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Abstract

This paper presents BIND (Binary Integrated Net
Descriptor), a texture-less object detector that encodes
multi-layered binary-represented nets for high precision
edge-based description. Our proposed concept aligns layers
of object-sized patches (nets) onto highly fragmented
occlusion resistant line-segment midpoints (linelets) to
encode regional information into efficient binary strings.
These lightweight nets encourage discriminative object
description through their high-spatial resolution, enabling
highly precise encoding of the object’s edges and internal
texture-less information. BIND achieved various invariant
properties such as rotation, scale and edge-polarity through
its unique binary logical-operated encoding and matching
techniques, while performing remarkably well in occlusion
and clutter. Apart from yielding efficient computational
performance, BIND also attained remarkable recognition
rates surpassing recent state-of-the-art texture-less object
detectors such as BORDER, BOLD and LINE2D.

1. Introduction

Texture-less objects are a familiar sight in the real
world and yet, widely established recognition algorithms
such as SIFT (Scale Invariant Feature Transform) [1],
and SURF (Speeded Up Robust Features) [2] are largely
ineffective in such instances. This is due to their heavy
reliance on highly-textured, feature-rich informative local
regions, which are relatively scarce in homogeneous
occurrences. Therefore, this challenging problem has led
to various recent works such as [3–5], where object-sized
regional information is exploited to gather discriminative
content. Although producing decent results, extensive
use of such sizable spatial architecture often leads to
expensive computational run-times as well as memory load.
As modern contemporary technologies such as real-time
detection systems and mobile applications have limited
computational resources, there is a growing consensus for

Fig. 1: BIND’s texture-less object recognition in high clutter
and semi-occlusion. (Top) keypoint matches, (bottom) binary net
matches where green boxes represent angular block matches,
yellow boxes indicate internal homogeneous block matches, and
gray boxes refers to the background/no-match blocks.

today’s algorithms to be robust, fast and compact.
A proven way to produce quick and memory efficient

detectors without hardware acceleration is by means of
binary descriptors. Works such as BRIEF (Binary Robust
Independent Elementary Features) [6] and ORB (Orient
FAST and Rotated BRIEF) [7] utilize local patches for
simple binary intensity tests between pixels to form
their descriptors. This led to very efficient vector sizes
and matching speeds, as these strings can be quickly
compared using the Hamming distance. However, these
binary descriptors share the same predicament as the
aforementioned algorithms, as they similarly require rich
local information for their intensity tests.

Therefore, in pursuit of a texture-less detector that
caters to the needs of modern technologies, we propose
BIND (Binary Integrated Net Descriptor), a detector
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that describes in homogeneous conditions over large
object-sized regions using uniquely designed multi-layered
binary nets. BIND adopts a keypoint-descriptor structure
by first forming interest points with Linelets [3], a
recently introduced highly occlusion-resistant line-segment
detector, followed by overlaying of our proprietary binary
net-layers, oriented according to each linelet midpoint for
encoding various regional characteristics of the object.
Nets are essentially large object-encompassing square
patches that are divided equally into high-resolution
bit-representing blocks. Upon keypoint alignment, they
transform into n net-layers to represent n-bit data
with each internal block embedding information such
as rotation-invariant angle primitives, along with the
structural positioning of the object’s edges and internal
homogeneous space. BIND also addresses the problem
of background contrast, whereby line-gradient directions
vary in polarity due to diverse backdrops in the scene,
which affects line/orientation edge-based descriptors such
as [3, 4, 8]. Finally, matching is conducted through a
series of binary arithmetic instructions, while incorporating
various techniques to include enhancement properties such
as scale invariance and occlusion resistance. In all, BIND’s
lightweight description technique not only yields efficient
computational performance, but also delivers exceptional
recognition competence in clutter and occlusion through its
ability to isolate and sample regional object information at
high spatial resolutions. Fig. 1 exhibits BIND’s texture-less
object recognition capability in a challenging scene.

The rest of the paper is presented as follows. Section 2
reviews related texture-less based works. Sections 3 and 4
describe the elements of BIND and its encoding schemes
respectively. Section 5 summarizes the overall object
recognition pipeline. Section 6 exhibits the comparative
experimental results. Finally, section 7 concludes the paper.

