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Abstract

Our paper presents a new approach for temporal de-

tection of human actions in long, untrimmed video se-

quences. We introduce Single-Stream Temporal Action Pro-

posals (SST), a new effective and efficient deep architec-

ture for the generation of temporal action proposals. Our

network can run continuously in a single stream over very

long input video sequences, without the need to divide input

into short overlapping clips or temporal windows for batch

processing. We demonstrate empirically that our model out-

performs the state-of-the-art on the task of temporal action

proposal generation, while achieving some of the fastest

processing speeds in the literature. Finally, we demonstrate

that using SST proposals in conjunction with existing ac-

tion classifiers results in improved state-of-the-art temporal

action detection performance.

1. Introduction

The millions of cameras that are deployed every year

generate a large amount of recorded, stored and transmitted

video. In particular, a large proportion of this video depicts

events about people, their activities, and behaviors. In order

to effectively interpret this data, computer vision algorithms

need the ability to understand and recognize human actions.

This has motivated a large body of computer vision litera-

ture on the problem of action recognition in videos.

Up until recently, the vast majority of the computer vi-

sion work tackles the action recognition problem as one

of video classification, where an oracle has pre-segmented

videos into short clips that contain a single action. In that

case, the task is reduced to classifying the video into one

of the relevant actions of interest. In practice, applications

(such as smart surveillance, robotics or autonomous driv-

ing) require cameras to record video streams continuously

and vision algorithms to perform temporal action detection

in such long streams. To achieve this, the computer vision

system must simultaneously decide both the temporal inter-

val and the category of the action as they occur.

Temporally detecting human actions can be challenging
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Figure 1. We tackle the problem of temporal action localization

of human actions in long, untrimmed video sequences. We intro-

duce a new model (SST) that outputs temporal action proposals at

multiple scales in a single processing stream. Our method simul-

taneously provides stronger action proposals while being signifi-

cantly more efficient than prior work, which require constructing

and processing multiple temporally overlapping sliding windows.

for computer vision algorithms. Algorithms must process

very long video sequences and output the starting and end-

ing times of each action in each video. The number and

duration of actions can vary significantly, and action inter-

vals can be very short in comparison to the video length.

Recent work has leveraged temporal action proposals

[29, 2, 9] for efficient action detection, where the propos-

als identify relevant temporal windows that are then in-

dependently classified by an action classifier in a second

stage. These proposals are generated by a sliding window

approach, dividing the video into short overlapping tempo-

ral windows. To handle the issue of temporal variations

in actions, windows are applied at multiple temporal scales

[29]. However, this is computationally expensive due to the

exhaustive search in temporal location and scale. Alterna-

tively, one can adopt an architecture that runs a sliding win-

dow at a fixed temporal scale but outputs proposals at varied

temporal scales [9]. This approach still needs to perform

computations on overlapping temporal windows, which re-

sults in possibly redundant computations as each frame is
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processed more than once. For many practical applications

that involve large scale data or real-time interactive systems,

it is critical to enable very fast action localization in videos

and such redundant computations can be prohibitive.

In this paper, we introduce a framework for temporal ac-

tion proposals in long video sequences that only needs to

process the entire video in a single pass. This means that

our architecture is able to analyze videos of arbitrary length

without needing to process overlapping temporal windows

separately. This results in a much more efficient and effec-

tive architecture. The main contributions of our approach

are: (i) We introduce a new architecture (SST) for tempo-

ral action proposals generation that runs over the video in a

single pass, without the use of overlapping temporal sliding

windows. We design a training scheme to enable the use of

a recurrent network with very long input video sequences,

without compromising model performance. (ii) We demon-

strate that our new temporal proposal generation architec-

ture achieves state-of-the-art performance on the proposal

generation task. (iii) Finally, we verify that SST propos-

als provide a stronger basis for temporal action localization

than prior methods, and integration with existing classifica-

tion stages leads to improved state-of-the-art performance.

2. Related Work

We review relevant recent work in video action catego-

rization, temporal and spatio-temporal action detection in

videos, and sequence modeling with recurrent networks.

Action Categorization. A large body of research has

tackled the problem of action categorization from short

video clips [14]. In this setting, we assume we are given

short video clips with only a single action being performed

in the sequence. Many approaches use a global represen-

tation [33], but some try to model the temporal structure

of motions to achieve classification [10]. Unfortunately,

these methods do not perform well on long video sequences

where actions have a relatively small temporal duration and

the majority of the visual input is considered background.

