
On-the-Fly Adaptation of Regression Forests for Online Camera Relocalisation

Tommaso Cavallari1 Stuart Golodetz2∗ Nicholas A. Lord2∗

Julien Valentin3 Luigi Di Stefano1 Philip H. S. Torr2

1 Department of Computer Science and Engineering, University of Bologna
2 Department of Engineering Science, University of Oxford

3 perceptiveio, Inc.

1 {tommaso.cavallari,luigi.distefano}@unibo.it
2 {smg,nicklord,phst}@robots.ox.ac.uk

3
julien@perceptiveio.com

Abstract

Camera relocalisation is an important problem in com-

puter vision, with applications in simultaneous localisa-

tion and mapping, virtual/augmented reality and naviga-

tion. Common techniques either match the current image

against keyframes with known poses coming from a tracker,

or establish 2D-to-3D correspondences between keypoints

in the current image and points in the scene in order to es-

timate the camera pose. Recently, regression forests have

become a popular alternative to establish such correspon-

dences. They achieve accurate results, but must be trained

offline on the target scene, preventing relocalisation in new

environments. In this paper, we show how to circumvent this

limitation by adapting a pre-trained forest to a new scene

on the fly. Our adapted forests achieve relocalisation per-

formance that is on par with that of offline forests, and our

approach runs in under 150ms, making it desirable for real-

time systems that require online relocalisation.

1. Introduction

Camera pose estimation is an important problem in com-

puter vision, with applications in simultaneous localisation

and mapping (SLAM) [29, 28, 19], virtual and augmented

reality [1, 4, 14, 30, 31, 38] and navigation [21]. In SLAM,

the camera pose is commonly initialised upon starting re-

construction and then tracked from one frame to the next,

but tracking can easily be lost due to e.g. rapid movement or

textureless regions in the scene; when this happens, it is im-

portant to be able to relocalise the camera with respect to the

scene, rather than forcing the user to start the reconstruction

again from scratch. Camera relocalisation is also crucial for

loop closure when trying to build globally consistent maps

∗S. Golodetz and N. Lord assert joint second authorship.

[7, 18, 40]. Traditional approaches to camera relocalisation

have been based around one of two main paradigms:

(i) Image matching methods match the current im-

age from the camera against keyframes stored in an im-

age database (potentially with some interpolation between

keyframes where necessary). For example, Galvez-Lopez et

al. [10] describe an approach that computes a bag of binary

words based on BRIEF descriptors for the current image

and compares it with bags of binary words for keyframes

in the database using an L1 score. Gee et al. [12] estimate

camera pose from a set of synthetic (i.e. rendered) views

of the scene. Their approach is interesting because unlike

many image matching methods, they are to some extent able

to relocalise from novel poses; however, the complexity in-

creases linearly with the number of synthetic views needed,

which poses significant limits to practical use. Glocker et al.

[13] encode frames using Randomised Ferns, which when

evaluated on images yield binary codes that can be matched

quickly by their Hamming distance: as noted in [23], this

makes their approach much faster than [12] in practice.

(ii) Keypoint-based methods find 2D-to-3D correspon-

dences between keypoints in the current image and 3D

scene points, so as to deploy e.g. a Perspective-n-Point

(PnP) algorithm [16] (on RGB data) or the Kabsch algo-

rithm [17] (on RGB-D data) to generate a number of cam-

era pose hypotheses that can be pruned to a single hypoth-

esis using RANSAC [8]. For example, Williams et al.

[41] recognise/match keypoints using an ensemble of ran-

domised lists, and exclude unreliable or ambiguous matches

when generating hypotheses. Their approach is fast, but

needs significant memory to store the lists. Li et al. [23]

use graph matching to help distinguish between visually-

similar keypoints. Their method uses BRISK descriptors

for the keypoints, and runs at around 12 FPS. Sattler et al.

[32] describe a large-scale localisation approach that finds

14457

Camera Pose Estimation

Pre-Training Online Adaptation

Pose Hypothesis NPose Hypothesis 1

DepthRGB

Pre-emptive

RANSAC

... ...

...

Output Pose

Hypothesis

RGB Depth Reconstructed Scene RGB Depth Reconstructed Scene

Figure 1: Overview of our approach. First, we train a regression forest offline to predict 2D-to-3D correspondences for

a generic scene. To adapt this forest to a new scene, we remove the scene-specific information in the forest’s leaves while

retaining the branching structure (with learned split parameters) of the trees; we then refill the leaves online using training

examples from the new scene. The adapted forest can be deployed to predict correspondences for the new scene that are fed

to Kabsch [17] and RANSAC [8] for pose estimation.

correspondences in both the 2D-to-3D and 3D-to-2D direc-

tions before applying a 6-point DLT algorithm to compute

pose hypotheses. They use a visual vocabulary to order po-

tential matches by how costly they will be to establish.

Some hybrid methods use both paradigms. For ex-

ample, Mur-Artal et al. [27] describe a relocalisation ap-

proach that initially finds pose candidates using bag of

words recognition [11], which they incorporate into their

larger ORB-SLAM system (unlike [10], they use ORB

rather than BRIEF features, which they found to improve

performance). They then refine these candidate poses using

PnP and RANSAC. Valentin et al. [36] present an approach

that finds initial pose candidates using the combination of

a retrieval forest and a multiscale navigation graph, before

refining them using continuous pose optimisation.

Several less traditional approaches have also been tried.