2. Related Work

Although countless object detectors have been proposed,
very few can claim to robustly detect texture-less objects.
Thus, this section reviews various techniques that had
significant contributions to the texture-less genre.

Template-Based Detectors One pioneering approach
that has the capacity to detect texture-less objects is
Chamfer Matching [9, 10]. It is essentially an edge-based
template matcher where detected contours between the
model and scene are compared through a distance transform
based dissimilarity measure. However, it is plagued with
issues such as noise sensitivity and other occlusion factors.
This raised several chamfer related enhancements such
as shape-based [11], gradient-directional based [12, 13],
and the Hausdorff distance based [14, 15] approaches with
varying results. More recently, a gradient-based template
approach by Hinterstoisser et al. [16] was introduced
with reasonable success. Their technique coined LINE-2D,
generates templates by quantizing gradient orientations
into fixed directions, while adopting several optimization
schemes for quick windowing similarity measures between
input images. This approach gained modest popularity

giving rise to various supplementary works such as
[5, 17, 18] where features such as surface normals
(LINE-MOD), color information, and occlusion reasoning
were respectively added to aid in its development. Besides
the aforementioned techniques, notable works such as a
color/shape model [19] and a 3D-CAD based [20] template
approaches also reported decent detection results. In spite
of this, one major flaw that persists in template-based
algorithms is scalability, where massive amounts of training
data are often needed to compensate for the lack of visual
properties such as rotation, viewpoint and scale changes.

Shape-Based Detectors Another technique proposed by
Ferrari et al. [21, 22], groups local associated edge-chains
called k-Adjacent Segments (kAS) to learn the object’s
shape model by consolidating its distances, orientations
and lengths. This learned model then detects the scene
object through an initial Hough voting localization followed
by a shape matching algorithm within the voted area.
This approach, or shape detectors in general, tends to
be very sensitive to occlusion and minor distortions from
interrupted or missing edges. Other related shape-based
works include [23–26], where objects are trained into
shape-based descriptors to enhance computational speeds
and include properties such as scale-invariance.

Keypoint-Descriptor Detectors Among all of the
approaches, keypoint-based techniques seemed to
outperform the others due to its capacity to incorporate
multiple invariant properties. In terms of recognition
performance, BORDER (Bounding Oriented-Rectangle
Descriptor for Enclosed Regions) [3] is the latest
algorithm to achieve state-of-the-art stature. It garnered
impressive detection results in heavily cluttered-occluded
scenes through highly repeatable occlusion-resistant
line-segments termed Linelets, which couples with a
region encompassing oriented-rectangle revolution scheme
for description. However, rectangle rotations can be
relatively computationally expensive especially in cluttered
scenes where large number of keypoints needs to be
processed. Furthermore, its fairly-low block resolution
[4×4] could affect descriptor precision in high-detailed
object instances. Preceding BORDER is a line descriptor
coined BOLD (Bunch of Line Descriptor) [4] where each
line-segment [27] midpoint amasses neighboring segments
for regional description. The gathered lines form angle
primitive pairs to populate a two-dimensional descriptor.
Although producing decent results, one caveat admittedly
reported in its literature is the susceptibility to nearby
clutter during line aggregations. Moreover, as reported
in [3], line-segments in its original form, performs poorly
due to midpoint deviations in occluding circumstances.
Another significant work in this category includes an
edgelet constellation technique by [8] whereby short
segmented edges is accumulated using an angle-tracing
path reflection method. However, this method is very
sensitive to minor occlusion/illumination/noise as these
cause alterations to the angle traces. Other algorithm of
relevance to keypoint-based detectors include line-based
works such as [28–30] where lines are associated and
processed in various indifferent approaches.
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(a) (b) (c) 

Fig. 2: Maximal fragmented linelet detection for a texture-less
object in an occluded setting. (a) Original model (top) and
scene (Bottom) images. (b) Linelet detection with maximal
fragmentation. (c) The highly repeatable, precise and occlusion
resistant maximal linelet midpoint correspondences matched by
manually placing the model image onto the scene image.

