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Abstract

We propose an approach for semi-automatic annotation

of object instances. While most current methods treat ob-

ject segmentation as a pixel-labeling problem, we here cast

it as a polygon prediction task, mimicking how most current

datasets have been annotated. In particular, our approach

takes as input an image crop and sequentially produces ver-

tices of the polygon outlining the object. This allows a hu-

man annotator to interfere at any time and correct a vertex

if needed, producing as accurate segmentation as desired

by the annotator. We show that our approach speeds up the

annotation process by a factor of 4.7 across all classes in

Cityscapes, while achieving 78.4% agreement in IoU with

original ground-truth, matching the typical agreement be-

tween human annotators. For cars, our speed-up factor is

7.3 for an agreement of 82.2%. We further show general-

ization capabilities of our approach to unseen datasets.

1. Introduction

Semantic image segmentation has been receiving signif-

icant attention in the community [5, 17]. With new bench-

marks such as Cityscapes [6], object instance segmentation

is also gaining steam [14, 24, 34, 21, 29]. Most of the re-

cent approaches are based on neural networks, achieving

impressive performance for these tasks [5, 17, 10, 21]. Deep

learning approaches are, however, data hungry and their

performance is strongly correlated with the amount of avail-

able training data. This requires the community to annotate

large-scale datasets which is both time consuming and ex-

pensive. Our goal in this paper is to make this process faster,

while yielding ground-truth as precise as the one available

in the current datasets.

There have been several attempts at reducing the depen-

dency on very detailed annotation such as object segmen-

tation masks. In the weakly-supervised setting, approaches

aim at learning segmentation models from weak annotation

such as image tags or bounding boxes [13, 31, 11]. In [15],

the authors rely on scribbles, one on each object, while [1]

requires only a single point on the object. While these ap-

Figure 1. Given a bounding box, we automatically predict the

polygon outlining the object instance inside the box, using our

Polygon-RNN. Our method is designed to facilitation annotation,

and easily incorporates user corrections of points to improve the

overall object’s polygon. Our method cuts down the number of

required annotation clicks by a factor of 4.74.

proaches hold promise, their performance is not yet compet-

itive with fully supervised approaches. Other work exploits

easier-to-obtain ground-truth such as bounding boxes, and

produces (noisy) labeling inside each box with a GrabCut

type of approach [25, 4]. It has been shown that such an-

notation can serve as useful auxilary data to train neural

segmentation networks [36, 29]. Yet, these segmentations

cannot be used as official ground-truth for a benchmark due

to its inherent imprecisions.

Most of the large-scale segmentation datasets have been

collected by having annotators outline the objects with a

polygon [8, 18, 16, 6, 37]. Since typically objects are con-

nected and without holes, polygons provide a way of anno-

tating an object with a relatively small number of clicks,

typically around 30 to 40 per object. In this paper, we

propose an interactive segmentation method that produces

highly accurate and structurally coherent object annota-

tions, and reduces annotation time by a factor of 4.7.

Given a ground-truth bounding box, our method gener-

ates a polygon outlining the object instance using a Recur-

rent Neural Network, which we call Polygon-RNN. Our ap-

proach takes as input an image crop and sequentially pro-
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duces vertices of the polygon outlining the object. This

allows a human annotator to interfere at any time and cor-

rect a vertex if needed, producing as accurate segmentations

as desired by the annotator. We show that our annotation

approach speeds up annotation process by factor of 4.7,

while achieving 78.4% agreement with original ground-

truth, matching the typical agreement of human annotators.

We plan to release our code and create a web-annotation

interface running our model at the backend. Please re-

fer to our project page: http://www.cs.toronto.edu/

polyrnn. We hope this will cut down annotation time and

cost of segmentation benchmarks in the future.

2. Related Work

Our approach is related to work on semi-automatic im-

age annotation and object instance segmentation.

Semi-automatic annotation. There has been significant

effort at making pixel-level image labeling faster for the

annotators. In [2], the authors used scribbles as seeds to

model the appearance of foreground and background, and

performed segmentation via graph-cuts by combining ap-

pearance cues and a smoothness term [3]. [19] uses multi-

ple scribbles on the object and background and exploits mo-

tion cues to annotate an object in a video. Scribbles were

also recently used in [15] to train CNNs for semantic im-

age segmentation. GrabCut [25] exploits annotations in the

form of 2D bounding boxes, and performs per-pixel label-

ing with foreground/background models using EM. Build-

ing on top of this idea, [23] combined GrabCut with CNN

to segment medical images. In [4], the authors exploited

3D bounding boxes and a point cloud to facilitate labeling.