Kendall et al. [20] train a convolutional neural network to

directly regress the 6D camera pose from the current im-

age. Deng et al. [6] match a 3D point cloud representing

the scene to a local 3D point cloud constructed from a set of

query images that can be incrementally extended by the user

to achieve a successful match. Lu et al. [24] perform 3D-to-

3D localisation that reconstructs a 3D model from a short

video using structure-from-motion and matches that against

the scene within a multi-task point retrieval framework.

Recently, Shotton et al. [34] proposed the use of a re-

gression forest to directly predict 3D correspondences in the

scene for all pixels in the current image. This has two key

advantages over traditional keypoint-based approaches: (i)

no explicit detection, description or matching of keypoints

is required, making the approach both simpler and faster,

and (ii) a significantly larger number of points can be de-

ployed to verify or reject camera pose hypotheses. How-

ever, it suffers from the key limitation of needing to train

a regression forest on the scene offline (in advance), which

prevents on-the-fly camera relocalisation. Subsequent work

has significantly improved upon the relocalisation perfor-

mance of [34]. For example, Guzman-Rivera et al. [15]

rely on multiple regression forests to generate a number

of camera pose hypotheses, then cluster them and use the

mean pose of the cluster whose poses minimise the recon-

struction error as the result. Valentin et al. [37] replace the

modes used in the leaves of the forests in [34] with mix-

tures of anisotropic 3D Gaussians in order to better model

uncertainties in the 3D point predictions, and show that by

combining this with continuous pose optimisation they can

relocalise 40% more frames than [34]. Brachmann et al. [3]

deploy a stacked classification-regression forest to achieve

results of a quality similar to [37] for RGB-D relocalisa-

tion. Massiceti et al. [26] map between regression forests

4458

and neural networks to try to leverage the performance ben-

efits of neural networks for dense regression while retaining

the efficiency of random forests for evaluation. They use ro-

bust geometric median averaging to achieve improvements

of around 7% over [3] for RGB localisation. However, de-

spite all of these advances, none of these papers remove the

need to train on the scene of interest in advance.

In this paper, we show that this need for offline train-

ing on the scene of interest can be overcome through online

adaptation to a new scene of a regression forest that has

been pre-trained on a generic scene. We achieve genuine

on-the-fly relocalisation similar to that which can be ob-

tained using keyframe-based approaches [13], but with both

significantly higher relocalisation performance in general,

and the specific advantage that we can relocalise from novel

poses. Indeed, our adapted forests achieve relocalisation

performance that is competitive with offline-trained forests,

whilst requiring no pre-training on the scene of interest and

relocalising in close to real time. This makes our approach

a practical and high-quality alternative to keyframe-based

methods for online relocalisation in novel scenes.

2. Method

2.1. Overview

Figure 1 shows an overview of our approach. Initially, we

train a regression forest offline to predict 2D-to-3D corre-

spondences for a generic scene, as per [37]. To adapt this

forest to a new scene, we remove the contents of the leaf

nodes in the forest (i.e. GMM modes and associated co-

variance matrices) whilst retaining the branching structure

of the trees (including learned split parameters). We then

adapt the forest online to the new scene by feeding train-

ing examples down the forest to refill the empty leaves, dy-

namically learning a set of leaf distributions specific to that

scene. Thus adapted, the forest can then be used to pre-

dict correspondences for the new scene that can be used for

camera pose estimation. Reusing the tree structures spares

us from expensive offline learning on deployment in a novel

scene, allowing for relocalisation on the fly.

2.2. Details

2.2.1 Offline Forest Training

Training is done as in [37], greedily optimising a standard

reduction-in-spatial-variance objective over the randomised

parameters of simple threshold functions. Like [37], we

make use of ‘Depth’ and ‘Depth-Adaptive RGB’ (‘DA-

RGB’) features, centred at a pixel p, as follows:

f
Depth
Ω = D(p)−D

(

p+
δ

D(p)

)

(1)

fDA-RGB
Ω = C(p, c)− C

(

p+
δ

D(p)
, c

)

(2)

In this, D(p) is the depth at p, C(p, c) is the value of the

cth colour channel at p, and Ω is a vector of randomly sam-

pled feature parameters. For ‘Depth’, the only parameter

is the 2D image-space offset δ, whereas ‘DA-RGB’ adds

the colour channel selection parameter c ∈ {R,G,B}. We

randomly generate 128 values of Ω for ‘Depth’ and 128 for

‘DA-RGB’. We concatenate the evaluations of these func-

tions at each pixel of interest to yield 256D feature vectors.

At training time, a set S of training examples, each con-

sisting of such a feature vector f ∈ R
256, its corresponding

3D location in the scene and its colour, is assembled via

sampling from a ground truth RGB-D video with known

camera poses for each frame (obtained by tracking from

depth camera input). A random subset of these training ex-

amples is selected to train each tree in the forest, and we

then train all of the trees in parallel.

Starting from the root of each tree, we recursively parti-

tion the set of training examples in the current node into two

using a binary threshold function. To decide how to split

each node n, we randomly generate a set Θn of 512 can-

didate split parameter pairs, where each θ = (φ, τ) ∈ Θn

denotes the binary threshold function

θ(f) = f [φ] ≥ τ. (3)

In this, φ ∈ [0, 256) is a randomly-chosen feature index,

and τ ∈ R is a threshold, chosen to be the value of feature

φ in a randomly-chosen training example. Examples that

pass the test are routed to the right subtree of n; the remain-

der are routed to the left. To pick a suitable split function for

n, we use exhaustive search to find a θ∗ ∈ Θn whose cor-

responding split function maximises the information gain

that can be achieved by splitting the training examples that

reach n. Formally, the information gain corresponding to

split parameters θ ∈ Θn is

V (Sn)−
∑

i∈{L,R}

|Si
n(θ)|

|Sn|
V (Si

n(θ)), (4)

in which V (X) denotes the spatial variance of set X , and

SL
n (θ) and SR

n (θ) denote the left and right subsets into

which the set Sn ⊆ S of training examples reaching n is

partitioned by the split function denoted by θ. Spatial vari-

ance is defined in terms of the log of the determinant of the

covariance of a fitted 3D Gaussian [37].