3. The BIND Elements

BIND commences its recognition scheme by adopting an
occlusion resistant line-segment detector termed Linelets.
These segments then materialize into keypoints and
coalesce with our proprietary layered binary nets for
description of a large object-sized region. Therefore, this
section begins the BIND’s methodology by detailing a
couple of its basis elements, which lay the foundation for
binary encoding and net-matching techniques.

3.1. Maximal Linelet Fragmentation

Line-based representations have shown to be an effective
approach for interest-point registration in the texture-less
genre [3, 4, 8, 28–30] as it provides a stable, repeatable and
rotation-invariant platform for further descriptive purposes.
Amongst these line-based techniques, Linelets [3], an
extension of the Line-Segments [27, 31], has shown to
be the most stable especially in occluding circumstances.
It fragments overly elongated line-segments using a
model-scene proportion concept by modulating their width
according to the extent of clutter in the scene by,

ωℓ = min[max(ω,Rmin),Lmax], (1)

where ωℓ is the fragmentation width of line-segments that
have grown beyond 2ωℓ, while ω represents the width
threshold derived from the detected line-segment ratios
between the model-scene images [3]. Rmin is a readily
obtainable parameter that was hypothesized in LSD [31,
32] to automatically determine the minimum region size
required to materialize any given cluster of closely oriented
pixels as a line-segment. Lastly, Lmax denotes the model
object’s longest line-segment, which reverts linelets back
to line-segments when the model-scene proportion is low,
i.e. ω > Rmin and ω ≥ Lmax. In all, linelets immunizes
against segment midpoint shifts due to occlusion, whilst
provisioning a highly repeatable basis for description.

Maximal Fragmentation As BIND emphasizes on a
high-precision regional description concept, we propose
to fragment linelets at its maximum frequency to
accommodate the resolution of our descriptors. This
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Fig. 3: (a) Examples of (16 × 16) binary nets and their linelet
alignments. (b) BIND’s layering concept for each aligned net.

can be simply accomplished by applying ωℓ = Rmin

whenever a detected line-segment is≥ 2ωℓ. Although this
adds computational load due to redundant fragmentations,
our experiments (Fig. 8e) showed that even with the
increased number of keypoints, BIND was still able
to achieve competitive recognition speeds against other
keypoint-based descriptors. Fig. 2 demonstrates the
maximal-fragmented linelets’ repeatability and precision
for a texture-less object in an occluded and cluttered scene.

3.2. The Binary Net

To maximize distinctiveness, it has become customary
for modern texture-less detectors to regionalize its
descriptor scheme into the object-sized space [3, 4, 8,
16]. BIND however, goes a step further by not only
encapsulating regions with large object-sized squared
boxes, but also encouraging precise object description by
heavily segmenting the box’s internals to form its binary
blocks. For each linelet keypoint, we “cast” this net by
aligning its center onto the linelet midpoint and rotating
it to the linelet’s pointed direction. Regional information
“captured” by the net is subsequently described by each
internal block. Additionally, as binary representations
only allow two possible states, we stack n additional
net-layers to form up to 2n states for encoding diversity.
Fig. 3 demonstrates the binary net alignment for region
encapsulation and BIND’s net-layering concept, while the
rest of this sub-section elaborates on its physical properties.

Block Size The squared divisions within the net are
individual bit spaces that combine sequentially into a long
binary string. It encodes the encapsulated homogeneous
space, edge information, along with their chronological
positions. To obtain the ideal balance between the net’s
encoding precision and overall capacity, we have designed
the blocks to encapsulate all of the net-contained linelets at
least once. This is achieved by assigning the block’s width
as wblock = RSmin, where RSmin is the minimum linelet
length across all input models and their scales.

Net Size Rather than a standard-sized net, BIND
designates its net dimensions to automatically conform to
the input model object for optimal regional descriptiveness.
This is achieved by first applying the minimum enclosing
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box algorithm [33] to the dataset-provided object mask, or
the automatic-threshold salient mask [34] (Figs. 4a - 4c),
and subsequently defining the initial net’s width as w′

net =
2lobj , where lobj is the longer side of the current object
enclosing box. In all, this design ensures ample coverage
even when the net is situated at a far corner of the object.