A different type of approach has been to exploit multiple

bounding boxes and perform co-segmentation [13, 11].

Since most of these approaches define a graphical model

at the pixel-level, with the smoothness term as the main

relation among pixels, it is hard to incorporate shape pri-

ors. These are particularly important in ambiguous regions

caused by shadows, image saturation or low-resolution of

the object. Furthermore, nothing prevents these models to

provide labelings with holes. If the method makes mistakes

in outlining the object, the human annotator has a hard and

tedious work to correct for such mistakes. Thus, these meth-

ods have mainly been used to produce additional, yet noisy

training examples, but their output is typically not accurate

enough to serve as official ground-truth of a benchmark.

Annotation tools. [32] labeled clothing in images by

performing annotation at the superpixel-level. This makes

the labeling process more efficient, but inherently depends

on the superpixel scale and thus typically merges small ob-

jects or parts. This issue was somewhat resolved in [22] by

labeling videos at multiple superpixel scales.

Object instance segmentation. Our work is also re-

lated to object instance segmentation. Most of these ap-

proaches [14, 24, 36, 34, 20, 21] operate on the pixel-level,

typically exploiting a CNN inside a box or a patch to per-

form the labeling. Work most related to ours is [35, 28]

which aims to produce a polygon around an object. These

approaches start by detecting edge fragments and find an

optimal cycle that links the edges into a coherent region.

In [7], the authors propose a method that produces super-

pixels in the from of small polygons which they combine

into object regions with the aim to label aerial images. In

our work, we predict the polygon around the object directly,

using a carefully designed RNN.

3. Polygon-RNN

Our goal is to create an efficient annotation tool for label-

ing object instances with polygons. As is typical in an anno-

tation setting, we assume that the user provides the bound-

ing box around the object. Given the image patch inside

the box, our method predicts a (closed) polygon outlining

the object using a Recurrent Neural Network. We allow the

user to correct a predicted vertex of the polygon at any time

step if needed, which we integrate in our prediction task.

We parametrize the polygon as a sequence of 2D vertices

(ct)t∈N, c ∈ R
2. We assume the polygon is closed, i.e.,

there is an edge between any two consecutive vertices, as

well as the last and the first vertices. Note that a closed poly-

gon is a cycle and thus has multiple equivalent parametriza-

tions obtained by choosing any of the vertices as the begin-

ning of the sequence, as well as selecting the orientation of

the sequence. Here, we fix the polygon to always follow the

clockwise orientation, but the starting point of the sequence

can be any of the vertices.

Our model is an RNN, that predicts a vertex at every time

step. As input in each step of the RNN we use a CNN rep-

resentation of the image crop, as well as the vertices pre-

dicted one and two time steps ago, plus the first point. By

explicitly providing information of the past two points we

help the RNN to follow a particular orientation of the poly-

gon. On the other hand, the first vertex helps the RNN to

decide when to close (finish) the polygon. We train the

RNN+CNN model end-to-end. This essentially helps the

CNN to be fine-tuned to object boundaries, while the RNN

learns to follow these boundaries and exploits its recurrent

nature to also encode priors on object shapes. Our model

thus returns a structurally coherent representation of the ob-

ject. We name our model Polygon-RNN.

Figure 2 shows the overview of the model. We next de-

scribe each component of the model in more detail.

3.1. Model Architecture

We start by providing details on the image representation

via a CNN, and then explain the design of the RNN.
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Figure 2. Our Polygon-RNN model. At each time step of the RNN-decoder (right), we feed in an image representation using a modified

VGG architecture. Our RNN is a two-layer convolutional LSTM with skip-connection from one and two time steps ago. At the output at

each time step, we predict the spatial location of the new vertex of the polygon.