For a given tree, the above process is simply recursed

to a maximum depth of 15. As in [37], we train 5 trees

per forest. The (approximate, empirical) distributions in the

leaves are discarded at the end of this process (we replace

them during online forest adaptation, as discussed next).

2.2.2 Online Forest Adaptation

To adapt a forest to a new environment, we replace the dis-

tributions discarded from its leaves at the end of pre-training

4459

(a) (b)

Figure 2: An illustrative example of the effect that online adaptation has on a pre-trained forest: (a) shows the modal clusters

present in a small number of randomly-selected leaves of a forest pre-trained on the Chess scene from the 7-Scenes dataset

[34] (the colour of each mode indicates its containing leaf); (b) shows the modal clusters that are added to the same leaves

during the process of adapting the forest to the Kitchen scene.

with dynamically-updated ones drawn entirely from the

new scene. Here, we detail how the new leaf distributions

used by the relocaliser are computed and updated online.

We draw inspiration from the use of reservoir sampling

[39] in SemanticPaint [38], which makes it possible to store

an unbiased subset of an empirical distribution in a bounded

amount of memory. On initialisation, we allocate (on the

GPU) a fixed-size sample reservoir for each leaf of the ex-

isting forest. Our reservoirs contain up to 1024 entries,

each storing a 3D (world coordinate) location and an as-

sociated colour. At runtime, we pass training examples (as

per §2.2.1) down the forest and identify the leaves to which

each example is mapped. We then add the 3D location and

colour of each example to the reservoirs associated with its

leaves. To obtain the 3D locations of the training examples,

we need to know the transformation that maps points from

camera space to world space. When testing on sequences

from a dataset, this is trivially available as the ground truth

camera pose, but in a live scenario, it will generally be ob-

tained as the output of a fallible tracker. To avoid corrupt-

ing the reservoirs in our forest, we avoid passing new ex-

amples down the forest when the tracking is unreliable. We

measure tracker reliability using the support vector machine

(SVM) approach described in [18]. For frames for which a

reliable camera pose is available, we proceed as follows:

1. First, we compute feature vectors for a subset of the

pixels in the image, as detailed in §2.2.1. We empiri-

cally choose our subset by subsampling densely on a

regular grid with 4-pixel spacing, i.e. we choose pixels

{(4i, 4j) ∈ [0, w)× [0, h) : i, j ∈ N}, where w and h

are respectively the width and height of the image.

2. Next, we pass each feature vector down the forest,

adding the 3D position and colour of the corresponding

scene point to the reservoir of the leaf reached in each

tree. Our CUDA-based random forest implementation

uses the node indexing described in [33].

3. Finally, for each leaf reservoir, we cluster the con-

tained points using a CUDA implementation of Really

Quick Shift (RQS) [9] to find a set of modal 3D loca-

tions. We sort the clusters in each leaf in decreasing

size order, and keep at most 10 modal clusters per leaf.

For each cluster we keep, we compute 3D and colour

centroids, and a covariance matrix. The cluster dis-

tributions are used when estimating the likelihood of

a camera pose, and also during continuous pose opti-

misation (see §2.2.3). Since running RQS over all the

leaves in the forest would take too long if run in a sin-

gle frame, we amortise the cost over multiple frames

by updating 256 leaves in parallel each frame in round-

robin fashion. A typical forest contains around 42,000
leaves, so each leaf is updated roughly once every 6s.

The aforementioned reservoir size, number of modal clus-

ters per leaf and number of leaves to update per frame were

determined empirically to achieve online processing rates.

Figure 2 illustrates the effect that online adaptation has

on a pre-trained forest: (a) shows the modal clusters present

in a few randomly-selected leaves of a forest pre-trained on

the Chess scene from the 7-Scenes dataset [34]; (b) shows

the modal clusters that are added to the same leaves during

the process of adapting the forest to the Kitchen scene. Note

that whilst the positions of the predicted modes have (unsur-

prisingly) completely changed, the split functions in the for-

est’s branch nodes (which we preserve) still do a good job

of routing similar parts of the scene into the same leaves,

enabling effective sampling of 2D-to-3D correspondences

for camera pose estimation.

4460

2.2.3 Camera Pose Estimation

As in [37], camera pose estimation is based on the pre-

emptive, locally-optimised RANSAC of [5]. We begin by

randomly generating an initial set of up to 1024 pose hy-

potheses. A pose hypothesis H ∈ SE(3) is a transform

that maps points in camera space to world space. To gen-

erate each pose hypothesis, we apply the Kabsch algo-

rithm [17] to 3 point pairs of the form (xC
i ,x

W
i), where

xC
i = D(ui)K

−1(u⊤
i , 1) is obtained by back-projecting a

randomly-chosen point ui in the live depth image D into

camera space, and xW
i is a corresponding scene point in

world space, randomly sampled from M(ui), the modes of

the leaves to which the forest maps ui. In this, K is the

intrinsic calibration matrix for the depth camera. Before ac-

cepting a hypothesis, we subject it to a series of checks:

1. First, we randomly choose one of the three point pairs

(xC
i ,x

W
i) and compare the RGB colour of the cor-

responding pixel ui in the colour input image to the

colour centroid of the mode (see §2.2.2) from which

we sampled xW
i . We reject the hypothesis iff the L0

distance between the two exceeds a threshold.

