms. The main bottleneck is

presently that all analysis of skilled motor function depends

on a time-intensive, error-prone, and costly manual evalu-

ation of behavior, e.g., by aggregating a large set of subtle

characteristics of limb posture and its deformation over time

[1]. Consequently, this detailed behavior representation re-

quired for studying skilled motor functions goes far beyond

a trajectory analysis [23] as can also be seen from Fig. 6.

Thus, there is a dire need for an automatic evaluation of

subtle differences in behavior and the underlying postures

[4]. Given the large amounts of available unlabeled video

data, we seek a self-supervised method that can learn (i) to

detect the limb, which is performing skilled motor function,

(ii) to represent its posture so that it captures subtle differ-

ences due to impairment while being invariant to variations

between animals, (iii) and to compare behavior sequences

with another.

Our specific setting involves long-term recordings of rats

recovering from a large stroke in the sensorimotor cortex

6466



[27] (the second leading source of disability worldwide) and

performing skilled forelimb grasping. The only available

information for training are videos recorded before and af-

ter stroke, where even the healthy animals show a substan-

tial number of failed grasps due to the complexity of the

task. We address challenges (i)-(iii) jointly by combining

a CNN for individual postures with an LSTM for behav-

ior sequences which train themselves without the need of

annotated grasping sequences. Given weak initial candi-

date detections of grasping paws obtained using motion in-

formation, a CNN is trained to separate paws from clutter.

Unrolling the fully convolutional layers of this model, we

obtain a fully convolutional network (FCN [37]) for detect-

ing paws. Moreover, due to the absence of posture anno-

tations we will also utilize this CNN model as an implic-

itly learned, initial representation of posture. To further im-

prove this representation we move from posture to behavior

sequences. Therefore, the CNN for individual postures is

directly linked to a recurrent network (LSTM) for behavior,

indirectly optimizing the posture representation using the

surrogate task of behavior learning through sequence order-

ing. Although this task of training an LSTM on original

sequences against permuted ones sounds more difficult, we

can now tap the large amounts of unlabeled videos by self-

supervision. Bootstrap retraining then improves detections

which in turn enhance the learning of behavior and as a re-

sult the individual posture representation, cf. Fig 1. Finally,

we use multiple instance learning (MIL)[3, 5] to train a clas-

sifier to discover the subtle differences between healthy and

impaired grasping behavior.

In the experimental evaluation on a novel test dataset for

detailed behavior analysis our approach compares favorably

against expert manual evaluation of behavior that has been

established in neuroscience. Moreover, we show the gen-

erality of our method by successfully applying it to two

standard benchmark datasets for human pose estimation

(Olympic Sports and Leeds dataset [32, 22]), where it im-

proves upon the state-of-the-art for unsupervised pose anal-

ysis.

2. Related work

In the age of big data, problems have shifted from

lacking training data to now having lots of it but lacking

tedious manual annotations. Deep learning, which ben-

efits from large volumes of training data, has therefore

spurred new interest in unsupervised techniques and espe-

cially self-supervision has recently shown great potential

[11, 30, 33, 36, 40]. Therefore, surrogate tasks are cre-

ated to indirectly learn a representation that can be trans-

ferred to the original problem. [11], for instance, pre-train

a network using the spatial context in images without re-

quiring labels. Misra et al. [30], on the other hand, utilize

spatiotemporal information by verifying the temporal order

Figure 2: Visualization of our detection system, which uses

optical flow for initial positive samples and random nega-

tives to train an FCN for extracting candidate regions before

applying temporal smoothing (bottom right).

of three frames using a triplet siamese network. These ap-

proaches learn a single frame representation, which is not

sufficient for our challenge of learning similarities between

behavior sequences. Thus, we combine learning of single

frame posture and kinematics for their mutual benefit in an

LSTM, which we train on permutations of entire sequences.

An initial problem of kinematic analysis concerns track-

ing. Tracking approaches can be grouped into methods

based on visual object [41, 25] or model transfer [20, 26].

The absence of initialization, frequent occlusion, high vari-

ance in appearance, and motion blur makes limb tracking

a very challenging task. Also tracking-by-detection [17] is

not applicable as we lack an initialization of the object we

should track. Therefore, detection of limbs and the overall

problem of learning behavior need to be addressed, jointly.