Temporal Action Detection and Proposals. A number

of existing methods approach the problem of temporal ac-

tion localization [19, 22, 26, 27, 31, 32, 35, 40, 24, 30, 38].

Traditionally, temporal action detection has been tackled by

densely applying action classifiers in a sliding window fash-

ion [8]. Recently, temporal action proposals [2, 9, 29] have

been introduced to enable more efficient application of ac-

tion classifiers on a smaller number of temporal windows.

The basic idea is to first generate a reduced number of can-

didate temporal windows, which can be achieved with dic-

tionary learning [2] or with a recurrent neural architecture

[9]. Then, an action classifier discriminates each window

independently into one of the actions of interest. Additional

processing stages can also be incorporated to refine the pre-

diction scores with respect to the temporal bounds [29].

In particular, our proposal generation framework builds

on the progress made by the Deep Action Proposals (DAPs)

architecture [9]. One property of DAPs is that it can re-

trieve action proposals of varied temporal scale by sliding a

temporal window of fixed duration T . This avoids running

sliding windows of multiple scales, but it still requires run-

ning an overlapping sliding window over videos longer than

T . This means we need to process each input video frame

multiple times, once for each window that overlaps with it.

In this paper, our goal is to further reduce computation by

introducing a model that processes each input frame only

once and thereby processes the full video in a single pass.

Spatio-Temporal Action Detection. A related problem

is that of detecting actions not only temporally but also spa-

tially. [4, 12, 16, 34, 37, 39]. Here, the algorithms output

spatio-temporal localization of actions. While these provide

more detailed localization information, they tend to suffer

from very high computational costs, which makes them dif-

ficult to use in cases where fast and efficient processing is

necessary. Furthermore, it is possible that temporal propos-

als may actually help reduce the temporal search space for

such algorithms. In this paper, we focus on detecting ac-

tions temporally, rather than spatio-temporally.

Object Detection. Object detection approaches have

drastically improved their performance by adopting two key

ideas: (1) the introduction of object proposals to replace

sliding window detection, and (2) adoption of deep architec-

ture as the learning machinery. Initial approaches adopted

object proposal generation as a preprocessing stage that in-

dependently provided windows to an object classifier [11].

However, recent frameworks have implemented the gener-

ation of object proposals with deep network architectures.

An example of this is the Region Proposal Network (RPN)

from [28], which directly outputs proposals on an image

without multiple passes. Our approach adopts this philoso-

phy and enables proposal generation from videos in a single

pass, processing each frame only once.

Long Sequence Processing with RNNs. Recurrent

Neural Networks (RNNs) have recently shown impressive

performance in a variety of sequential modeling problems

[20]. In general, most demonstrations are limited in terms

of the temporal sequence length that can be handled by

RNNs at recognition time. This may be caused by the hid-

den state of the network becoming saturated if the input

sequence is too long [21]. For example, in Natural Lan-

guage Processing, it is common to use the structure of text

(chapters, sections, paragraphs, sentences) to break down

long corpora into short but meaningful sequences [13]. In

the case of video, there is no prior access to equivalent se-

mantic/syntactic structures. To handle long sequences, prior

work for proposals [9] adopts a windowed approach such

that only short subsequences are processed by RNNs. Here,

we enable the use of RNNs on very long input sequences by

2912



…

Localized Action Detections

…

…

Input video

Visual Encoder
(C3D)

Seq. Encoder
(GRU)

Output
Proposals

…

k · δ maximum proposal size
(per output)

k
-

p
ro

p
ro

sals

classifier

Untrimmed Input Video Temporal Action Proposals

output
(time step t)

ct

⬄

δ

SST

ϕ ϕ ϕ ϕ ϕ ϕ

Time

Figure 2. Schematic illustrating our overall approach and model architecture. Here, we extract C3D features from the input video stream,

with a time resolution δ = 16 frames for each “time step.” These features are the input to the recurrent GRU-based sequence encoder

model, which outputs k proposals at each time step t with a confidence vector ct, where the longest proposal is of length δ ·k. Additionally,

we can validate the usefulness of the top-ranked SST action proposals to the action detection task by applying a classifier model.

careful architecture and training scheme design.