3.1.1 Image Representation via a CNN with Skip Con-

nections

We adopt the VGG-16 architecture [27] and modify it for

the purpose of our task. We first remove the fully connected

layers as well as the last max-pooling layer, pool5. The out-

put of this modified network has a downsampling factor of

16. We then add additional convolutional layers with skip-

connections that fuse information from the previous layers

and upscale the output by factor of 2 (downsampling factor

of 8 wrt to the original size of the image crop, which is al-

ways scaled to 224× 224). This allows the CNN to extract

features that contain both low-level information about the

edges and corners, as well as semantic information about

the object. The latter helps the model to “see” the object,

while the former helps it to follow the object’s boundaries.

We employ a similar architecture for the skip-

connections as the one in [21]. The design guideline is to

first process the features in the skip-layers using another

convolutional layer, then concatenate all outputs, and fi-

nally process this concatenated feature using another con-

volutional layer. We employ convolutional filters with a

kernel size of 3×3, followed by a ReLU non-linearity. Con-

catenation layers join the channels of different outputs into

a single tensor. Since we use features from multiple skip-

layers which have different spatial dimensions, we employ

bilinear upsampling or max-pooling in order to get outputs

that all have the same spatial resolution. We refer the reader

to Fig. 2 for a visualization and further details about the ar-

chitecture (the CNN is highlighted in green).

3.1.2 RNN for Vertex Prediction

An RNN is a powerful representation of time-series data,

as it carries more complex information about the history by

employing linear and non-linear functions. In our case, we

hope the RNN to capture the shape of the object and thus

make coherent predictions even in ambiguous cases such as

for example shadows and saturation.

In particular, we employ a Convolutional LSTM [30] in

our model, and use it as a decoder. ConvLSTMs operate

in 2D, which allows us to preserve the spatial information

received from the CNN. Furthermore, a ConvLSTM em-

ploys convolutions, thus greatly reducing the number of pa-

rameters to be learned compared to using a fully-connected

RNN. In its simplest form, a ConvLSTM (single layer)

computes the hidden state ht given the input xt according

to the following equations:









it
ft
ot

gt









= Wh ∗ ht−1 +Wx ∗ xt + b (1)

ct = σ(ft)⊙ ct−1 + σ(it)⊙ tanh(gt)

ht = σ(ot)⊙ tanh(ct)

Here i, f , o denote the input, forget, and output gate, h is

the hidden state and c is the cell state. σ denotes the sig-

moid function, ⊙ indicates an element-wise product and ∗

a convolution. Wh denotes the hidden-to-state convolution

kernel and Wx the input-to-state convolution kernel.

In particular, we model the polygon with a two-layer

ConvLSTM with kernel size of 3×3 and 16 channels, which

outputs a vertex at each time step. We formulate the vertex

prediction as a classification task. Specifically, we represent

our output at time step t as one-hot encoding of a D×D+1
grid, where the D×D dimensions represent the possible 2D

positions of the vertex, and the last dimension corresponds

to the end-of-sequence token (i.e., polygon is closed). The

position of the vertices are thus quantized to the resolution

of the output grid. Let yt denote the one-hot encoding of a

vertex, output at time step t.

Our ConvLSTM gets as input a tensor xt at time step t,

that concatenates multiple features: the CNN feature repre-
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sentation of the image, yt−1 and yt−2, i.e., a one-hot encod-

ing of the previous predicted vertex and the vertex predicted

from two time steps ago, as well as the one-hot encoding of

the first predicted vertex y1.

Given two consecutive vertices, the next vertex on the

polygon is uniquely defined. However, this is not the case

for the first vertex, since any vertex of the polygon can serve

as a starting point (polygon is a cycle). We thus treat the

starting point as special, and predict it in the following way.

We reuse the same architecture of the CNN as in Sec. 3.1.1,

but add two layers, each of dimension D ×D. One branch

predicts object boundaries while the other takes as input the

output of the boundary-predicting layer as well as the image

features and predicts the vertices of the polygon. We treat

both, the boundary and vertices as a binary classification

problem in each cell in the output grid.

3.2. Training

To train our model we use cross-entropy at each time

step of the RNN. In order to not over-penalize the incor-

rect predictions that are close to the ground-truth vertex, we

smooth our target distribution at each time step. We assign

non-zero probability mass to those locations that are within

a distance of 2 in our D ×D output grid.