Pose estimation is traditionally tackled by detecting body

parts [35, 39]. Lately, extra information is used to improve

the results, like the relative position between parts[34] or the

appearance of the subject in a video [9]. Our approach does

not require any model of the body or its parts. Rather, char-

acteristic pose information is extracted directly from the im-

age using a similarity between poses that has been learned

by LSTM self-supervision.

Although behavior analysis is of crucial importance

for numerous vision tasks and there has been significant

progress on pose [8, 39, 35, 6] and action classification

[38, 30, 36, 7], detailed kinematic studies, which are re-

quired in many neuroscientific studies, have still not been

tackled sufficiently. Therefore, manual analysis of large

volumes of video recordings is still the usual practice when

investigating subtle changes of behavior [2, 31, 16]. Even
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Figure 3: Visualization of the LSTM self-supervised train-

ing. As input we use real and permuted sequences to learn

a representation of posture and behavior sequences. These

are utilized for further analysis of behavior.

for the simpler setting of trajectory analysis, heavily su-

pervised methods are being used [23]. Another approach

has been to use specialized equipment [14, 18] and avoid

the complexities of behavior analysis altogether by merely

counting if a limb touches or fails particular tactile sensors

[15]. However, this cannot reveal in what way skilled motor

function is impaired.

3. A Self-Supervised Approach to Behavior

Analysis

Now we present an approach for performing long-term

behavior studies without requiring tedious manual super-

vision. In particular, this method uncovers the details of

restoration of skilled motor function during recovery after

brain lesions. In our concrete setting of grasping rats we

jointly learn to detect paws, to represent their postures, and

to compare complete grasping sequences from unlabeled

video sequences to analyze them.

3.1. Detection

The initial challenge of any behavior analysis is detect-

ing the limbs—in case of skilled forelimb function the in-

terest is on the acting hand. Finding and tracking a rat

paw during grasping is challenging for a number of rea-

sons. There is no initialization for tracking provided and

due to frequent occlusions by other body parts (other paw,

arm, nose, etc.) detections are frequently lost. More-

over, paws are small, furry, fast-moving (implying large

displacement between successive frames and motion blur

due to limited illumination of nocturnal rodents that are

distracted by intense light), and appearance varies signif-

icantly between subjects as does shape between different

hand postures. Learning a representation and detector for

paws with these large variations in shape and appearance

is therefore demanding—especially since we do not require

laborious manual annotations of paws. Therefore, we fol-

low a sequential bootstrapping procedure to train a CNN-

based hand detector in an iterative manner, initializing it

with motion information to start with the easy to extract

paws first and then consecutively learning more complex

ones. We initially extract a set of candidate paw regions

by computing optical flow [28] and decomposing frames

with [42] into a low-rank background model and a sparse

set of connected foreground pixels, thus finding strongly

moving paws. In addition to these positive samples we add

hard negatives randomly sampled from locations around the

positives to then train a CNN (AlexNet [24], trained with

stochastic gradient descend with cross-entropy loss) to sep-

arate both classes. This PostureCNN0 is then turned into a

fully convolutional network (FCN0) by reshaping the last 3

fc-layers. A deconvolutional layer is not necessary since we

do not need pixel-accurate segmentation. Paws are then ex-

tracted by taking the 5 strongest candidate detections from

the FCN0 scoremap and then selecting the best one by tem-

poral smoothing, i.e., fitting a polynomial to ten consecu-

tive frames and choosing the smoothest trajectory. Fig. 2

summarizes this procedure. This new detector has better

performance than the initial motion detections as shown in

the experimental section 4. From now one we refer to a

detection as dt where t is the index of a frame.