Next, as the binary nets will be represented as bit
strings, it is vital that the total blocks satisfy byte-formatting
(multiples of 8) to accommodate computer storage and
arithmetic techniques. Therefore, the total blocks per
row/column and the finalized net width is established as,

nblocks = 8 · ceil

(

w′
net

8 · wblock

)

, (2)

wnet = nblocks · wblock, (3)

where the division between w′
net and wblock is rounded-up

to the nearest multiple of 8 to find the total blocks per
row/column nblocks, and wnet is the final net width derived
from nblocks and wblock. In short, each binary net-layer’s
dimensions and total bit-count can be defined as [nblocks ×
nblocks]. Note that although block width is fixed, net sizes
and dimensions varies for each input model and scale.

4. Net Descriptor Encoding and Matching

This section first introduces the two main features
that BIND describes within its nets, the object’s internal
homogeneous space, and its edges. Following that, binary
net-layers are encoded into bit sequences through a
carefully designed truth table, and finally matched using our
unique logical operated techniques to incorporate resistive
attributes such as scale, edge-polarity and occlusion.

4.1. The Internal Model Object Homogeneous Mask

One obvious feature that texture-less objects have in
abundance is its internal homogeneous region. However,
these blank spaces are often neglected by modern
texture-less detectors [3, 4, 8, 16]. This lack of spatial
differentiation between background and the internal object
homogeneity could lead to many false positives due to
distractors interacting with blank spaces in the scene. Thus,
in BIND, we advocate the use of internal homogeneity
as a key feature in our net description. This is done
by generating a homogeneous mask MH for accurate
indication of the space within the model object. As
demonstrated in Fig. 4, MH is created by first applying a
simple segmentation procedure (Fig. 4d) such as k-means
color clustering [35], followed by iterating along the outer
lines of the enclosing box [33] to gather background
color labels (Fig. 4e), and finally assigning a ‘1’ for any
uncollected labels within the box to signify the object’s
internal anatomy (Fig. 4f). Note that this procedure was
largely effective in our experiments due to good contrast
between the model object and background for training,
which is already a prerequisite for robust model description.

4.2. The Angle Primitive

Arguably, the most consistent information that
texture-less objects resonate is its noise and illumination

(a) (b) (c)

(d) (e) (f)

Fig. 4: The minimum enclosing box and homogeneous mask
creation process. (a) The model image. (b) The model’s saliency
map. (c) Automatic thresholding of the salient map, and the
minimum enclosing box (cyan) encapsulating detected contours
(pink). (d) The k-means color cluster map. (e) The minimum
enclosing box outer lines iterated to obtain the background
clustered colors. (f) The final internal homogeneous mask derived
by non-background colors within the enclosed box.

impervious edge orientations. Similar to state-of-the-art
works such as [3,4,8], BIND employs a pairwise line-based
geometric technique in its descriptor-core to encrypt
edge orientations into robust rotation invariant geometric
primitives. This is realized by first detecting blocks that
contain oriented pixels from the linelet creation clusters in
section 3.1, followed by transforming these occupied block
centers into unit vectors that point to the direction of its
internally most influential linelet orientation, and finally
pairing them with the origin linelet vector. This aggregation
results in a vector-junction at the block center with various
angles to choose from. State-of-the-art primitives used
in both BOLD [4] and BORDER [3] computes an angle
based on the unit vector’s gradient-direction for added
directional distinctiveness. However, one major pitfall of
embedding the vector orientation directions into primitives
is the susceptibility to polarity shifts, whereby contrasting
backgrounds at different regions of the object causes
gradients to point in the opposite direction. As this actuates
corruption and degrades descriptiveness, BIND has opted
for a line-direction invariant primitive to always take the
smaller (acute) angle of the conjoint line pairs using,

α = arccos

(

|m̂i · tij |
‖tij‖

)

, (4)

where · represents the dot product, m̂i indicates the unit
vector of the block’s midpoint that is direction-influenced
by its most infiltrated linelet, tij refers to the conjoining
line between the origin net-linelet’s midpoint ℓj , and 0◦ ≤
α≤90◦ refers to the smaller angle between m̂i and tij that
represents the final line-direction invariant angle primitive,
which will eventually be binary encoded to create BIND.
Fig. 5 illustrates the transformations of the midpoint blocks
into the line-directional invariant angle primitives.

