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Abstract

This paper proposes a data-driven approach for image

alignment. Our main contribution is a novel network archi-

tecture that combines the strengths of convolutional neural

networks (CNNs) and the Lucas-Kanade algorithm. The

main component of this architecture is a Lucas-Kanade

layer that performs the inverse compositional algorithm on

convolutional feature maps. To train our network, we de-

velop a cascaded feature learning method that incorporates

the coarse-to-fine strategy into the training process. This

method learns a pyramid representation of convolutional

features in a cascaded manner and yields a cascaded net-

work that performs coarse-to-fine alignment on the feature

pyramids. We apply our model to the task of homography

estimation, and perform training and evaluation on a large

labeled dataset generated from the MS-COCO dataset. Ex-

perimental results show that the proposed approach signifi-

cantly outperforms the other methods.

1. Introduction

Image alignment, or estimating a parametric motion

model between two images, is essential for tasks like

panoramic image stitching [5], optical flow [6], simultane-

ous localization and mapping (SLAM) [11], visual odom-

etry (VO) [12], and many others. A robust image align-

ment algorithm should cope with photometric variations

and large motion variations while giving a sub-pixel accu-

rate alignment. Most image alignment approaches can be

classified into two categories [26]: feature-based methods

and pixel-based methods.

Feature-based methods extract distinct features, match

them, and then estimate the motion model from point corre-

spondences. These methods are robust to large differences

in scales, orientations, and lighting because feature descrip-

tors such as SIFT [21] and HOG [9] are invariant to these

variations. However, achieving a sub-pixel accurate align-

ment heavily relies on accurate localization and an even dis-

tribution of features, which is challenging in low-textured

scenes. In contrast, pixel-based (or direct) methods, mostly
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Figure 1. Our network takes a template image, an input image and

an initial motion as inputs. The two CNNs with shared weights

transform the two images into two multi-channel feature maps.

Then, the Lucas-Kanade layer takes these two feature maps and an

initial motion as inputs, performs the inverse compositional Lucas-

Kanade algorithm [3] to obtain the estimated motion.

based on the Lucas-Kanade algorithm [22], estimate the

motion model directly from raw pixel intensities. These

methods often perform better on low-textured images since

all the pixels are used to estimate a small number of param-

eters. Pixel-based methods have received great attention in

SLAM [11] and VO [12] lately due to their effectiveness.

Nonetheless, pixel-based methods are not robust to lighting

changes and large motions.

Recently, several methods [1][2][8] were proposed to

combine the Lucas-Kanade algorithm with feature descrip-

tors. We refer to these methods as FBLK standing for the

feature-based Lucas-Kanade methods. The central idea of

FBLK is to perform image alignment on densely-sampled

feature descriptors. FBLK combine the strengths of both

feature-based and pixel-based methods, and are robust to

both lighting variations and low-textured scenes. How-

ever, FBLK still suffer from two shortcomings. First, com-

monly used feature descriptors are hand-designed for find-

ing sparse correspondences, which may be suboptimal on

some scenes. Second, FBLK are prone to fail in the pres-

ence of large motions.
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In this paper, we propose combining deep learning with

the Lucas-Kanade algorithm to address the shortcomings

of FBLK. The key idea is to acquire big data to train a

convolutional neural network (CNN) that adds a Lucas-

Kanade layer. The CNN learns data-driven features and

the Lucas-Kanade layer performs the inverse compositional

Lucas-Kanade algorithm [3]. Figure 1 depicts our net-

work architecture. Our Lucas-Kanade layer is differen-

tiable, which enables us to train our network by standard

back-propagation algorithm. Our network combines the

strengths of both the CNN and the Lucas-Kanade algorithm.

The CNN provides the ability to learn features that are both

useful for alignment and robust to photometric variations.

The Lucas-Kanade layer offers the ability to achieve sub-

pixel accuracy.

In training, we employ a hinge loss to effectively train

our network. Furthermore, to address the issue of large

motions, we propose a cascaded feature learning method,

which learns a pyramid representation of convolutional

features in a cascaded manner. The yielded model is a

cascaded Lucas-Kanade network (CLKN) that performs

coarse-to-fine alignment on the feature pyramids.

Our approach works for any parametric motions that the

Lucas-Kanade algorithm supports. In this paper, we apply

our model to the task of homography estimation, which en-

joys important applications in both image processing and

augmented reality [23], such as image stitching [27], video

stabilization [19], and planar object tracking [4]. By gen-

erating random homography warps on the MS-COCO im-

ages [18], we constructed a large labeled dataset for ho-

mography estimation. We trained and evaluated our models

on this dataset. Experimental results show that our method

achieves sub-pixel accuracy and is robust to color variations

and large motions.