3.2. Selfsupervised Learning of Postures and Be
havior

To facilitate paw detection, the PostureCNN0 has im-

plicitly learned a representation of paws that we now use

as initialization for training a more accurate model of pos-

ture. After all a model that separates paws from clutter

will not suffice to capture the fine-grained posture similari-

ties needed for analyzing degradation of skilled motor func-

tion. Let φ(·) denote the fc6 output of PostureCNN0, then

xt = φ(dt) is the resulting initial posture representation for

a paw detection dt. Since tedious annotations of posture

are not available, we cannot simply train a multi-class clas-

sifier to separate them, but instead employ self-supervised

training. Therefore, we move from individual postures to

behavior sequences to utilize temporal context and learn the

detailed changes in posture during grasps. A recurrent neu-

ral network links the posture xt in consecutive frames by

means of hidden states ht and a non-linear activation func-

tion σ,

ht = σ(Whxt + Uhht−1 + bh)

at = σ(Waht + ba) .
(1)

By learning the parameters W,U, b we obtain an output

representation at. The model is implemented as a long

short-term memory (LSTM) [12]. To represent behavior we

stack the conv1 to fc6 layers of the PostureCNN0 with the
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Figure 4: 2 nearest and 2 furthest neighbors of a query be-

havior sequence given the learned behavior representation.

Query Nearest Neighbor          100NN

Figure 5: Applying the posture representation to measure

similarity: 5 nearest neighbors and average of the 100 near-

est neighbors for two query frames.

LSTM and a final fully-connected layer (FC) on top (CNN-

LSTM1). During training the gradient is back-propagated

from the top fc classifier down to conv1, jointly updating

the behavior in the LSTM layer and all intermediate lay-

ers of the posture representation. A visual summary of this

joint training of posture and behavior is shown in Fig. 1.

For training the presented model without any provided

annotations, we implement a novel self-supervised learning

method based on a surrogate task. We teach the network to

distinguish between real and randomly permuted sequences

st = [dt, dt+1, · · · , dt+l−1], where l is the length of the

sequence, in a binary classification scenario. For training,

mini-batches Di are composed as

Di = [si1t , π(si1t ), si2t , π(si2t ), · · · , sint , π(sint )]

Li = [y1, y2, · · · , y2n], with yk = k mod 2
(2)

where yk is the label of sequence k in Di, π(·) is a random

permutation of the frames in the sequence, and 2n is the

number of sequences in batch Di. Distinguishing between

a real sequence and its permutation is challenging, since the

model needs to learn subtle details of posture together with

their change over time. Moreover, a positive and the respec-

Figure 6: Side view of a grasping rat. Trajectories of 50

good (blue) and 50 impaired (red) grasps are superimposed.

Evidently, trajectories do not suffice to capture impairment

of behavior.

tive negative sequence are identical except for the order in

which postures appear, thus forcing the network to disre-

gard background, differences between animals, or lighting

changes and rather focus on the change of postures during

grasping. Our surrogate task is perfectly suited for learning

behavior and postures, while establishing crucial indepen-

dence properties, as well as the only feasible solution for

our problem due to the missing labels. Given a sequence

st we now define a sequence representation at (from Eq.

1) as the output of the LSTM layer from the learned CNN-

LSTM1. Moreover, we obtain an updated posture represen-

tation x′

t = φ′(dt), since the fc6 layer has been retrained

compared to the original PostureCNN0. The learned rep-

resentation at is used for behavior analysis, predominantly

for computing the distance measure between sequences by

calculating the cosine similarity. Furthermore we can solve

classification tasks on sequences by training a linear clas-

sifier on at. Fig. 3 describes our self-supervised approach

for learning sequence (and posture) representations and its

application. The building blocks for training are the CNN

(PostureCNN), the LSTM layer and the FC layer. Note that

the FC layer is only necessary for training.

This paw representation can in turn be used for replacing

the initial motion-based paw detections in Sect. 3.1. Thus

we can bootstrap our approach and retrain the PostureCNN0

(denoted PostureCNN1) to obtain the improved detector

(FCN1). The sequence model CNN-LSTM2 is then obtained

by fine-tuning CNN-LSTM1 on the new detections gained

from FCN1. In our experiments we have observed rapid

convergence after two rounds and we analyze the gain of

this bootstrapping in Sect. 4.