We follow the typical training regime where we make

predictions at each time step but feed in ground-truth vertex

information to the next. We train our model using the Adam

optimizer [12] with a batch size b = 8 and an initial learning

rate of λ = 1e − 4. We decay the learning rate after 10

epochs by a factor of 10 and use the default values of β1 =
0.9 and β2 = 0.999.

For the task of first vertex prediction, we train another

CNN using a multi-task loss. In particular, we use the

logistic loss for every location in the grid. As ground-

truth for the object boundaries, we draw the edges of the

ground-truth polygon, and use the vertices of the polygon

as ground-truth for the vertex layer. Our full model takes

approximately a day to train on a Nvidia Titan-X GPU.

3.3. Inference and Annotators in the Loop

Inference in our model is done by taking the vertex with

the highest log-prob at each time step of the RNN. This al-

lows for a simple annotation interface: the annotator can

correct the prediction at any time step, and we feed in the

corrected vertex to the next time-step of the RNN (instead

of the prediction). This puts the model back ”on the right

track”. Typical inference time is 250 ms per object.

3.4. Implementation details

We predict the polygon at resolution D ×D. In our ex-

periments we used D = 28, corresponding to an 8x down-

sampling factor with the input resolution and matching the

resolution of the ConvLSTM. We perform polygon simpli-

fication with zero error in the quantized grid to eliminate

0 1 2 4 8 16 32 64 128

Length of longest side (in pixels)

10
0

10
1

10
2

10
3

10
4

10
5

N
u
m

b
e
r 

o
f 
in

s
ta

n
c
e
s Train Set

Val Set

Test Set

Figure 3. Distribution of instances across different sizes: The

longest side on the X axis are multiples of 28 pixels

10
1

10
2

10
3

Length of longest side (in pixels)

30

40

50

60

70

80

90

100

Io
U

DeepMask

SharpMask

Ours

Figure 4. IoU vs size of instance comparing different approaches.

Here, ours is run in prediction mode.

vertices that lie on a line and to remove multiple vertices

that would fall in the same grid position as a result of the

quantization process.

We perform three different types of data augmentation:

(1) we randomly flip the image crop and the correspond-

ing polygon annotation, (2) we randomly select the amount

of context expansion (enlarging the box) between 10% and

20% of the original bounding box and (3) we randomly se-

lect the starting vertex of our polygon annotation.

4. Results

We evaluate our approach for the task of object instance

annotation on the Cityscapes dataset [6], and provide addi-

tional results on KITTI [9]. Note that in all our experiments

we assume to be given a ground-truth box around the object.

Our goal then is to provide a polygon outlining this object

as accurately as possible and with minimal number of clicks

required from the annotator. We report our performance

with the standard IOU measure, as well as the number of

vertex corrections of the predicted polygon. A box around

the object in principle requires two additional clicks. How-

ever, boxes are typically much easier and cheaper to obtain

using crowd-sourcing services such as AMT, while for most

major segmentation benchmarks, polygons have been col-

lected with high quality (in-house) annotators.

4.1. Cityscapes Dataset

We evaluate our approach on the Cityscapes instance

segmentation dataset [6]. This dataset has images taken

5233



Split # Img. Person Rider Car Truck Bus Train Mbike Bike

Train 2711 16452 1575 24982 455 352 136 657 3400

Val. 264 1462 180 1962 27 27 32 78 258

Test 500 3395 544 4658 93 98 23 149 1167

Table 1. Number of object instances per class in Cityscapes.

Mode Car Truck Train Bike Prsn. Rider Mbike Bus Avg.

Comp-wise 24.3 27.2 23.6 24.2 27.9 31.6 29.2 26.1 26.8

Inst-wise 31.7 41.7 66.6 40.0 35.0 44.7 45.7 50.8 44.5

Table 2. Average number of vertices in polygon annotations for dif-

ferent object classes in Cityscapes.

from 27 cities in Germany and neighboring countries. It

contains 2975 training, 500 validation and 1525 test im-

ages. Since we do not have ground truth instances on the

test set, we use an alternative split, where the 500 origi-

nal validation images form our test set. We then split the

original training set and select the images from two cities

(Weimar and Zurich) as our validation, while the remaining

cities become our training set. The dataset has annotations

for eight object categories: person, rider, car, truck, bus,

train, motorcycle and bicycle. The number of instances for

each of these classes in our split is shown in Table 1. The

Cityscapes dataset has instances with a large variation in

their sizes. We show the distribution of instances for dif-

ferent lengths of the longest side of the box, in Fig. 3. We

observe a large variance, from 28 pixels to 1792 pixels.