4.3. Encoding the Binary Nets

As mentioned in section 3.2, binary nets are stacked
into n net-layers to form 2n binary states upon association
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Fig. 5: (a) Example of an 8 × 8 binary net encapsulating an
object region. Each occupied block’s midpoint vector points to
the most influential linelet direction within it. (b) 4 randomly
chosen polarity-invariant angle primitive examples between the
origin linelet midpoint to the blocks 9, 16, 24 and 33 respectively.

with a linelet. Therefore, it is paramount to determine the
total states needed for optimal descriptor distinctiveness
and memory management. In BIND, we have designed
and experimentally verified1 that using 3 net-layers
(N2, N1, N0) to encode 8 states of information is the most
efficient, as more layers not only adds memory load, but
also increases the effects of quantization. The following
paragraphs summarize the bit-combination for each state,
and Table 1 details the BIND’s 3-layer net design.

The Homogeneous State (Model Only) Whenever a
block encapsulates an empty object space as labeled by the
model’s internal homogeneous mask MH from section 4.1,
all 3 net-layers at the particular block location are assigned
as ‘1’s (‘111’). This is only encoded in model net-layers to
indicate the object’s internal homogeneous space, which is
used for empty space comparisons with the scene net-layers
for occlusion hypothesis during matching.

The Blank State For non-object areas, any external
empty block location as indicated by the model’s internal
homogeneous mask is assigned as all ‘0’s (‘000’). This also
applies to all scene’s empty blocks as any empty space will
simply be treated as a blank state.

The Angle Primitive States For a block that is occupied
by oriented pixels, a unit vector would eventually culminate
at its center to form the angle primitive α as described
in section 4.2. To transform α into a binary state, it is
quantized into 6 evenly distributed π

12
angle ranges within

its angle limit of [0,π
2

], with each angle range assigned to
one of the 6 binary states (‘001’ to ‘110’) accordingly.

Descriptor Storage Structure Due to BIND’s large net
design, blank states would always overwhelm the other
states, about 70-80% more on average. Therefore, to reduce
the redundant space used for encoding blank states, BIND
adopts a byte-indexing storage structure for each net-layer
whereby only informative bytes (8 consecutive blocks that

1Figure available in BIND’s database. See page 8’s footnote

Table 1: BIND’s 3-layer binary net bit-combinations. The
net-layers’ block-index locations N2(i), N1(i), N0(i) are
assigned binary sequences based on its blocks’ occupancy
condition(s). An empty block renders a null α = ∅, while an
angle-occupied block is quantized to an angle range. The labels
T and Q indicates whether a bit sequence is assignable to a Train
or Query block respectively. Note that the final state ‘111’, only
applies to train blocks that has α = ∅ and its center Cb(i)
indicating a MH(Cb(i)) = 1 in the model’s homogeneous mask.

Image Condition(s) N2(i) N1(i) N0(i)

T
[

α(i) = ∅
]

∧
[

MH(Cb(i)) = 0
]

0 0 0
Q α(i) = ∅

T, Q 0◦≤α(i)<15◦ 0 0 1

T, Q 15◦≤α(i)<30◦ 0 1 0

T, Q 30◦≤α(i)<45◦ 0 1 1

T, Q 45◦≤α(i)<60◦ 1 0 0

T, Q 60◦≤α(i)<75◦ 1 0 1

T, Q 75◦≤α(i)≤90◦ 1 1 0

T
[

α(i) = ∅
]

∧
[

MH(Cb(i)) = 1
]

1 1 1

contain at least one non ‘000’ state) is stored along side
its byte index in a pairwise structure. Overall, this structure
provides significant reduction in descriptor storage (about
50%) and match speeds due to lesser blank state iterations
with no impact on BIND’s recognition performance.