3.3. Grasp analysis using MIL approach

Let us now use the learned behavior representation at
(from Eq. 1) to discover what subtle differences make a
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Models Accuracy(%)

OpticalFlow [28] 40.2

FCN0 58.0

FCN1 81.4

FCN2 82.1

Table 1: Accuracy of the detection obtained by optical flow

based initialization, after one round of training (FCN0), and

after two (FCN1) and three rounds of re-training (FCN2).

grasp fail. Besides discriminating between successful and

unsuccessful grasps this analysis will highlight how motor

function improves over the course of rehabilitation. For

training we will only use grasping videos v recorded before

and right after the animal incurred a photothrombotic stroke

[27]. In the latter case all grasps are impaired (negatives),

whereas beforehand, due to the difficulty of the task, there

are good (positives) but also around 20% corrupted grasps.

Grasps from later stages of rehabilitation are not considered

for training since their outcome is unknown and needs to be

inferred. We address the learning problem using a Multiple-

Instance Learning (MIL) approach [3]. We assemble bags

Bv of avt from videos v, Bv = {av1t , av2

t , . . . }, with label

Yv . A bag Bv has a negative label if all samples of the bag

are negatives, Yv = −1 ⇔ ∀i : yvi = −1. It is positive if at

least one of the samples is positive Yv = 1 ⇔ ∃i : yvi = 1.

MIL tries to find the best discriminative classifier and, at

the same time, infers the right label for each sample. The

MIL approach then iteratively (i) trains a classifier (we

use linear soft-margin SVM) and (ii) again imputes labels

for each sequence in a bag using the classifier. Without

labels of individual sequences the model then learns the

characteristics of a failed grasp as discussed in Sect. 4.1.3.

4. Experiments

In this chapter we are going to describe our experiments

in detail and evaluate our approach quantitatively and qual-

itatively, first on a biomedical dataset and afterwards on

two standard benchmark datasets for human pose estima-

tion. All deep networks in our experiments are implemented

using the CAFFE framework [21].

4.1. Analyzing Skilled Motor Function

We have established a new dataset of rats performing

skilled forelimb action (single pellet grasping) before and

during the recovery from a photothrombotic stroke. The

dataset consists of 242 videos of 26 rats with an average

length of 5 minutes per video, which is in total ∼ 20 hours

recorded at 50 fps or 3.7M frames. Recording sessions

were 0 (Baseline), 2, 7, 14, 21, 28, and 35 days after the

stroke. Animals come from four different cohorts with dif-

Models Accuracy(%)

AlexNet [24] 65.3

PostureCNN0 72

PostureCNN2 85.6

Table 2: Evaluation of posture representation using the

benchmark test set for posture similarity.

ferent treatment paradigms: neuronal growth promoting an-

tibody drug [27] (1) without and (2) with physical training,

(3) physical training without neuronal stimulation, and (4)

a cohort with no treatment at all.

4.1.1 Detection

We obtain ∼15, 000 initial detections using the optical flow

based initialization. These detections serve as positive sam-

ples for training the PostureCNN0 (training mini-batch size:

256 samples). Every detection is augmented 10 times with

random scaling and translation. This yields a total training

set size of 300, 000 samples (including negatives). Boot-

strap retraining of the CNN-LSTM sequence representation

and the FCN paw detections finally converges after two iter-

ations. To evaluate performance, we established a small test

set of manually labeled paw locations from different videos.

Table 1 shows the detection accuracy of successive rounds

of the bootstrap retraining (detections are counted as cor-

rect if their intersection over union with the groundtruth is

≥ 50%).

4.1.2 Evaluating Behavior and Posture Representation

The LSTM layer is initialized with random weights and 512

hidden nodes. We tested our model with different numbers

of hidden nodes, but more than 512 nodes did not enhance

the final accuracy. We use n = 12 sequences per batch

and add a randomly re-ordered version for each. Our train-

ing set is composed of around 40, 000 densely extracted

sequences. The network is trained for classification using

stochastic gradient descend with cross-entropy loss.

We evaluate the learned representations using a posture

(individual frames) and a behavior (sequences) benchmark,

Models Accuracy(%)

Max frame similarity 74.1

Avg frame similarity 75.9

DTW[10] 76.8

ClusterLSTM 64.0

CNN-LSTM2 80.5

Table 3: Evaluation of behavior representation using the

benchmark test set for sequence similarity.
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which were manually labeled by neuroscientists. Both

benchmarks are composed of reference frames/sequences

and 10 similar and 10 dissimilar manually selected samples

have been added for each reference. We use If = 30 refer-

ence elements for evaluating the posture representation and

Is = 22 for the sequence evaluation. In total this test set

consists of 4326 frames. Given the learned representation,

we measure the similarity of the reference to the 10 related

and 10 unrelated samples to order them.