Related Work

We review previous work relevant to the development

of our approach. Szeliski [26] provided a comprehensive

overview of feature-based methods and pixel-based meth-

ods. Baker et al. [3] proposed a unified framework for the

Lucas-Kanade algorithm and its variants. The idea of adopt-

ing hand-crafted feature descriptors in direct image align-

ment are recently explored in 3D model tracking [8], fa-

cial image alignment [2], and template tracking [1]. Crivel-

laro and Lepetit [8] developed a derivative-based feature de-

scriptor for direct alignment to address the issue of specular-

ities and low textures. Antonakos et al. [2] proposed the em-

ployment of hand-crafted feature descriptors for the Lucas-

Kanade algorithm and active appearance models (AAMs).

They experimented with various feature descriptors and

demonstrated that SIFT and HOG are the most effective.

Alismail et al. [1] presented bit-planes, a binary descriptor

for real-time tracking under drastic illumination changes.

Recently, there has been an increasing interest in leverag-

ing the power of CNNs to solve geometric computer vision

problems. DeTone et al. [10] presented deep homography

net for homography estimation, which is the most relevant

to our work. They trained a VGG-style CNN to directly

regress the homography between two images. However,

their CNN model cannot achieve sub-pixel accuracy.

Contribution Summary

In summary, our work makes the following three contri-

butions:

1. We propose a novel network architecture that performs

the Lucas-Kanade algorithm on convolutional features.

2. Our cascaded feature learning method enables our net-

work to perform coarse-to-fine alignment.

3. Experiments show that our approach outperforms the

other methods significantly. Our method enjoys a

wider range of convergence and achieves higher sub-

pixel accuracy.

2. Model Architecture

Given an input image I and a template image T , our goal

is to bring these two images into alignment by estimating

the underlying parametric motion between I and T . The

motion model between I and T is represented by a warping

function W (x;p) parameterized by a vector p. W takes a

pixel x = [x, y]T in the coordinate of template image and

maps it to a sub-pixel location x′ = [x′, y′]T = W (x;p) in

the coordinate of input image. A homography has eight pa-

rameters p = [p1, ..., p8]
T and can be parameterized as [3]

W (x;p) =
1

1 + p7x+ p8y

[

(1 + p1)x+ p2y + p3
p4x+ (1 + p5)y + p6

]

. (1)

Our model consists of two stages: The first stage con-

tains two CNNs that extract multi-channel feature maps for

both I and T . The second stage is a Lucas-Kanade layer,

which performs the inverse compositional Lucas-Kanade

algorithm on these two feature maps to estimate the motion

parameters p.

2.1. Convolutional Neural Networks

We extract multi-channel feature maps for both I and T

by using two CNNs with shared weights. The CNN we em-

ploy here is fully convolutional [20] and hence can take in-

put of arbitrary sizes. Each convolutional layer is followed

by a Rectified Linear Units (ReLU) [24] and then a batch

normalization [16]. In the convolutional layer, we use a set

of 3×3 learnable filters. If all filters have a stride 1, then the

output feature map is a full-resolution one. If a downsam-

pled feature map with a factor of 2k is required, we achieve

this by setting the first k convolutional layers to have a stride

2. We denote the output feature maps of I and T as FI and

FT , respectively.
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Figure 2. Full schematic diagram of our Lucas-Kanade layer which performs the inverse compositional Lucas-Kanade algorithm. (a) The

Jacobian matrix J is constructed from the warp Jacobian and the spatial gradient of the template feature map. (b) The residual vector r is

a vector reshaped from the difference between the template feature map and the warped input feature map.

2.2. Lucas­Kanade Layer

By taking the input feature map FI , the template fea-

ture map FT , and an initial motion as inputs, the Lucas-

Kanade layer performs the Lucas-Kanade algorithm and

outputs the estimated motion parameters p. Figure 2 de-

picts our Lucas-Kanade layer. In the following, we briefly

review the feature-based Lucas-Kanade algorithm and then

describe the details of the Lucas-Kanade layer.

The feature-based Lucas-Kanade algorithm aims at find-

ing the motion parameters p that minimizes the following

error function:

E(p) =
1

2

∑

x∈Ω

‖FT (x)− FI(W (x;p))‖
2
. (2)

Here, the regular grid Ω = {xi}
N
i=1 = {(xi, yi)}

N
i=1 is the

set of pixel locations in the template image, and N is the

number of template image pixels. E(p) measures the sum

of squared error between the template feature map FT (x)
and the warped input feature map FI(W (x;p)).