4.4. BIND Matching

To compare bit-sequences between the model and scene
net-layers, we apply various bit-wise logical operations
to identically numbered layers and byte indexes before
culminating into a single bit-string for total bit-count
scoring. However, to alleviate occlusion resistance, a prior
occlusion evaluation using the model’s homogeneous state
(‘111’) and the scene’s angle primitive states is incorporated
to prevent false positives from heavily textured scenes. This
occlusion assessment score is determined by,

OH = (T2 ∧ T1 ∧ T0) ∧ (Q2 ∨Q1 ∨Q0), (5)

SOH
=

k−1
∑

i=0

OH(i), (6)

where ∧ and ∨ represent the array-wide bitwise AND and
OR respectively, T2, T1, T0 and Q2, Q1, Q0 refer to
the layers of a particular train and query net scheduled
for comparison, the single layer output OH with the total
block index size k indicating a ‘1’ for each train internal
homogeneous location that contains a query angle primitive
block instead, and the total occlusion score SOH

revealing
the total occluded blocks in this particular net comparison.
A sufficiently low occlusion score then activates the angle
primitive scoring process by,

OP = (T2 ⊙Q2) ∧ (T1 ⊙Q1) ∧ (T0 ⊙Q0), (7)

MP = (T2 ∨ T1 ∨ T0) ∧ (Q2 ∨Q1 ∨Q0), (8)
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(c) Polarity invariance matching

Fig. 6: Example BIND’s matching procedure for (a) scaling, where a fixed-sized scene 16× 16 3-layer net is matched with a scaled-down
8× 8 net to produce a single binary string, (b) occlusion resistant procedure, where the model net reduces its section subset to match with
the similar-sized midsection of the large scene net, and (c) polarity inversion, where all net comparisons are matched in 2 directions.

SP =



















k−1
∑

i=0

[

OP(i) ∧MP(i)
]

Pmodel

, SOH
≤ λhmodel

0, otherwise

, (9)

where ⊙ represents the XNOR or the “equivalence”
bitwise operator, OP refers to the 2D single layer angle
primitive matched output, MP is a mask to ensure that the
output score only includes angle primitive blocks, Pmodel

indicating the current input model net’s oriented-blocks
(α(i) 6= ∅), used to normalized total primitive score
to obtain SP . The manual-adjusted parameter termed the
occlusion factor 0 < λ ≤ 1, and the total homogeneous
model net blocks hmodel, essentially regulate matches to
heavily textured areas, while allowing some margin for
minor occlusion in homogeneity. Although BIND enables
λ for flexible adjustments, it is best specified according to
the expected occlusion of the object in scene. However, as
a reference, we have found that λ = 0.5 maintains a good
balance in all of our experimental databases.

Unlike conventional descriptors, BIND varies its
descriptor dimensions for each input model-scene pair. This
was defined in section 3.2, where block widths wblock

stay constant, whereas net widths wnet conform to twice
the model’s longer side. This unique framework enables
BIND to incorporate various invariant properties through
a technique we call, sectional-extraction matching, where
the scene keypoints are described using the largest-scaled
model net, and models are trained and matched with
smaller/equal net subsets of the large scene net.

Scale Invariance To handle scaling, the model is
downsized from its largest to form a pyramid, with linelet
detection repeated at each level to re-align keypoints
due to line disappearances/shifts at varying scales. This
downsizing trend also creates several smaller subsets
of the largest net, which is matched through the
sectional-extraction technique. Fig. 6a shows a downsized
model net matched to a subset of the large scene net.

Occlusion Handling For matching instances with high
occlusion such that the homogeneity or angle primitive
scores are undesirable, i.e. SOH

> λhmodel or SP < λ,
BIND proceeds to re-iterate the comparisons from Eqs. 5-9
with reduced sectional subsets to obtain better scores. We

Fig. 7: An example of a net match with sectional-extraction where
the occlusion is found to be too high. The pink box represents
the (0.25) sectional extraction subset, and the green, yellow and
gray boxes signifies the oriented, internal homogeneous, and
background/no-match blocks respectively.

have designed net iterations with Ω = {0.75, 0.5, 0.25} of
their current model net scale, but only with the condition
that these smaller subsets contain sufficient oriented-blocks,
i.e. P ′

Ωmodel > ΩPmodel, where P ′
Ωmodel is the reduced

model net block’s current total oriented-blocks that replaces
Pmodel in Eq. 9 for each Ω iteration. Overall, this enables
information rich object regions to be matched even in high
occlusion. Examples of the reduced sectional matching for
occlusion handling can be seen in Figs. 6b and 7.