2. Next, we check that the three hypothesised scene

points are sufficiently far from each other. We reject

the hypothesis iff the minimum distance between any

pair of points is less than 30cm.

3. Finally, we check that the distances between all scene

point pairs and their corresponding back-projected

depth point pairs are sufficiently similar, i.e. that the

hypothesised transform is ‘rigid enough’. We reject

the hypothesis iff this is not the case.

If a hypothesis gets rejected by one of the checks, we try to

generate an alternative hypothesis to replace it. In practice,

we use 1024 dedicated threads, each of which attempts to

generate a single hypothesis. Each thread continues gen-

erating hypotheses until either (a) it finds a hypothesis that

passes all of the checks, or (b) a maximum number of itera-

tions is reached. We proceed with however many hypothe-

ses we obtain by the end of this process.

Having generated our large initial set of hypotheses, we

next aggressively cut it down to a much smaller size by scor-

ing each hypothesis and keeping the 64 lowest-energy trans-

forms (if there are fewer than 64 hypotheses, we keep all of

them). To score the hypotheses, we first select an initial set

I = {i} of 500 pixel indices in D, and back-project the de-

noted pixels ui to corresponding points xC
i in camera space

as described above. We then score each hypothesis H by

summing the Mahalanobis distances between the transfor-

mations of each xC
i under H and their nearest modes:

E(H) =
∑

i∈I

(

min
(µ,Σ)∈M(ui)

∥

∥

∥
Σ− 1

2 (HxC
i − µ)

∥

∥

∥

)

(5)

After this initial cull, we use pre-emptive RANSAC to

prune the remaining ≤ 64 hypotheses to a single, final hy-

pothesis. We iteratively (i) expand the sample set I (by

adding 500 new pixels each time), (ii) refine the pose can-

didates via Levenberg-Marquardt optimisation [22, 25] of

the energy function E, (iii) re-evaluate and re-score the hy-

potheses, and (iv) discard the worse half. In practice, the ac-

tual optimisation is performed not in SE(3), where it would

be hard to do, but in the corresponding Lie algebra, se(3).
The details of this process can be found in [37], and a longer

explanation of Lie algebras can be found in [35].

This process yields a single pose hypothesis, which we

can then return if desired. In practice, however, further pose

refinement is sometimes possible. For example, if our relo-

caliser is integrated into an open-source 3D reconstruction

framework such as InfiniTAM [18], we can attempt to refine

the pose further using ICP [2]. Since tasks such as 3D re-

construction are one of the key applications of our approach,

we report results both with and without ICP in Table 1.

3. Experiments

We perform both quantitative and qualitative experi-

ments to evaluate our approach. In §3.1, we compare our

adaptive approach to state-of-the-art offline relocalisers that

have been trained directly on the scene of interest. We show

that our adapted forests achieve competitive relocalisation

performance despite being trained on very different scenes,

enabling their use for online relocalisation. In §3.2, we

show that we can perform this adaptation on-the-fly from

live sequences, allowing us to support tracking loss recov-

ery in interactive scenarios. In §3.3, we evaluate how well

our approach generalises to novel poses in comparison to

a keyframe-based random fern relocaliser based on [13].

This relocaliser is also practical for on-the-fly relocalisation

(hence its use in InfiniTAM [18]), but its use of keyframes

prevents it from generalising well to novel poses. By con-

trast, we are able to relocalise well even from poses that are

quite far away from the training trajectory. Finally, in §3.4,

we compare the speed of our approach with random ferns

during both normal operation (i.e. when the scene is being

successfully tracked) and relocalisation. Our approach is

slower than random ferns, but remains close to real-time

and achieves much higher relocalisation performance. Fur-

ther analysis can be found in the supplementary material.

3.1. Adaptation Performance

In evaluating the extent to which we are able to adapt

a regression forest that has been pre-trained on a different

scene to the scene of interest, we seek to answer two ques-

tions. First, how does an adapted forest compare to one that

has been pre-trained offline on the target scene? Second,

to what extent does an adapted forest’s performance de-

pend on the scene on which it has been pre-trained? To an-

4461

Relocalisation Performance on Test Scene
Training Scene

Chess Fire Heads Office Pumpkin Kitchen Stairs Average (all scenes)