3. Technical Approach

The main goal of our paper is to generate temporal ac-

tion proposals in long untrimmed videos. Given an input

video sequence, our model should produce a reduced num-

ber of temporal intervals that are likely to contain an action.

It is important for temporal action proposal methods to re-

ject many temporal intervals that contain no action, while

retrieving the true action intervals with very high recall. It

is also important for the retrieved action intervals to have

very high temporal overlap with the correct intervals where

actions are performed. Generating high overlap proposals is

key to facilitate the work of the following action classifica-

tion stages. Finally, it is crucial for the temporal proposals

to be fast, so that the computational gains over the simple

temporal sliding window approach are significant. In this

section, we introduce the technical details of Single Stream

Temporal Action Proposals (SST), a new model for tempo-

ral action proposals that encapsulates these three properties

in an efficient and effective deep learning architecture.

3.1. Model

We propose a recurrent model architecture for the gener-

ation of temporal action proposals. Our model is illustrated

in Figure 2. In contrast with prior work, the key properties

of our approach are: (i) our architecture considers the input

video exactly once at multiple time-scales with no overlap-

ping sliding windows, which results in fast runtime during

inference; (ii) it considers and evaluates a large number of

action proposals over densely sampled time-scales and loca-

tions, which results in the model producing proposals with

high temporal overlap with the groundtruth action intervals.

Input. At inference time, our model takes as input a

long, untrimmed video sequence X = {xl}
L
l=1 with L

frames. Unlike prior work that divides the video into highly

overlapping temporal windows for independent batch pro-

cessing, we construct no overlapping sliding windows over

the input video and process each frame once, sequentially.

Visual Encoding. The goal of the Visual Encoder mod-

ule is to compute a feature representation that encapsulates

the visual content of the input video. We achieve this in

our framework by feeding the video input through a 3D-

Convolutional (C3D) network [33]. We choose C3D, as it

is able to effectively capture visual and motion informa-

tion over some small temporal resolution δ [33, 29]. We

leverage the architecture and pre-trained weights from [33]

for our initialization, with a time resolution of δ = 16
frames. In this manner, we efficiently discretize the in-

put stream into T = L/δ non-overlapping time steps.

Each time step t is represented by a C3D feature encod-

ing vt = φ
(
{xi}

t·δ
i=(t−1)·δ+1

)
taken from the top layer of

the C3D network and captures visual information over δ
frames. In practice, we perform PCA to reduce the dimen-

sionality further to improve computational performance in

a similar fashion as [9].

Sequence Encoding. The goal of the Sequence Encoder

module is to accumulate evidence across time as the video
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sequence progresses. The idea is that in order to be able to

produce good proposals, the model should be able to aggre-

gate information until it is confident that an action is taking

place in the video, while simultaneously disregarding irrele-

vant background. At each time step t = 1, . . . , T , the mod-

ule receives the corresponding encoded C3D feature vector

vt as input to the recurrent sequence model.

A key property for our model is the ability to process

the input video in a single pass. In order to achieve this,

the recurrent model should be able to operate over the input

testing video by unrolling in time over the entire duration of

the video. Our training procedure in Section 3.2 is designed

to facilitate the operation over long sequences at test time.

Though similar work often leverages Long Short-Term

Memory (LSTM) cells for sequence encoding, we find that

a Gated Recurrent Unit (GRU)-based architecture offers

slightly better performance, is more robust over a wider

range of hyperparameters, and has fewer parameters which

means slightly faster training and test-time performance.

This is consistent with empirical findings from prior work

on deep recurrent models in other domains [18, 6, 7].

Thus, at each time step t, we take the hidden state ht of

the final GRU layer in the recurrent stage as our sequence

encoding, where ht is defined as per the formulation [5, 7]:

rt = σr(Wrvt + Urht−1 + br)
zt = σz(Wzvt + Uzht−1 + bz)

h̃t = tanh(Wvt + rt ⊙ (Uht−1) + b)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t

(1)

where ⊙ is the Hadamard product. Additional discussion of

this formulation is in our Supplementary Material.