Tab. 2 shows the resulting accuracies for single frame

posture similarity obtained by standard AlexNet, our

PostureCNN0, and the final representation obtained by two

iterations, PostureCNN2. Note that the joint training of

behavior and postures substantially improves the represen-

tation of individual postures. In Tab. 2 and 3 we omit

the result of the intermediate iteration (PostureCNN1,CNN-

LSTM1), since performance differed only marginally due to

convergence of learning (as indicated in Table 1).

We compare the accuracy of behavior representation

achieved by our LSTM ordering task with Dynamic Time

Warping[10] (DTW), a direct stacking of single frame pos-

ture representations and an LSTM baseline model (clus-

terLSTM) based on sequence clustering. In case of stack-

ing, similarities between all frames of both sequences are

computed to then use either the maximum or the average

for comparison. ClusterLSTM is the LSTM network trained

on a multi-class classification task rather than our proposed

self-supervised ordering task of Eq. 2. Therefore, we create

clusters of sequences using Dynamic Time Warping as dis-

tance measure between the sequences and train the network

to separate different clusters from another. Tab. 3 shows

that our LSTM ordering task improves upon all the other

approaches. The weak performance of clusterLSTM un-

derlines that training a behavior representation on discrete

groups of sequences is not suited to learn fine-grained be-

havior similarities.

For a qualitative evaluation we show in Fig. 5 and 4 near-

est neighbors of a query frame and a sequence, respectively.

The frame/sequence similarity is based on cosine distances

of the fc6 representation of our joint approach for the frame

representation and the LSTM-features for the sequence rep-

resentation. Note that the nearest neighbors in Fig.5 span

different animals thus portraying invariance to differences

between videos.

4.1.3 Behavior analysis

After previously evaluating our posture and behavior

representation, we now compare the approach against the

manual evaluation setup used by neuroscientists and we

show its potential for further applications.

Predicting the Fitness of Skilled Motor Function: For

Ours

0.8

0.6

0.4

0.2

0.0

BL 2 7 14 21 28 35

0.8

0.6

0.4

0.2

0.0

Stimulation&Training Stimulation

Delayed TrainingNo Treatment

BL 2 7 14 21 28 35

pvalue: 0.010 pvalue: 0.008

pvalue: 0.030 pvalue: 0.004

Figure 7: Green: Expert scores [1] of grasping fitness for all

animals of a specific cohort during an experimental session,

which is designated by the time in days since the stroke. BL

are the baseline recordings of healthy animals before stroke.

Blue: Grasping fitness as predicted by our self-supervised

approach. Agreement between both scores is measured by

the p-value. See text for details.

neuroscientists the primary goal of behavior analysis is to

discover the degree of impairment of subjects that are per-

forming skilled motor function. For the task of single pellet

grasping, a standard protocol has been proposed [1] to judge

grasping fitness. Experts assess grasping by scoring ten cri-

teria including the pronation and supination of the paw (its

turning) and the opening and closing of the digits. Aver-

aging these scores then yields an indicator for the fitness

of the motor function. Rather than trying to replicate the

individual decisions that experts make, we propose to cir-

cumvent this tedious manual analysis by directly mapping

sequences to a final fitness score. However, since there are

no labeled training sequences, we utilize the MIL approach

from Sect. 3.3 to learn how healthy the behavior appears.

Fig. 7 shows predicted and expert scores for all animals of

a cohort based on the behavior in each experimental ses-

sion. Our predicted scores are calibrated (scaling, additive

shift) to have the same range of values as the expert scores.

We measure the agreement between both scores using the

p-value of the two-tailed t-statistic of a linear regression be-

tween the scores (null hypothesis is that our score does not

predict the expert scores). For the four cohorts we obtain

p-values in the range of p = 0.004 to p = 0.03 indicating

that the null hypothesis can be savely rejected. Over the

coarse of rehabilitation our approach nicely discovers the

improvement in the two treatment cohorts at the top of Fig.