Reloc 99.8% 95.7% 95.5% 91.7% 82.8% 77.9% 25.8% 81.3%
Chess

+ ICP 99.9% 97.8% 99.5% 94.1% 91.3% 83.3% 28.4% 84.9%

Reloc 98.4% 96.9% 98.2% 89.7% 80.5% 71.9% 28.6% 80.6%
Fire

+ ICP 99.1% 99.2% 99.9% 92.1% 89.1% 81.7% 31.0% 84.6%

Reloc 98.0% 91.7% 100% 73.1% 77.5% 67.1% 21.8% 75.6%
Heads

+ ICP 99.3% 92.3% 100% 81.1% 87.7% 82.0% 31.9% 82.0%

Reloc 99.2% 96.5% 99.7% 97.6% 84.0% 81.7% 33.6% 84.6%
Office

+ ICP 99.4% 99.0% 100% 98.2% 91.2% 87.0% 35.0% 87.1%

Reloc 97.5% 94.9% 96.9% 82.7% 83.5% 70.4% 30.7% 75.5%
Pumpkin

+ ICP 98.9% 97.6% 99.4% 86.9% 91.2% 82.3% 32.4% 84.1%

Reloc 99.9% 95.4% 98.0% 93.3% 83.2% 86.0% 28.2% 83.4%
Kitchen

+ ICP 99.9% 98.2% 100% 94.5% 90.4% 88.1% 31.3% 86.1%

Reloc 97.3% 95.4% 97.9% 90.8% 80.6% 74.5% 45.7% 83.2%
Stairs

+ ICP 98.0% 97.4% 99.8% 92.1% 89.5% 81.0% 46.6% 86.3%

Reloc 97.3% 95.7% 97.3% 83.7% 85.3% 71.8% 24.3% 79.3%
Ours (Author’s Desk)

+ ICP 99.2% 97.7% 100% 88.2% 90.6% 82.6% 31.0% 84.2%

Reloc 98.4% 95.3% 97.9% 87.8% 82.2% 75.2% 29.8% 80.9%
Average

+ ICP 99.2% 97.4% 99.8% 90.9% 90.1% 83.5% 33.5% 84.9%

Table 1: The performance of our adaptive approach after pre-training on various scenes of the 7-Scenes dataset [34]. We

show the scene used to pre-train the forest in each version of our approach in the left column. The pre-trained forests are

adapted online for the test scene, as described in the main text. The percentages denote proportions of test frames with ≤ 5cm

translational error and ≤ 5◦ angular error.

swer both of these questions, we compare the performances

of adapted forests pre-trained on a variety of scenes (each

scene from the 7-Scenes dataset [34], plus a novel scene

containing the first author’s desk) to the performances of

forests trained offline on the scene of interest using state-

of-the-art approaches [34, 15, 37, 3].

The exact testing procedure we use for our approach is as

follows. First, we pre-train a forest on a generic scene and

remove the contents of its leaves, as described in §2: this

process runs offline over a number of hours or even days

(but we only need to do it once). Next, we adapt the forest

by feeding it new examples from a training sequence cap-

tured on the scene of interest: this runs online at frame rates

(in a real system, this allows us to start relocalising almost

immediately whilst training carries on in the background,

as we show in §3.2). Finally, we test the adapted forest by

using it to relocalise from every frame of a separate testing

sequence captured on the scene of interest.

As shown in Table 1, the results are very accurate.

Whilst there are certainly some variations in the perfor-

mance achieved by adapted forests pre-trained on differ-

ent scenes (in particular, forests trained on the Heads and

Pumpkin scenes from the dataset are slightly worse), the

differences are not profound: in particular, relocalisation

performance seems to be more tightly coupled to the diffi-

culty of the scene of interest than to the scene on which the

forest was pre-trained. Notably, all of our adapted forests

achieve results that are within striking distance of the state-

of-the-art offline methods (Table 2), and are considerably

better than those that can be achieved by online competi-

tors such as the keyframe-based random fern relocaliser im-

plemented in InfiniTAM [13, 18] (see §3.3). Nevertheless,

there is clearly a trade-off to be made here between perfor-

mance and practicality: pre-training on the scene of inter-

est is impractical for on-the-fly relocalisation, but achieves

somewhat better results, probably due to the opportunity af-

forded to adapt the structure of the forest to the target scene.

This drop in performance in exchange for practicality

can be mitigated to some extent by refining our relocaliser’s

pose estimates using the ICP-based tracker [2] in Infini-

TAM [19]. Valentin et al. [37] observe that the 5cm/5◦ er-

ror metric commonly used to evaluate relocalisers is ‘fairly

strict and should allow any robust model-based tracker to

resume’. In practice, ICP-based tracking is in many cases

able to resume from initial poses with even greater error:

indeed, as Table 1 shows, with ICP refinement enabled, we

are able to relocalise from a significantly higher proportion

of test frames. Whilst ICP could clearly also be used to re-

fine the results of offline methods, what is important in this

case is that ICP is fast and does not add significantly to the

overall runtime of our approach, which remains close to real

time. As such, refining our pose estimates using ICP yields

a high-quality relocaliser that is still practical for online use.

3.2. Tracking Loss Recovery

In §3.1, we investigated our ability to adapt a forest to a

new scene by filling its leaves with data from a training se-

quence for that scene, before testing the adapted forest on a

separate testing sequence shot on the same scene. Here, we

quantify our ability to perform this adaptation on the fly by

filling the leaves frame-by-frame from the testing sequence:

this allows recovery from tracking loss in an interactive sce-

nario without the need for prior training on anything other

than the live sequence, making our approach extremely con-

4462

Scene [34] [15] [37] [3] Us Us+ICP

Chess 92.6% 96% 99.4% 99.6% 99.2% 99.4%

Fire 82.9% 90% 94.6% 94.0% 96.5% 99.0%

Heads 49.4% 56% 95.9% 89.3% 99.7% 100%

Office 74.9% 92% 97.0% 93.4% 97.6% 98.2%

Pumpkin 73.7% 80% 85.1% 77.6% 84.0% 91.2%

Kitchen 71.8% 86% 89.3% 91.1% 81.7% 87.0%

Stairs 27.8% 55% 63.4% 71.7% 33.6% 35.0%

Average 67.6% 79.3% 89.5% 88.1% 84.6% 87.1%

Table 2: Comparing our adaptive approach to state-of-the-

art offline methods on the 7-Scenes dataset [34] (the per-

centages denote proportions of test frames with ≤ 5cm

translation error and ≤ 5◦ angular error). For our method,

we report the results obtained by adapting a forest pre-

trained on the Office sequence (from Table 1). We are com-

petitive with, and sometimes better than, the offline meth-

ods, without needing to pre-train on the test scene.

venient for tasks such as interactive 3D reconstruction.