Polarity Invariance Mentioned in section 4.2, linelet
directions are highly susceptible to polarity shifts due
to background contrast especially in complicated scenes.
Therefore, as the linelet-net alignment in section 3.2 was
in a single direction, we counteract this by reversing
the model’s block sequence and re-applying Eqs. 5-9 for
each net comparison to take the better score of the two
directions. This 2-way matching procedure is practiced in
all net comparisons, and likewise applies to all sectional
reduced-net matchings. Fig. 6c shows the 2-way matching
procedure for polarity invariance.

5. The BIND Object Recognition Pipeline

This section outlines the pipeline of BIND for the
recognition of texture-less objects. The algorithm begins
by detecting linelet midpoints (section 3.1), which are used
as keypoints for its high precision and occlusion-resistant
properties. This is applied onto a multi-scaled pyramid
of model images, but only once for the original scene
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(c) CMU-KO8 Single
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(d) CMU-KO8 Multi
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Fig. 8: Results of all experimental databases including the average time per image for the detectors.

(a) (b)

Fig. 9: MOD’s sample model images (a) and a scene image (b).

image. Following that, the enclosing boxes from each
pyramid level form the model binary nets (section 3.2),
while assigning the largest net size for scene description.
Next, each level of the model pyramid generates its own
individual internal homogeneous mask (section 4.1) for
texture-less space encoding. Subsequently, nets are then
triple-layered, direction-aligned to each keypoint, and have
their blocks identified for internal homogeneity and angle
primitives (section 4.2) before binary encoding using Table.
1 (section 4.3). Finally, everything comes together in the
matching phase (section 4.4) where the model nets at each
scale are compared with the large scene nets, and validated
using geometric verification techniques [36, 37].

6. Experiments and Evaluation

To assess BIND’s overall competence in texture-less
object recognition, we have employed several algorithms
with close relation to its qualities. For techniques that
specialize in texture-less object detection, we engage
state-of-the-art works such as the line-based approach of
BORDER [3] and BOLD [4], together with the template
matching-based scheme of LINE-2D [16]. Moreover, as
BIND can also be categorized as a binary keypoint-based
detector, we have included standard detectors such as
SIFT [1], and its binary-based alternative ORB [7]. All
mentioned algorithms including BIND, were implemented
using an Intel dual-core i7 Haswell processor with 8GB
of memory, and coded in C++ with their default libraries
and recommended settings as provided in their respective
works. A total of 3 texture-less object databases were
evaluated, with two taken publicly and one self-contributed
due to limited options in the texture-less object category.

The Messy Office Desk Dataset Coined MOD for
short, this database assembled by our team simulates
scenes of objects with high homogeneity placed around
common workstations. It contains 9 models that randomly
feature simultaneously within 100 scenes. Its aim is to
appraise algorithms in a real environment on attributes like
rotation, scale, translation, and distinctive properties such
as clutter and occlusion. In addition, objects in various
scenes of MOD are placed in random tonal backgrounds
to challenge algorithms in complicated surroundings. For
this experiment, we consolidate all the mentioned detectors’
outcomes in an ROC plot as presented in Fig. 8a. Upon
analysis, local descriptors like SIFT and ORB, produced
below par performance, whereas the texture-less based
solutions excelled with BIND championing the overall
experiment. Although BORDER, BOLD and LINE-2D
also had decent performances, a clear distinction between
BIND can be observed especially in scenes where
object edge-gradients are disordered by different regional
backgrounds. This is mainly due to their high dependence
on gradient-direction for edge description, while BIND’s
polarity invariant properties immunized itself to such
conditions. Fig. 9 exhibits some of the MOD database
models and a sample scene, while Fig. 10a presents some
of BIND’s recognition results in the MOD dataset.