7 compared to no/delayed treatment at the bottom.
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Figure 8: Visualizing the recovery process. All kinemat-

ics of an experimental session are compared against im-

paired behavior 2 days post stroke and against good behav-

ior at baseline (after removing bad ones using the MIL ap-

proach). The scalebar shows a tenth of the distance between

the two references, baseline and 2d. The two treatment co-

horts (blue and green) show good recovery in contrast to the

other two that also change in kinematics, but not for good.

Behavior Kinematics vs. Trajectory Analysis: Since

trajectories are easier to obtain, much of previous work

in biomedical imaging (e.g. [23]) has settled for a mere

trajectory analysis instead of the detailed analysis of

behavior kinematics utilized by [1, 4] and in our approach.

In the following we are going to evaluate the aptitude of

trajectories. Therefore, we stack the paw locations for

each grasping sequence instead of their appearance and

again train a MIL SVM classifier to separate baseline

recordings from 2 days post stroke. The resulting classifier

only achieves chance-level performance, indicating that

trajectories are not sufficient to identify subtle differences

in behavior. And indeed, plotting 50 good (blue) and 50

impaired grasps (red), Fig.6, reveals that both sets are

heavily overlapping.

Rehabilitation Analysis: From long-term recordings

over rehabilitation, behavior analysis can also reveal the

subtle changes in motor function during recovery. Obvi-

ously there are thousands of trials between an initially im-

paired and the finally good sequence. We relate the behav-

ior to a large set of healthy baseline (BL) kinematics (af-

ter removing bad ones using the MIL procedure from Sect.

3.3) as well as impaired samples from 2 days post stroke

(2d). Our LSTM-based behavior representation thus pro-

vides distances of motor function at any date to BL and 2d,

which then define a two dimensional summary of the course

of rehabilitation, displayed in Fig. 8 using triangulation for

the 2D plot. The figure not only shows, if the animal be-

havior gets closer again to their original state at baseline, it

also reveals cases of unsuccessful recovery where behavior

digresses from 2d, however without becoming more similar

to baseline, e.g. delayed training.

4.2. Selfsupervised Human Pose Estimation

We now evaluate the generality of our approach by

investigating its applicability to human pose analysis

without requiring annotations. We perform experiments

on two standard benchmark datasets. We first train and

evaluate on the standard Olympic Sports dataset [32]. We

then show that our approach can effectively transfer this

learned representation to another standard benchmark, the

Leeds Sports dataset [22].

Olympic Sports Dataset: The Olympic Sports dataset

[32] comprises 16 different sport activities with a total

of 525 clips and 113, 516 frames. To initialize our pos-

tureCNN we utilize the filters of the powerful CliqueCNN

model [8], which has shown competitive performance

on pose analysis with unlabeled data. Then we run our

self-supervised training procedure as explained in Sect. 3.2

to learn behavior and improve the posture representation.

To be comparable we use the same experimental setup 1 as

in [8] with around 1033 test examples and having to order

20 similar and dissimilar samples to each of the examples.

Category

HOG-

LDA

[19]

Ex.

SVM

[29]

Ex.

CNN

[13]

Alex

net

[24]

Clique

CNN

[8]

Ours

Basketball 0.51 0.63 0.58 0.55 0.70 0.75

Bowling 0.57 0.63 0.58 0.55 0.85 0.87

Clean&Jerk 0.61 0.71 0.58 0.62 0.81 0.85

Discus Thr. 0.42 0.76 0.56 0.59 0.65 0.68

Diving 10m 0.42 0.54 0.51 0.57 0.70 0.76

Diving 3m 0.50 0.57 0.52 0.66 0.76 0.84

HammerThr. 0.62 0.64 0.51 0.66 0.82 0.88

High Jump 0.64 0.76 0.59 0.62 0.82 0.87

Javelin Thr. 0.71 0.72 0.57 0.74 0.85 0.85

Long Jump 0.60 0.69 0.57 0.71 0.78 0.85

Pole Vault 0.59 0.64 0.60 0.64 0.81 0.83

Shot Put 0.51 0.67 0.52 0.70 0.75 0.76

Snatch 0.64 0.76 0.59 0.67 0.84 0.89

TennisServe 0.70 0.75 0.64 0.71 0.84 0.87

Triple Jump 0.63 0.65 0.58 0.65 0.80 0.83

Vault 0.59 0.71 0.63 0.68 0.81 0.86

Mean 0.58 0.67 0.56 0.65 0.79 0.83

Table 4: Average AUC of all categories of the Olympic

Sports dataset using the state-of-the-art and our approach.