Our testing procedure is as follows: at each new frame

(except the first), we assume that tracking has failed, and try

to relocalise using the forest we have available at that point;

we record whether or not this succeeds. Regardless, we then

restore the ground truth camera pose (or the tracked camera

pose, in a live sequence) and, provided tracking hasn’t ac-

tually failed, use examples from the current frame to con-

tinue training the forest. As Figure 3 shows, we are able

to start relocalising almost immediately in a live sequence

(in a matter of frames, typically 4–6 are enough). Subse-

quent performance then varies based on the difficulty of the

sequence, but rarely drops below 80%, except for the chal-

lenging Stairs sequence. This makes our approach highly

practical for interactive relocalisation, something we also

show in our supplementary video.

3.3. Generalisation to Novel Poses

To evaluate how well our approach generalises to novel

poses, we examine how the proportion of frames we can re-

localise decreases as the distance of the (ground truth) test

poses from the training trajectory increases. We compare

our approach with the keyframe-based relocaliser in Infini-

TAM [18], which is based on the random fern approach of

Glocker et al. [13]. Relocalisation from novel poses is a

well-known failure case of keyframe-based methods, so we

would expect the random fern approach to perform poorly

away from the training trajectory; by contrast, it is interest-

ing to see the extent to which our approach can relocalise

from a wide range of novel poses.

We perform the comparison separately for each 7-Scenes

sequence, and then aggregate the results. For each se-

quence, we first group the test poses into bins by pose nov-

elty. Each bin is specified in terms of a maximum transla-

tion and rotation difference of a test pose with respect to the

training trajectory (for example, poses that are within 5cm

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

C
u

m
u

la
ti

v
e

 P
ro

p
o

rt
io

n
 o

f

A
cc

u
ra

te
ly

-R
e

lo
ca

li
se

d
 F

ra
m

e
s

% of Testing Trajectory Observed

Chess

Fire

Heads

Office

Pumpkin

Kitchen

Stairs

Figure 3: The performance of our approach for tracking loss

recovery (§3.2). Filling the leaves of a forest pre-trained on

Office frame-by-frame directly from the testing sequence,

we are able to start relocalising almost immediately in new

scenes. This makes our approach highly practical in inter-

active scenarios such as 3D reconstruction.

Figure 4: Evaluating how well our approach generalises to

novel poses in comparison to a keyframe-based random fern

relocaliser based on [13]. The performance decay experi-

enced as test poses get further from the training trajectory is

much less severe with our approach than with random ferns.

and 5◦ of any training pose are assigned to the first bin, re-

maining poses that are within 10cm and 10◦ are assigned

to the second bin, etc.). We then determine the proportion

of the test poses in each bin for which it is possible to re-

localise to within 5cm translational error and 5◦ angular er-

ror using (a) the random fern approach, (b) our approach

without ICP and (c) our approach with ICP. As shown in

Figure 4, the decay in performance experienced as the test

poses get further from the training trajectory is much less

severe with our approach than with random ferns.

A qualitative example of our ability to relocalise from

novel poses is shown in Figure 5. In the main figure, we

show a range of test poses from which we can relocalise in

4463

Figure 5: A qualitative example of novel poses from which

we are able to relocalise to within 5cm/5◦ on the Fire se-

quence from 7-Scenes [34]. Pose novelty measures the dis-

tance of a test pose from a nearby pose (blue) on the train-

ing trajectory (yellow). We can relocalise from both easy

poses (up to 35cm/35◦ from the training trajectory, green)

and hard poses (> 35cm/35◦, red). The images below the

main figure show views of the scene from the training poses

and testing poses indicated.

the Fire scene, linking them to nearby poses on the training

trajectory so as to illustrate their novelty in comparison to

poses on which we have trained. The most difficult of these

test poses are also shown in the images below alongside

their nearby training poses, visually illustrating the signifi-

cant differences between the two.

As Figures 4 and 5 illustrate, we are already quite effec-

tive at relocalising from poses that are significantly different

from those on which we have trained; nevertheless, further

improvements seem possible. For example, one interesting

extension of this work might be to explore the possibility

of using rotation-invariant split functions in the regression

forest to improve its generalisation capabilities.

3.4. Timings

To evaluate the usefulness of our approach for on-the-fly

relocalisation in new scenes, we compare it to the keyframe-

based random fern relocaliser implemented in InfiniTAM

[13, 18]. To be practical in a real-time system, a relocaliser

needs to perform in real time during normal operation (i.e.

for online training whilst successfully tracking the scene),

and ideally take no more than around 200ms for relocali-

sation itself (when the system has lost track). As a result,

relocalisers such as [34, 15, 37, 3, 26], whilst achieving im-

Random Ferns [13, 18] Us

Per-Frame Training 0.9ms 9.8ms

Relocalisation 10ms 141ms

Table 3: Comparing the typical timings of our approach

vs. random ferns during both normal operation and relo-

calisation. Our approach is slower than random ferns, but

achieves significantly higher relocalisation performance,

especially from novel poses. All of our experiments are

run on a machine with an Intel Core i7-4960X CPU and

an NVIDIA GeForce Titan Black GPU.

pressive results, are not practical in this context due to their

need for offline training on the scene of interest.