Output. The goal of the output module is to produce

confidence scores of multiple proposals at each time step

t. This module takes as input the hidden representation ht

calculated by the Sequence Encoding layer at time t. As

illustrated in Figure 2, we design our architecture to score

a large number of potential proposals at each time step by

considering proposals of multiple time scales that end at

time t. Concretely, at each time step t we output confi-

dence scores {cjt}
k
j=1 that correspond to set of k proposals

Pt = {(bt−j , bt)}
k
j=1, where the tuple (bt−1, bt) indicates

a proposal with start and end bounds at frame bt−1 and bt,
respectively. The output confidence scores are given by a

fully connected layer with sigmoid nonlinearity:

cjt = σo(W
j
o · ht). (2)

All proposals considered at time t have a fixed end-

ing boundary, and the model considers proposals of

sizes 1, 2, . . . , k time steps, which correspond to sizes

δ, 2δ, . . . , kδ frames. Note that this is done in a single for-

ward pass at each time step, without needing to re-run the

model for each temporal scale. In this manner, our model

i
t

X0

X1

X2

X3

t0 t0+s t0+2s t0+Twt0+3s

Figure 3. Training examples are generated densely by extracting

temporal segments of length Tw in a sliding window fashion with

stride s. Our dense sampling of long training instances helps en-

able the recurrent sequence encoder to fully unroll over very long

video sequences at testing time.

considers multiple time scales with a single pass through

the input video sequence. Since we consider time scales

densely at each frame, the model effectively computes pro-

posal confidences for all proposals with a time resolution of

δ frames over the video. In a way, this is effectively pushing

the sliding window to the output layer in a computation-

ally efficient manner that does not require extra computa-

tion on overlapping temporal windows. We apply standard

post-processing techniques consistent with prior literature

[9, 29] to select the top proposals, such as thresholding by

confidence score and non-maximum suppression.

3.2. Training

The goal of the training process is to estimate the model

parameters in our architecture. By design, our proposal

architecture and loss function are fully differentiable, en-

abling training with backpropagation. We also design the

training procedure so that our recurrent networks can be

fully unrolled over very long input sequences at test time.

This is a key property that, in conjunction with the design

of our output layer, enables the model to operate without us-

ing overlapping sliding windows over the input at test time.

This constraint means that the recurrent network must be

able to properly handle inference over very long input se-

quences. This can prove challenging since the model must

disregard irrelevant background in input untrimmed video

while retaining relevant context. We observe that the hidden

state of related recurrent models [9] tends to saturate when

run over many steps, resulting in overconfident outputs.

Our strategy to improve robustness is motivated by better

simulation of testing operating conditions during training.

Briefly, we wish to provide the network with densely sam-

pled, overlapping training video segments that are signifi-

cantly longer than the temporal proposals we aim to detect.

We generate these training segments as follows: For each

training video with L frames and length T = L/δ time

steps, we extract segments by running sliding windows of

length Tw = Lw/δ with stride s, as illustrated in Figure

3. We set Lw ≫ kδ, so that the training instances simulate
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the operation of long sequences, encouraging the network to

avoid saturation of the hidden state. This is in contrast to ex-

plicitly constructing training examples of length no longer

than the maximum proposal length kδ, which is the strategy

used in prior work [29, 9]. Furthermore, our stride s is kept

small, allowing for dense generation of training data.

The dense sampling of training segments also allows for

each time step in the original video sequence to be consid-

ered multiple times with different contexts. For instance,

consider time step t = i in Figure 3. The visual content and

groundtruth observed at time t is part of several training

segments X0, . . . , X3. This means that during the training

process, we will be able to backpropagate the training loss

at t = i within the context of four examples X0, . . . , X3.

When considering X0, the hidden state of the sequence en-

coder at t = i would be h0
t0:i

; likewise the hidden state at

t = i for X1 would be h1
t0+s:i. In both cases, the training

process would backpropagate the loss at t = i with dif-

ferent contexts given by the hidden state in each example,

encouraging the prediction and encoding to be robust to the

specific initializations of the hidden state.