Minimizing E(p) is a nonlinear optimization problem
because the feature map FI(x) is highly non-linear in the
pixel coordinates x. To optimize E(p), the Lucas-Kanade
algorithm assumes that an initial motion is known and then
iteratively solves for an incremental update ∆p. In partic-
ular, we optimize E(p) by using the inverse compositional
algorithm [3], which minimizes the following error func-
tion:

E(∆p) =
1

2

∑

x∈Ω

‖FT (W (x; ∆p))− FI(W (x;p))‖2 (3)

and then updates the motion parameters by inverse compo-

sition as

W (x;p)←W (x;p) ◦W (x; ∆p)−1. (4)

The inverse compositional Lucas-Kanade algorithm op-

timizes E(∆p) by using the Gauss-Newton method.

E(∆p) is first approximated by performing a first order

Taylor expansion on FT (W (x; ∆p)) at ∆p = 0, and then

it has the following closed-form solution [3]:

∆p = H−1
∑

x∈Ω

J(x)T (FI(W (x;p))− FT (x)) . (5)

Here, J(x) is the Jacobian matrix of FT (W (x; ∆p)) at

∆p = 0. H =
∑

x∈Ω J(x)TJ(x) is the Hessian matrix.

Equation 5 can be rewritten into a more compact form.

To achieve this, we introduce two notations: the residual

vector r and the Jacobian matrix J. They are defined as

J =
[

J(x1)
T · · · J(xN )T

]T
, and (6)

r =







FI(W (x1;p))− FT (x1)
...

FI(W (xN ;p))− FT (xN )






. (7)

With J and r, the update formula in Equation 5 can be

rewritten as

∆p =
(

JTJ
)−1

JT r. (8)

Equation 8 represents the major computation of the Lucas-

Kanade layer, which requires computing J and r, and then
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combining them into ∆p. In the following, we explain the

details of the Lucas-Kanade layer.

Compute J. As shown in Equation 6, J is constructed from

a vertical concatenation of {J(x)}x∈Ω. By the definition of

J(x) and the chain rules, we have

J(x) = ∂
∂p

FT (W (x;p))
∣

∣

∣

p=0

= ∂
∂x′

FT (x
′)
∣

∣

x′=W (x,0)=x

∂
∂p

W (x;p)
∣

∣

∣

p=0

= ▽FT (x) ·
∂W

∂p
(x;0), (9)

which is a product of the spatial gradient ▽FT (x) and the

warp Jacobian ∂W
∂p

(x;0). ▽FT (x) =
[

▽xFT (x),▽yFT (x)
]

is a C×2 matrix, where C is the number of channels of FT .

The warp Jacobian purely depends on the type of motion
model and its parameterization. Consider a homography
parameterized as Equation 1, then its corresponding warp
Jacobian is written as [3]

∂W

∂p
(x;0) =

[

x y 1 0 0 0 −x2 −xy
0 0 0 x y 1 −xy −y2

]

. (10)

The resulting J is a CN×8 matrix. Since J is independent

of p, we compute J once and reuse it in each iteration.

Compute r. The major computation of r in Equation 7

comes from the warped input feature map FI(W (x;p)),
which requires interpolating FI at the sub-pixel location

W (x;p). It can be implemented using the spatial trans-

former network [17]. The spatial transformer layer consists

of a grid generator and a bilinear sampler. Here the grid

generator acts as the warping function W , which is a ho-

mography in our case. It takes the motion parameters p and

the regular grid Ω = {xi}
N
i=1 as inputs, and outputs the

sampling grid Ω′ = {W (xi;p)}
N
i=1. Then, a bilinear sam-

pler takes Ω′ and FI as inputs, and renders the warped input

feature map FI(W (x;p)).

Inverse Composition. Given the computed ∆p, we then

perform the inverse composition in Equation 4 to update p.

First, a homography parameterized as Equation 1 can also

be represented by a 3× 3 homography matrix as





1 + p1 p2 p3
p4 1 + p5 p6
p7 p8 1



 (11)

We denote the corresponding homography matrices of p

and ∆p as Hp and H∆, respectively. Then, the inverse

composition of homography can be written as

Hp ← HpH
−1
∆ . (12)

Finally, Hp is scaled such that Hp[3, 3] = 1, and we obtain

the updated p.