As shown in Table 3, the random fern relocaliser is

fast both for online training and relocalisation, taking only

0.9ms per frame to update the keyframe database, and 10ms

to relocalise when tracking is lost. However, speed aside,

the range of poses from which it is able to relocalise is quite

limited. By contrast, our approach, whilst taking 9.8ms for

online training and 141ms for actual relocalisation, can re-

localise from a much broader range of poses, whilst still

running at acceptable speeds. Additionally, it should be

noted that our current research-focused implementation is

not heavily optimised, making it plausible that it could be

sped up even further with additional engineering effort.

4. Conclusion

In recent years, offline approaches that use regression to

predict 2D-to-3D correspondences [34, 15, 37, 3, 26] have

achieved state-of-the-art camera relocalisation results, but

their adoption for online relocalisation in practical systems

such as InfiniTAM [19, 18] has been hindered by the need

to train extensively on the target scene ahead of time.

We show how to circumvent this limitation by adapt-

ing offline-trained regression forests to novel scenes on-

line. Our adapted forests achieve relocalisation perfor-

mance on 7-Scenes [34] that is competitive with the offline-

trained forests of existing methods, and our approach runs

in under 150ms, making it competitive in practice with fast

keyframe-based approaches such as random ferns [13, 18].

Compared to such approaches, we are also much better able

to relocalise from novel poses, freeing the user from manu-

ally searching for known poses when relocalising.

Acknowledgements

We would like to thank Victor Prisacariu and Olaf Kähler

for providing us with the InfiniTAM source code.

This work was supported by the EPSRC, ERC grant

ERC-2012-AdG 321162-HELIOS, EPSRC grant Seebibyte

EP/M013774/1 and EPSRC/MURI grant EP/N019474/1.

4464

References

[1] H. Bae, M. Walker, J. White, Y. Pan, Y. Sun, and

M. Golparvar-Fard. Fast and scalable structure-from-motion

based localization for high-precision mobile augmented real-

ity systems. The Journal of Mobile User Experience, 5(1):1–

21, 2016. 1

[2] P. J. Besl and N. D. McKay. A Method for Registration of

3-D Shapes. TPAMI, 14(2):239–256, February 1992. 5, 6

[3] E. Brachmann, F. Michel, A. Krull, M. Y. Yang, S. Gumhold,

and C. Rother. Uncertainty-Driven 6D Pose Estimation of

Objects and Scenes from a Single RGB Image. In CVPR,

2016. 2, 3, 6, 7, 8

[4] R. Castle, G. Klein, and D. W. Murray. Video-rate Local-

ization in Multiple Maps for Wearable Augmented Reality.

In IEEE International Symposium on Wearable Computers,

pages 15–22, 2008. 1

[5] O. Chum, J. Matas, and J. Kittler. Locally Optimized

RANSAC. In Joint Pattern Recognition Symposium, pages

236–243, 2003. 5

[6] L. Deng, Z. Chen, B. Chen, Y. Duan, and J. Zhou. Incremen-

tal image set querying based localization. Neurocomputing,

208:315–324, 2016. 2

[7] N. Fioraio, J. Taylor, A. Fitzgibbon, L. D. Stefano, and

S. Izadi. Large-Scale and Drift-Free Surface Reconstruc-

tion Using Online Subvolume Registration. In CVPR, pages

4475–4483, 2015. 1

[8] M. A. Fischler and R. C. Bolles. Random Sample Consensus:

A Paradigm for Model Fitting with Applications to Image

Analysis and Automated Cartography. CACM, 24(6):381–

395, 1981. 1, 2

[9] B. Fulkerson and S. Soatto. Really quick shift: Image seg-

mentation on a GPU. In ECCV, pages 350–358, 2010. 4

[10] D. Gálvez-López and J. D. Tardós. Real-Time Loop De-

tection with Bags of Binary Words. In IROS, pages 51–58,

2011. 1, 2

[11] D. Gálvez-López and J. D. Tardós. Bags of Binary Words

for Fast Place Recognition in Image Sequences. RO,

28(5):1188–1197, 2012. 2

[12] A. P. Gee and W. Mayol-Cuevas. 6D Relocalisation for

RGBD Cameras Using Synthetic View Regression. In

BMVC, pages 1–11, 2012. 1

[13] B. Glocker, J. Shotton, A. Criminisi, and S. Izadi. Real-

Time RGB-D Camera Relocalization via Randomized Ferns

for Keyframe Encoding. TVCG, 21(5):571–583, May 2015.