Cityscapes provides instance segmentation ground truth

both in terms of a pixel labeling as well as in terms of poly-

gons. In the former, each pixel can correspond to at most

one instance, thus representing the visible portion of the ob-

ject. However, Cityscapes’ polygons typically also capture

some occluded parts of an instance, since the annotation

tool performed depth ordering of objects to effectively re-

move the occluded portions [6]. We process the polygons to

recreate the layering effect and obtain polygons represent-

ing only the visible portions of each object. The average

number of vertices from the resulting polygons are shown

in Table 2. Since objects can be broken into multiple com-

ponents due to occlusion, component-wise statistics treats

each component as a single example, while instance-wise

statistics treats the entire instance as an example. Based on

this statistics, we choose a hard limit of 70 time steps for our

RNN, taking also GPU memory requirements into account.

Evaluation Metrics: We measure two aspects of our pre-

dicted annotations. For evaluating their quality, we use the

intersection over union (IoU) metric, computed on a per-

instance basis, and averaging across all instances. This is a

strict measure since the small objects are penalized the same

as the large instances. For evaluating the amount of human

action required to correct our annotations, we simulate an

annotator that corrects a point each time the predicted ver-

tex deviates from the GT vertex more than a threshold. We

then report the number of corrections (measured as clicks).

4.2. Prediction Mode

We first sanity check the performance of our model with-

out any interaction from the annotator, i.e., we predict the

full polygon automatically. We will refer to this setting as

the prediction mode.

Baselines: We use the recently proposed DeepMask [20]

and SharpMask [21] as state-of-the-art baselines. Given

an input image patch, DeepMask uses a CNN to output a

pixel labeling of an object, and does so agnostic to the class.

Sharpmask extends Deepmask by clever upsampling of the

output to obtain the labeling at a much higher resolution

(160 vs 56). Note that in their original approach, [20, 21]

exhaustively sample patches at different scales over the en-

tire image. Here, we use ground-truth boxes when report-

ing performance for their approach. Further, DeepMask and

SharpMask use a 50 layer ResNet [10] architecture, which

has been trained on the COCO [16] dataset. We fine-tune

this network on our Cityscapes split in two steps. In the

first step, we fine-tune the feed-forward ResNet architec-

ture for 150 epochs, followed by fine-tuning the weights for

the Sharpmask’s upsampling layers, for 70 epochs. This

two step process is in the same spirit as that suggested in

the paper. Note that while these two approaches perform

well in labeling the pixels, their output cannot easily be cor-

rected by an annotator in cases when mistakes occur. This

is in contrast to our approach, which efficiently integrates a

human in the loop in order to get high quality annotations.

We use two additional baselines, SquareBox and Dila-

tion10. SquareBox is a simple baseline where the full box

is labeled as the object. Instead of taking the tight-fit box,

we reduce the dimensions of the box, keeping the same as-

pect ratio. Based on the validation set, we get the best re-

sults by choosing 80% of the original box. If an instance

has multiple components, we fit a box for each individual

component as opposed to using the full box. This baseline

mimics the scenario, in which the object is modeled simply

as a box rather than a polygon. For the Dilation10 base-

line, we use the segmentation results from [33], which was

trained on the Cityscapes segmentation dataset. For each

bounding box, we consider the pixels belonging to the re-

spective object category as the instance mask.

Quantitative Results: We report the IoU metric in Ta-

ble 3. We outperform the baselines in 6 out of 8 categories,

as well as in the average across all classes. We perform

particularly well in car, person, and rider, outperforming

Sharpmask by 12%, 7%, and 6%, respectively. This is par-

ticularly impressive since Sharpmask uses a more powerful

ResNet architecture (we use VGG).