Number of iterations. In general, the Lucas-Kanade al-

gorithm requires running multiple iterations to find the true

motion. The number of iterations required for convergence

varies and often depends on the magnitude of motion be-

tween images. Images with large motion usually require a

large number of iterations while those with subtle motion

could converge in few steps. Therefore, it is more reason-

able to set the number of iterations in an adaptive way than

setting it to a fixed number. Our Lucas-Kanade layer acts as

the same way as the Lucas-Kanade algorithm, which stops

its iterative process when the change of the motion param-

eters is below a threshold, or when a maximum number of

iteration is exceeded.

Matrix Inverse. Both Equations 8 and 12 require com-

puting a matrix inverse, which is a differentiable operation.

Since there is a need for the back-propagation algorithm to

derive the gradient, we present the formula of matrix gradi-

ent in the following. Consider a square matrix A, its inverse

W = A−1, and a loss function L, then ∂L
∂A

and ∂L
∂W

are re-

lated by [25]

∂L

∂A
= −A−T ∂L

∂W
A−T . (13)

In summary, our Lucas-Kanade layer first computes J

and r, then combines them into ∆p (Equation 8), and finally

performs the inverse composition (Equation 12) to update

p.

3. Learning

In this section, we first describe the loss function used in

training our network. We then describe our cascaded fea-

ture learning method, which incorporates the coarse-to-fine

strategy into the learning process.

3.1. Loss Function

Training a Lucas-Kanade network is challenging be-

cause the training may require a dynamic number of iter-

ations. To deal with such difficulty, we instead propose to

train a one-step Lucas-Kanade network with a specially de-

signed loss function. Consider a ground truth motion p̂ and

a sequence p(1),p(2), ...,p(t) obtained from running multi-

ple iterations (or steps) in the Lucas-Kanade layer. In order

to arrive at the ground truth p̂, we want that each step could

make progress in terms of the distance from p̂, i.e.,

d(p(t+1), p̂) < d(p(t), p̂), (14)

where d is a distance function that measures the dissimi-

larity between two motion models. Let e1, ..., e4 be the

four corner positions of the template image, and we define

d(p1,p2) by the sum of squared distance of the warped cor-
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Figure 3. A schematic diagram of a 3-level CLKN. Please see text

for details.

ners as

d(p1,p2) =

4
∑

j=1

‖W (ej ;p1)−W (ej ;p2)‖
2
2 . (15)

Based on Equation 14, we propose to train a one-step Lucas-

Kanade network with the following 0-1 loss:

L01(p0,p, p̂) = ✶
[

d(p, p̂) > d(p0, p̂)− δ
]

. (16)

Here p0, p, and p̂ are the initial, estimated, and ground truth

motion parameters, respectively. ✶[·] is the indicator func-

tion, and δ ∈ R
+ is a margin hyper-parameter that controls

the desired amount of improvement to achieve in one step.
Since the 0-1 loss is difficult to optimize, we approxi-

mate it by a hinge loss:

L(p0,p, p̂) = max (0, 1 + δ + d(p, p̂)− d(p0, p̂)) . (17)

The hinge loss is a convex upperbound to the 0-1 loss. In

addition, when δ is large enough, minimizing the hinge loss

reduces to minimizing d(p, p̂).
In the training stage, our network is enforced to run sin-

gle iteration and is trained by the hinge loss. In the testing

stage, our network acts as the same as the Lucas-Kanade

algorithm, which runs multiple iterations until the stopping

condition is met.

3.2. Cascaded Feature Learning

To address the issue of large motions, we propose a

cascaded feature learning method, which incorporates the

coarse-to-fine strategy into our learning process. In partic-

ular, we aim to represent an image by a feature pyramid

where each feature map is obtained from a forward pass of a

CNN associated to that level. Then, we perform the Lucas-

Kanade algorithm sequentially from coarse to fine levels.

Such process can be equivalently expressed by a cascaded

Lucas-Kanade network (CLKN), which is a sequence of

Lucas-Kanade networks progressively refining the estimate

of motion parameters.

Template image

Input image

Figure 4. Data generation. The initial warp W (x;p0) maps the

dark square to the blue square. The ground truth warp W (x; p̂)
maps the dark square to the green quadrilateral, which is obtained

from perturbing the four corners of the blue square. The perturba-

tion range for each corner is shown as a gray square. The template

image T is rendered by T (x)← I(W (x; p̂)).

Figure 3 shows a diagram of a 3-level CLKN. At each

stage k = 1 ... K in the cascade, the CNN at level k ex-

tracts feature maps F
(k)
I and F

(k)
T from I and T , respec-

tively. In particular, the CNN produces the output feature

map with a downsampling factor of 2K−k. Based on F
(k)
I ,

F
(k)
T and p(k−1), which is the previous Lucas-Kanade net-

work’s motion estimate, the Lucas-Kanade layer compute a

new motion estimate p(k).