1, 3, 5, 6, 7, 8

[14] S. Golodetz*, M. Sapienza*, J. P. C. Valentin, V. Vineet, M.-

M. Cheng, V. A. Prisacariu, O. Kähler, C. Y. Ren, A. Arnab,

S. L. Hicks, D. W. Murray, S. Izadi, and P. H. S. Torr.

SemanticPaint: Interactive Segmentation and Learning of

3D Worlds. In ACM SIGGRAPH Emerging Technologies,

page 22, 2015. 1

[15] A. Guzman-Rivera, P. Kohli, B. Glocker, J. Shotton,

T. Sharp, A. Fitzgibbon, and S. Izadi. Multi-Output Learn-

ing for Camera Relocalization. In CVPR, pages 1114–1121,

2014. 2, 6, 7, 8

[16] R. Hartley and A. Zisserman. Multiple View Geometry in

Computer Vision. Cambridge University Press, 2nd edition,

2004. 1

[17] W. Kabsch. A solution for the best rotation to relate two

sets of vectors. Acta Crystallographica Section A: Crystal

Physics, Diffraction, Theoretical and General Crystallogra-

phy, 32(5):922–923, 1976. 1, 2, 5

[18] O. Kähler, V. A. Prisacariu, and D. W. Murray. Real-Time

Large-Scale Dense 3D Reconstruction with Loop Closure. In

ECCV, pages 500–516, 2016. 1, 4, 5, 6, 7, 8

[19] O. Kähler*, V. A. Prisacariu*, C. Y. Ren, X. Sun, P. Torr, and

D. Murray. Very High Frame Rate Volumetric Integration

of Depth Images on Mobile Devices. TVCG, 21(11):1241–

1250, 2015. 1, 6, 8

[20] A. Kendall, M. Grimes, and R. Cipolla. PoseNet: A Convo-

lutional Network for Real-Time 6-DOF Camera Relocaliza-

tion. In ICCV, pages 2938–2946, 2015. 2

[21] Y. H. Lee and G. Medioni. RGB-D camera based wearable

navigation system for the visually impaired. CVIU, 149:3–

20, 2016. 1

[22] K. Levenberg. A Method for the Solution of Certain Prob-

lems in Least Squares. Quarterly of Applied Mathematics,

2(2):164–168, 1944. 5

[23] S. Li and A. Calway. RGBD Relocalisation Using Pair-

wise Geometry and Concise Key Point Sets. In ICRA, pages

6374–6379, 2015. 1

[24] G. Lu, Y. Yan, L. Ren, J. Song, N. Sebe, and C. Kamb-

hamettu. Localize Me Anywhere, Anytime: A Multi-task

Point-Retrieval Approach. In ICCV, pages 2434–2442, 2015.

2

[25] D. W. Marquardt. An Algorithm for Least-Squares Estima-

tion of Nonlinear Parameters. Journal of the Society for In-

dustrial and Applied Mathematics, 11(2), 1963. 5

[26] D. Massiceti, A. Krull, E. Brachmann, C. Rother, and P. H. S.

Torr. Random Forests versus Neural Networks – What’s Best

for Camera Localization? arXiv preprint arXiv:1609.05797,

2016. 2, 8

[27] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardós. ORB-

SLAM: A Versatile and Accurate Monocular SLAM System.

RO, 31(5):1147–1163, October 2015. 2

[28] R. Mur-Artal and J. D. Tardós. Fast Relocalisation and Loop

Closing in Keyframe-Based SLAM. In ICRA, pages 846–

853, 2014. 1

[29] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,

D. Kim, A. J. Davison, P. Kohli, J. Shotton, S. Hodges,

and A. Fitzgibbon. KinectFusion: Real-Time Dense Surface

Mapping and Tracking. In ISMAR, pages 127–136, 2011. 1

[30] R. Paucher and M. Turk. Location-based augmented reality

on mobile phones. In IEEE Computer Society Conference

on Computer Vision and Pattern Recognition – Workshops,

pages 9–16, 2010. 1

[31] N. L. Rodas, F. Barrera, and N. Padoy. Marker-less AR in the

Hybrid Room using Equipment Detection for Camera Relo-

calization. In MICCAI, pages 463–470, 2015. 1

[32] T. Sattler, B. Leibe, and L. Kobbelt. Efficient & Effective

Prioritized Matching for Large-Scale Image-Based Localiza-

tion. TPAMI, PP(99), 2016. 1

4465

[33] T. Sharp. Implementing Decision Trees and Forests on a

GPU. In ECCV, pages 595–608, 2008. 4

[34] J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and

A. Fitzgibbon. Scene Coordinate Regression Forests for

Camera Relocalization in RGB-D Images. In CVPR, pages

2930–2937, 2013. 2, 4, 6, 7, 8

[35] H. Strasdat. Local Accuracy and Global Consistency for Ef-

ficient Visual SLAM. PhD thesis, Imperial College London,

2012. 5

[36] J. Valentin, A. Dai, M. Nießner, P. Kohli, P. Torr, S. Izadi,

and C. Keskin. Learning to Navigate the Energy Landscape.

In 3DV, pages 323–332, 2016. 2

[37] J. Valentin, M. Nießner, J. Shotton, A. Fitzgibbon, S. Izadi,

and P. Torr. Exploiting Uncertainty in Regression Forests

for Accurate Camera Relocalization. In CVPR, pages 4400–

4408, 2015. 2, 3, 5, 6, 7, 8

[38] J. Valentin, V. Vineet, M.-M. Cheng, D. Kim, J. Shotton,

P. Kohli, M. Nießner, A. Criminisi, S. Izadi, and P. Torr. Se-

manticPaint: Interactive 3D Labeling and Learning at your

Fingertips. TOG, 34(5):154, 2015. 1, 4

[39] J. S. Vitter. Random Sampling with a Reservoir. ACM Trans-

actions on Mathematical Software, 11(1):37–57, 1985. 4

[40] T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B. Glocker,

and A. J. Davison. ElasticFusion: Dense SLAM Without A

Pose Graph. In RSS, 2015. 1

[41] B. Williams, G. Klein, and I. Reid. Automatic Relocalization

and Loop Closing for Real-Time Monocular SLAM. TPAMI,

33(9):1699–1712, September 2011. 1

4466