1https://asanakoy.github.io/cliquecnn/
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(a) (b)

Figure 9: Similarity Matrices of the category Long

Jump using (a) our approach and (b) CliqueCNN [8].

Rows/columns are individual frames.

Tab. 4 shows the average AUC using HOG-LDA[19],

Exemplar-SVMs[29], Exemplar-CNN[13], CliqueCNN[8],

and our approach. We consistently outperform all previous

methods and achieve an average gain of 4% over the

best performing previous method, CliqueCNN. Evidently,

our self-supervised LSTM-based sequence ordering task

captures more subtle structures, which becomes apparent

when comparing the learned pose similarities of our

approach Fig. 9a with that of the state-of-the-art Fig.

9b. The stripe pattern highlights the reoccurring postures

of gait cycles in Long Jump and it is much more clearly

pronounced than in the previous approach. Since our model

has learned detailed similarities, it can find a large number

of consistent nearest neighbors to a query frame and then

produce averages that still capture the essence of the pose.

Fig. 10a and 10b average over 100 nearest samples.

Leeds Sports Dataset: The Leeds Sports dataset [22]

contains 2000 pose annotated images. Since there are

only static images but no sequences as would be required

for Sect. 3.2, we transfer the previously trained model

from Olympic Sports and directly test on the Leeds Sports

Parts

HOG

LDA

[19]

Alex

net

[24]

Clique

CNN

[8]

Ours

Pose

Mach.

[35]

Deep

Cut

[34]

GT

Torso 73.7 76.9 80.1 82.4 88.1 96.0 93.7

U.legs 41.8 47.8 50.1 53.3 79.0 91.0 78.8

L.legs 39.2 41.8 45.7 48.0 73.6 83.5 74.9

U.arms 23.2 26.7 27.2 30.9 62.8 82.8 58.7

L.arms 10.3 11.2 12.6 16.0 39.5 71.8 36.4

Head 42.2 42.4 45.5 48.9 80.4 96.2 72.4

Mean 38.4 41.1 43.5 46.6 67.8 85.0 69.2

Table 5: PCP measure (observer-centric) of the Leeds Sport

dataset using all mentioned approaches.

(a) (b)

Figure 10: Applying the posture representation obtained by

our self-supervised LSTM training to find similar samples:

Averaging the 100 nearest neighbors of a query frame from

category (a) Long Jump and (b) Hammer Throw.

benchmark. For evaluation we follow the standard proto-

col and measure the Percentage of Correct Parts (PCP). In

Tab. 5 we show the PCP acquired by HOG-LDA, Alexnet,

CliqueCNN, our approach, two fully supervised method

(Pose Machines [35] and DeepCut [34]), and using the

ground-truth (GT) similarities. The GT indicates an up-

per bound on the performance we can achieve by an un-

supervised approach that finds nearest training samples to

query frames, but that is not trained on keypoints. There-

fore, for each query we here select the nearest neighbor us-

ing its keypoints and measure the PCP between the ground-

truth keypoint annolation of the nearest neighbor and the

query. Compared to the currently best unsupervised method

(CliqueCNN) we improve by 3.1%. Achieving this gain

without fine-tuning on the target dataset shows that our ap-

proach can nicely generalize.

5. Conclusion

We have presented a self-supervised procedure for

learning detailed posture and behavior from large amounts

of unlabeled video sequences. A CNN for pose represen-

tation is interlinked with an LSTM for behavior and an

FCN hand detector. These components mutually benefit

from another, due to a joint training procedure. We have

proposed a temporal ordering task for learning the LSTM

and improving single frame posture that does not require

any fine-tuning. Multiple instance learning then provides

a non-parametric classifier, which can predict the recovery

status and it compares favorably against a tedious manual

approach followed by neuroscientists so far. Moreover,

the approach has proven its wide applicability and shown

competitive performance on standard benchmark datasets

for human posture estimation.
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