Each training example is associated with groundtruth la-

bels that indicate which temporal intervals correspond to

actions in the video. The idea is that our network will

classify each temporal interval in consideration as a pos-

itive or negative action proposal. For example, consider

X0 in Figure 3, which we associate with groundtruth la-

bels Y0 = {yt}
t0+Tw−1
t=t0

. At time step t, the groundtruth yt
is a k dimensional vector with binary entries. The j-th entry

yjt is set to 1 if the corresponding proposal interval (of scale

j time steps) has a temporal Intersection-over-Union (tIoU)

with the groundtruth larger than 0.5 and set to 0 otherwise.
During training, we penalize the network for errors ac-

cording to a multi-label loss function. In practice, for a
training video X the loss at time t is given by a weighted
binary cross entropy objective:

L(c, t,X, y) = −
k∑

j=1

w
j
0
y
j
t log c

j
t + w

j
1
(1− y

j
t ) log(1− c

j
t),

(3)

where the weights wj
0, w

j
1 are calculated according to the

frequency of positive and negative proposals in the training

set at each scale j and c is the output of the network. We add

dropout and ℓ2 regularization on the learned parameters.

Our model backpropagates at every time step t, so the

total loss for all training examples X is:

Ltrain =
∑

(X,y)∈X

Tw∑

t=1

L(c, t,X, y). (4)

4. Experiments

We empirically evaluate the effectiveness of our tempo-

ral proposal method for the task of proposal generation as

well as its application to temporal action detection. As our

experiments will show, our proposal method achieves com-

petitive performance at faster computing speeds. We de-

scribe our experimental settings and results here.

Dataset. To train and evaluate our model, we use the

temporal action localization subset from the THUMOS’14

dataset [17], which contains 20+ hours of video with 200

validation and 213 test untrimmed video sequences. We use

the validation videos as our training set, as is standard prac-

tice on this dataset. To enable direct comparisons with prior

work, we adopt the experimental settings from [9].

We perform an 80%-20% split over the training exam-

ples in the dataset to cross-validate the hyperparameters for

our model, ensuring that the distribution of activity classes

is approximately the same. For our generalizability analy-

sis, we leverage subsets of unseen classes in the ActivityNet

dataset [3]. Further details in Section 4.1.

Comparisons. We compare our SST model with Deep

Action Proposals (DAPs) [9], the proposal stage of S-CNN

(SCNN-prop) [29], BoFrag [25], and Sparse-Prop [2].

Implementation details. We generate training data with

Lw = 2048. We vary the number of recurrent layers and

hidden state size, as well as number of proposals k. We

implement the model and training/validation pipeline us-

ing Lasagne/Theano and Caffe, with training executed on

GeForce TITAN X (Maxwell) GPUs. We optimize our

model parameters with backpropagation using the adam up-

date rule [23], with an initial learning rate of 5 · 10−2 an-

nealed after every l = 5 epochs. We include further analysis

of hyperparameters, trained models, code, and sample out-

put proposals as part of our Supplementary Material1.

4.1. Temporal Proposal Generation

The task of temporal proposal generation consists of tak-

ing an input video and producing a set of temporal inter-

vals that are likely to contain human actions. A successful

proposal method should be able to retrieve action intervals

with very high recall and high temporal overlap (tIoU) with

the true temporal segments that correspond to actions, while

only producing a small number of proposals. Additionally,

it is key for the model to have fast runtime. We evaluate

these three aspects of our method below.

First, we consider the ability of our model to retrieve pro-

posals with high recall. We measure this with the proposal

average recall. This is computed by extracting a fixed num-

ber of proposals and calculating the average recall over a

range of tIoUs. We plot average recall against number of re-

trieved proposals in Figure 4(center) for tIoUs in the range

0.7 - 0.95, and Figure 4(left) for tIoUs in the range 0.5 - 1.0

(for consistency with [9]). We observe that our model out-

performs all existing state-of-the-art methods for low and

1Please see https://github.com/shyamal-b/sst/.
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Figure 4. Comparison of our proposal network with state-of-the-art proposal localization methods. SST offers strong performance against

prior literature, even though it constructs no overlapping sliding windows at test time and passes through the input in a single stream. (left)

SST has higher average recall and requires fewer proposals. (center) This difference is particularly visible when average recall is computed

over a higher tIOU range (0.7-0.95). For clarity, we show results here for the top three proposal methods. (right) Recall @ 1K proposals

vs. tIoU plot shows that SST has the largest improvements around tIoU ≈ 0.8.