The D-Textureless Dataset This database by the
creators of BOLD [4], consists of 9 model and 55
scene tool-based images. Each scene image contains
multiple models that examines algorithms on properties
such as rotation, scale, translation, occlusion and clutter.
We evaluated all the above mentioned algorithms and
consolidated their ROC curves to yield the graph shown
in Fig. 8b. As anticipated, texture-less detectors clearly
outperforms the others, while BIND achieved the finest
results, outperforming both BORDER and BOLD by a fair
margin. Head-to-head analysis revealed that BIND tends to
perform better than BORDER in circumstances that require
high precision, and BOLD in situations with nearby clutter.
This can be mainly attributed to BIND’s highly-descriptive
net design, enabling encoding precision to both the object’s
homogeneous space and its edges. Fig. 10b demonstrates
the precision and occlusion/clutter resistance of BIND in
this dataset with net-matching included.

The CMU-KO8 Dataset Also known as the
CMU Kitchen Occlusion Dataset by Hsiao and
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(a) BIND’s MOD sample results.

(b) BIND’s D-Textureless sample results.

(c) BIND’s CMU-KO8 sample results.

Fig. 10: Example recognition results of BIND in all three experimental datasets. For each case, keypoint matches along with the object
detection bounding box results are presented on the left, and the net matches with green blocks indicating oriented blocks, yellow signifying
internal homogeneous blocks, and gray implying background/no-match blocks are displayed on the right.

Hebert [18], this database was assembled to evaluate their
occlusion-reasoning add-ons for LINE-2D to improve its
performance in heavy clutter and occlusion. For that reason,
this dataset mainly focused on placing texture-less objects
in highly distracted scenes, with virtually no attention was
placed on variances such as rotation and scale. In all, this
database contains 8 kitchenware models alongside 2 scene
branches of 800 single point-of-view images, and 800
multi-view images where each scene image contains only
one instance of a model object. All mentioned algorithms
including the best resulting occlusion model in [18] coined
rLINE2D+OCLP (Occlusion Conditional Likelihood
Penalty) were assessed up to the detection rate of 1.0 FPPI
in the plots shown in Figs. 8c and 8d. Note that due to poor
registration rates of SIFT, SURF and ORB, their results
were not included in the plots. Overall, BIND attained
the finest detection rates outperforming the state-of-the-art
BORDER and even rLINE2D+OCLP in its own dataset.
Closer inspection revealed that BIND’s high net precision
and occlusion descriptive measures were the definitive
factors that facilitate its superior true positive rates in such
challenging scenes. Fig. 10c exhibits some of BIND’s
keypoint and net recognition results from this database.

Timing Comparison As BIND is predominantly a
binary-based detector, it has naturally fast matching speeds.
However, it is somewhat hindered by its highly precise
linelet/description process in the experiments, attaining
similar recognition speeds as BOLD, and about 2.2 times
faster than the state-of-the-art BORDER as presented in Fig.
8e. Even so, BIND can be easily customizable for speed-ups
at the expense of precision to attain real-time detection.

Memory Comparison In our experiments, full-scale
objects typically converge to a [48 × 48] dimensional net,

granting a 30 times precision increase in informative block
counts, and about 50-100 bytes (more at smaller pyramid
levels) savings in terms of descriptor size (with BIND’s
storage structure), when compared to BORDER’s [4 × 4]
128-dimension [3], and BOLD’s 2D 12-bin histogram [4]
floating vector descriptors respectively.

7. Conclusion

BIND, a multi-layered net-based binary descriptor for
texture-less object recognition is proposed in this paper.
It provides precise regional object description through
a triple-layered net design to encode edges and internal
homogeneous spaces into compact rotation-invariant binary
strings, while inspiring attributes such as polarity, scale
and occlusion resistances in its matching phase. In all,
experiments from three databases2 showcased BIND’s
overwhelming robustness in recognizing texture-less
objects in a wide variety of situations. However, as BIND
was strictly designed for texture-less objects through its
3-layer bit combination table, it is not as effective in
low-homogeneity unlike its counterparts (e.g. BORDER,
BOLD, etc.). Nevertheless, we see BIND’s underlying
binary net-layering concept as a strong basis for many other
recognition tasks through the redesigning potential of its
layers/tables to incorporate various indifferent attributes.

This research was partially supported by National
Research Foundation, Prime Ministers Office, Singapore
under its IDM Futures Funding Initiative and AcRF Tier 1
(RG28/15).

2Full experimental results and video demo available at: https://drive.
google.com/open?id=0B-vEAVo5DHXFS0FqTlNkcGJvcEk
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