Effect of object size: In Fig. 4, we see how our model

performs w.r.t baselines on different instance sizes. For

small instances our model performs significantly better than

the baselines. For larger objects, the baselines have an ad-
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Model Bicycle Bus Person Train Truck Motorcycle Car Rider Mean

Square Box 35.41 53.44 26.36 39.34 54.75 39.47 46.04 26.09 40.11

Dilation10 46.80 48.35 49.37 44.18 35.71 26.97 61.49 38.21 43.89

DeepMask [20] 47.19 69.82 47.93 62.20 63.15 47.47 61.64 52.20 56.45

SharpMask [20] 52.08 73.02 53.63 64.06 65.49 51.92 65.17 56.32 60.21

Ours 52.13 69.53 63.94 53.74 68.03 52.07 71.17 60.58 61.40

Table 3. Performance (IoU in %) on all the Cityscapes classes without the annotator in the loop.

Threshold Num. Clicks Mean IOU

1 15.79 84.74

2 11.77 81.43

3 9.39 78.40

4 7.86 75.79

Table 4. Annotator in the loop: Average number of corrections

per instance and IoU, computed across all classes. Threshold indi-

cates chessboard distance to the closest GT vertex.

vantage due to larger output resolution. This effect is most

notable for classes such as bus and train, in which our model

obtains lower IOU compared to the baselines.

4.3. Annotator in the loop

The main advantage of our model is that it allows a hu-

man annotator to easily interfere if a mistake occurs. In par-

ticular, at each RNN time step, the annotator has the possi-

bility to correct a misplaced vertex. The correction is fed to

the model at the next time step replacing the model’s predic-

tion, effectively helping the model to get back to the right

track. Our goal is to obtain high quality annotations while

minimizing annotation time.

We analyze how many clicks are needed to obtain dif-

ferent levels of segmentation accuracy. We perform such

analysis by simulating an annotator: we correct a predic-

tion if it deviates from the ground truth vertex by a certain

distance. Distances are computed at the model output reso-

lution using the chessboard metric. In our experiments we

compare the corrected predictions using distance thresholds

T ∈ [1, 2, 3, 4]. In Table 4 we show the resulting IoU given

different thresholds on the distance. We can observe a trade-

off between the number of corrections and these metrics.

To put our results in perspective, we hired an experi-

enced, high-quality annotator. We asked the annotator to

annotate all car (including van) instances in 10 randomly

selected Cityscapes images from our validation split. We

perform two experiments: in the first experiment, the anno-

tator is asked to annotate objects by free-viewing of the full

image. In the second experiment, we crop the image patches

using the Cityscapes boxes, and place a blue dot on the in-

stance to disambiguate annotation. We take a crop with 15%

of context around the box and scale it to size 224x224. The

annotator used the LabelMe tool [26] for annotation.

In Table 5 we report the IoU achieved by the human an-

notator as well as the mean number of clicks per instance

Method Num. Clicks IoU
Annot.

Speed-Up

Cityscapes GT 33.56 100 -

Ann. full image 79.94 69.5 -

Ann. crops 96.09 78.6 -

Ours (Automatic) 0 73.3 No ann.

Ours (T=1) 9.3 87.7 x3.61

Ours (T=2) 6.6 85.7 x5.11

Ours (T=3) 5.6 84.0 x6.01

Ours (T=4) 4.6 82.2 x7.31

Table 5. Our model vs Annotator Agreement: We hired a highly

trained annotator to label car instances on additional 10 images

(101 instances). We report IoU agreement with Cityscapes GT,

and report polygon statistics. We compare our approach with the

agreement between the human annotators.

in each experiment. We can observe that the agreement

achieved in IoU is 69.5% in the free-viewing regime, and

78.60% when shown the crops (our regime). This num-

ber sheds light on what we are to expect from automatic

methods in general, and points to some ambiguities in the

task. It also indicates that benchmarks should collect mul-

tiple annotations of images to reduce the variations and bi-

ases across the annotators. We hope our approach will make

such data collection feasible and affordable.

Notice that our model achieves a higher agreement

(82%) by requiring only 4.6 clicks on average, which is a

factor of 7.3 speed-up in annotation time. Even at agree-

ment as high as 87.7, the annotation speed-up factor is still

3.6. This showcases the effectiveness of our model as an

annotation tool. For all the categories in Cityscapes and

following the same procedure, we require only 9.39 clicks

on average to obtain 78.40% IoU agreement, obtaining a

speed-up factor of 4.74.