Recall

Method tIoU= 0.6 tIoU= 0.8 FPS

DAPs 0.916 0.573 134

S-CNN-prop 0.938 0.524 60

SST (Ours) 0.920 0.672 308
Table 1. Comparison of proposal generation performance with

prior state-of-the-art in terms of recall at 1000 proposals. We ob-

serve our method offers comparable performance for lower tIoU

thresholds, outperforms for higher thresholds, and offers a signif-

icant boost in proposal speed. Note that we used the older GPU

set-up of [9] to ensure fair comparison. We discuss benchmarks

on newer GPU architectures in Supplementary Material.

high number of proposals. Also, we note that when op-

erating at the high overlap regime in Figure 4(center), our

model more significantly outperforms prior work.

Second, we consider the ability of the model to retrieve

proposals with high tIoU overlap. Figure 4(right) plots pro-

posal recall for our method in comparison to prior work. We

note that our model performs comparably with competing

approaches at the lower tIoU range, but more importantly,

our method performs better at the higher tIoU regime. This

is key, since it means our method can retrieve proposals that

more tightly capture the true temporal action intervals.

Finally, we study the runtime speed of our method in

comparison to alternative approaches in the literature. To

achieve this, we measure runtime speed in frames per sec-

ond (FPS). In comparison to prior work that relies on multi-

scale temporal sliding windows [29] or single scale tem-

poral sliding windows [9], our single-pass model achieves

significantly faster processing speeds, as shown in Table 1.

Robustness to Video Length. An important goal for our

architecture is the ability to handle very long testing video

sequences. As outlined above, the idea is that our recur-

rent model should be able to unroll over the entire duration

of the testing video, regardless of its duration, so that the

proposals are generated in a single pass through the video.

We achieve this by two aspects of our model: dense predic-

tions at each frame, and a training scheme that encourages

robustness into the model with respect to video length.

We analyze the performance of our model to highlight

its robustness from three perspectives. For this analysis, we

select the operating point of 1000 retrieved proposals. First,

we study the recall stability with respect to the temporal lo-

cation of the proposal middle frame, which we plot in Fig-

ure 5(left). Note that our model processes the entire video

by unrolling a single recurrent network, so the longer the

video, the more time steps the recurrent network processes.

We observe that SST recall performance is stable and nearly

independent of the temporal location of the proposal.

Second, we study the recall stability with respect to

video length. Here, we compute recall per video and com-

pute average recall for videos with similar length. We

also observe stable behavior with respect to video length

as shown in Figure 5(center).

Finally, we analyze recall performance with respect to

proposal length. We would like to analyze if longer action

sequences are harder to detect than shorter actions. We plot

recall against proposal length in Figure 5(right). Again, we

observe that recall performance is also stable with respect to

length of the groundtruth annotations we wish to localize.

We also note that some videos in the THUMOS testing

set are particularly long, with durations of over 20 minutes.

This corresponds to video sequences of more than 30-50

thousand frames. Our qualitative evaluation confirms our

empirical observation that our network can unroll over very

long testing videos without compromising its performance.

Qualitative Results. We generate sample proposals
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Figure 5. We evaluate the recall stability and robustness of our model against (left) groundtruth proposal temporal position, (center) video

length, and (right) groundtruth proposal length. We observe that SST is indeed able to handle long, untrimmed video sequences without

compromising performance, while gaining a dramatic boost in efficiency.

ActivityNet ActvityNet ≤ 1024

Method @500 @600 @500 @600

DAPs [9] 0.236 0.257 0.396 0.433

SST 0.242 0.288 0.423 0.494
Table 2. Summary of generalization analysis in ActivityNet in

terms of average recall for @k average proposals. We observe

that proposals generated by SST are comparable or outperform

prior proposal methods for unseen activities. For example, our

proposals offer a relative improvement of +3.1% for the general

unseen dataset (group 1, col. 2), and +6.1% over DAPs segments

for unseen activities that span up to 1024 frames (group 2, col. 2).

from our model in Figure 6. We see that the model local-

izes the groundtruth annotations well - our top confidence

proposals satisfy tIoU criteria well, and our highest overlap

proposals have high confidences. We observe that among

false positive detections, a common case occurs where our

model outputs a high-confidence “umbrella proposal” over

short action sequences tightly packed together with brief pe-

riods of non-action between them (although the model does

output other high-confidence proposals correctly localizing

those proposals, just with slightly lower confidence).

Generalizability of Proposals. Another key character-

istic of action proposal approaches is their capability to gen-

erate segments for unseen action categories [9, 15, 1]. Fol-

lowing the observations found in the analysis of object pro-

posals [15], Escorcia et al. proposed to evaluate the average

recall of temporal action proposal methods on a diverse set

of action classes unseen during training [9]. Thus, we can

assess the generalizability of these proposal approaches.

Table 2 summarizes the performance of our approach in

this scenario. For fair comparisons, we used the same ex-

perimental protocol used in [9]. We report the results in

two subsets of the validation set of ActivityNet v1.2 [3].

These subsets correspond to: (i) “ActivityNet” results over

the validation set and (ii) “ActivityNet ≤ 1024” results for

videos with actions from categories not present in [17] on

annotations that span up to 1024 frames. We observe our

method exhibits a comparable or better degree of general-

ization than [9]. Additional results and example video are

Action detection (mAP)

Method @50 @100 @200 @500 @1000

Sparse-prop[2] 5.7 6.3 7.6 8.2 8.0

SCNN-prop[29] 5.6 7.7 10.5 13.57 13.45

DAPs[9] 8.4 12.1 13.9 12.5 12.0

SST 10.9 13.2 13.94 13.1 13.1
Table 3. Summary of action detection results with VLAD-based

SVM classifier from [9] against number of proposals. Best value

for each method shown in bold. SST outperforms prior work with

fewer proposals needed, indicating that SST outputs high-quality

proposals within a limited budget.

Method Action detection (mAP)

S-CNN (full system) [29] 0.19

SST + (S-CNN classifier) 0.23
Table 4. Applying S-CNN classifier [29] on top of SST propos-

als, we exceed the prior state-of-the-art action detection results

on THUMOS’14, without any fine-tuning of the classifier. Thus,

our SST approach provides a more efficient and effective way to

extract precise video segments where actions are detected more

accurately even with existing classifiers.

available in the Supplementary Material.

4.2. Action Detection with SST proposals

Finally, we apply our proposal generation architecture to

the task of temporal action localization. The goal is not only

to localize the temporal intervals where the actions happen,

but also to label the interval with the correct action category.

For direct comparison to prior state-of-the-art proposal

methods, we implement the approach of Xu et al. [36, 9].

Briefly, for each temporal segment, we encode the corre-

sponding C3D features from the fc7 layer using VLAD. We

then train a one-vs-all linear SVM classifier for each class

C. We evaluate the mean AP (mAP) with 0.5 tIoU overlap

threshold on the THUMOS’14 test set.

We summarize these standardized action detection re-

sults in Table 3. We observe that SST consistently outper-

forms other proposal methods for lower number of propos-

als, and our mAP@200 proposals (13.94%) matches or out-
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Figure 6. Qualitative results of our SST model on THUMOS’14. Time measured in seconds. (a) Proposals generated by SST on a long,

untrimmed video sequence. Each groundtruth annotation is coupled with the best proposal on top. We observe that performance of the

network is maintained for the full duration. (b-d) Performance of the top-ranked temporal action proposal retrieved for a given input video

sequence, coupled with the nearest groundtruth annotation. SST provides tight localization bounds with high tIoU. (e-f) False-positive

results for the top-ranked retrievals. In particular, (e) illustrates an issue where the model will sometimes rank “umbrella proposals” which

encompass several short, consecutive action sequences with a slightly higher confidence than the individually-localized proposals.

performs all other methods, regardless of proposal number.

Finally, we demonstrate that by applying the previous

state-of-the-art classification stage from [29] to SST pro-

posals, we significantly improve temporal action localiza-

tion. As shown in Table 4, the full S-CNN action detec-

tion architecture had the prior state-of-the-art detection per-

formance of 0.19 mAP [29], while application of the same

classifier stage to SST proposals results in 0.23 mAP. Thus,

SST provides a strong base for temporal action localiza-

tion. Moreover, we demonstrate the importance of improv-

ing proposal methods for overall temporal action detection.

5. Conclusions

We have introduced a new architecture, SST, for tem-

poral action proposals that can operate on long video se-

quences at high processing speeds. Our approach processes

input video data as a single stream, and constructs no over-

lapping sliding windows at evaluation time. We demon-

strate that our model achieves state-of-the-art performance

on the action proposals task, and, when considered as part

of a full detection architecture, provides effective action lo-

calization performance with fewer proposals.
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