Comparison with Grabcut. We also compare the per-

formance of our approach with another semi automatic

method on a set of 54 randomly chosen instances. We used

the OpenCV implementation of Grabcut [25] for this exper-

iment. On average, using Grabcut the annotators needed

42.2s and 17.5 clicks per instance, and obtained an aver-

age of 70.7% IoU agreement with the Cityscapes GT. On

the same set of images, our model achieves IoUs ranging

from 79.7% to 85.8%, with 5.0 clicks (T=4) to 9.6 clicks

(T=1), respectively. Our expert human annotator needed

87.6 clicks to obtain an IoU of 77.6% (without using any
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Figure 5. Annotator in the loop: We show IoU as a function of the number of clicks/corrections.

Method # of Clicks IOU

DeepMask [20] - 78.3

SharpMask [21] - 78.8

Beat the MTurkers [4] 0 73.9

Ours (Automatic) 0 74.22

Ours (T=1) 11.83 89.43

Ours (T=2) 8.54 87.51

Ours (T=3) 6.83 85.70

Ours (T=4) 5.84 84.11

Table 6. Car annotation results on the KITTI dataset.

semi automatic tool). Since our model requires much less

human intervention than [25] (5 vs 17.5 clicks) and requires

comparable inference time per click, we expect that in a real

world scenario our method would be much faster.

Qualitative Results: In Fig. 6 we show examples of im-

ages annotated with our method. We remind the reader,

that this labeling is obtained by exploiting the GT bound-

ing boxes. In particular, we here show the predictions ob-

tained without any corrections (0 clicks). Our model is able

to correctly segment instances with a variety of shapes and

sizes. For large instances the quantization error introduced

by the output resolution of our model becomes apparent.

Increasing the output resolution is subject of ongoing work.

The main challenges are memory considerations as well as

challenges due to longer sequences (polygons have more

vertices) that the network would need to predict.

In Fig. 7 we compare annotations of example instances

more closely by zooming in on each object. We can inspect

the agreement between the GT annotation and our in-house

annotator, as well as the quality of the predictions obtained

by PolygonRNN with and without corrections.

4.4. Annotating KITTI Instances

We also evaluate how well our model that was trained on

Cityscapes generalizes to an unseen dataset. We use KITTI

for this experiment, which has 741 annotated instances pro-

vided by [4]. We report the results in Table 6. The ob-

ject instances in KITTI are usually larger than those found

in Cityscapes, making Deepmask and SharpMask perform

very similarly. Note that [4], also a method for semi-

automatic annotation, exploited Velodyne point clouds to

perform their labeling, which puts it with an unfair advan-

tage. Our model is further penalized by its lower resolution

output. Still, their performance is lower than our fully auto-

matic approach. With only 5.84 clicks on mean per instance

our models achieves an IOU comparable to the human an-

notation agreement, thus reducing the annotation cost.

5. Conclusion

In this paper we proposed an approach to facilitate an-

notation of object instances. Our Polygon-RNN predicts

a polygon outlining an object, and easily incorporates cor-

rections from an annotator in the loop. We show annota-

tion speed-up of factor 4.74 while achieving the same an-

notation agreement as that between human annotators. The

main advantage of our approach is that it produces struc-

turally plausible annotations of objects, and allows us to

achieve a desired annotation accuracy by requiring only a

few clicks by the annotator. Additional experiments show

that our approach generalizes across different datasets, thus

showcasing its power as a generic annotation tool.
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GT Ours (Automatic, i.e. 0 corrections)

Figure 6. Qualitative results in prediction mode: We show polygons for all classes in the original image. Note that our approach uses

GT boxes as input. (left) we show the GT labeling of the image, (right) we show our polygons without any human intervention. The GT

images contain 38, 12, 28 and 16 instances, and required 985, 308, 580 and 338 clicks respectively from their Cityscapes annotators.

GT Annotator Ours (Automatic) Ours (T=1)

Figure 7. We look at a few instances in more detail. In the first column we show the GT annotation, while in the second column we show

the polygons from the in-house annotator. We observe that these segmentations are high quality but differ in uncertain areas such as the

base of the car. In the third column we show the PolygonRNN prediction without human intervention. Finally, in the fourth column we

show a corrected prediction. We can observe that the segmentation is refined to better outline the car mirrors or wheels.
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