In the training stage, these K CNNs are learned sequen-

tially one by one in a coarse-to-fine manner. More specifi-

cally, the CNN at the top pyramid level (k = 1) is trained

on the original training set {(T, I,p0, p̂)}. p0 is the param-

eters of initial motion, and p̂ is the parameters of ground

truth motion. For the other levels k = 2 ... K, the CNN

at level k is trained on the training set
{

(T, I,p(k−1), p̂)
}

where p(k−1) is the result from stage k − 1 and plays the

role of initial motion in stage k.

3.3. Dataset Generation

Training CNNs from scratch requires a large amount

of labeled training data. In our case, we aim to con-

struct a large labeled set where each sample is a quadruplet

(T, I,p0, p̂). Our process of data generation is based on

DeTone et al.’s work [10]. This enables us to have a direct

comparison with their method. We illustrate in Figure 4 the

process of data generation and describe its details below.

We generated a large number of labeled examples by

applying random homographies to the MS-COCO im-

ages [18]. To generate a training sample from an image,

we first downsample this image such that the shorter side is

240. Then we randomly crop a square window with size

192 × 192 and assign it to be the input image I . Next,

we define the initial warp W (x;p0) to be a translation that

maps the domain of the template image to a square win-

dow centering in I (the blue square in Figure 4). Then we

randomly perturb the four corners of the window to con-

struct a quadrilateral by using a uniform distribution within

the range [−β, β] for both x and y values. β is set to 32.

Similarly, we define the ground truth warp W (x; p̂) to be
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Figure 5. Representative examples in our training set, which is

generated from the MS-COCO dataset.

the homography that maps the template boundary (the dark

square in Figure 4) to the quadrilateral (the green square in

Figure 4). Finally, T is generated by I(W (x; p̂)) , and its

size is 128 × 128. To avoid unrealistic shape distortions in

the induced homography, the maximum angle of the quadri-

lateral is restricted to being less than 3
4π during the random

perturbation process. The homography W (x; p̂) can be in-

terpreted as viewing a 2D natural image from a frontal view

to a non-frontal view.

To create a more realistic and challenging dataset, we

further synthesize photometric variations between I and T .

We randomly pick one from I and T and manipulate its

colors. Following [15], we enhance the brightness, con-

trast and saturation with an amount between 0.5 to 1.5 in

a random order. Then, we add Gaussian noise with stan-

dard deviation 0.02 on both I and T . Figure 5 shows some

representative examples of our training images.

We created our training, validation, and testing sets from

the corresponding ones of the MS-COCO dataset, respec-

tively. We used the whole training set of MS-COCO to

construct our training set (82K images). For our valida-

tion/testing set, we used a subset of MS-COCO with 6.4K

images.

4. Experiments

Evaluation metric. Based on [3] and [10], we use the cor-

ner error as our evaluation metric, which is defined as

ec(p, p̂) =
1

4

4
∑

j=1

‖W (ej ;p)−W (ej ; p̂)‖2 . (18)

The corner error measures the L2 distance of the warped

corners and then takes average over the four corners. Note

that ec is similar to but different from the distance function

d in Equation 15. ec measures an average L2 distance in

number of pixels, whereas d measures a squared distance

(as a part of the hinge loss).

We compute the corner error for each test sample and

then plot a cumulative error distribution of the test set to

Level d T-size L LR α ǫ

1 8 4× 16× 16 7 5× 10−6 4.0 3.5

2 4 4× 32× 32 7 1× 10−5 4.0 1.0

3 2 4× 64× 64 7 1× 10−4 1.0 0.1

4 1 4× 128× 128 3 1× 10−4 0.1 0.05

Table 1. The hyperparameter setting for CLKN. d: downsampling

factor. T-size: the size of template feature map. L: the num-

ber of convolutional layers in the CNN. LR: learning rate. α: the

required amount of decreased corner error for setting the margin

hyperparameter δ. ǫ: the stopping threshold (pixels) in the Lucas-

Kanade layer.

show the performance of each experimented method. In ad-

dition, we measure the alignment accuracy by the percent-

age of test samples successfully converged. Following the

work of [3], we define that one test sample is successfully

converged if its corner error is less than 1.0 pixel.

Implementation details. The number of stages in our

CKLN is set to 4. The effect of this hyperparameter will

be discussed in more detail at the end of this section. For

the CNN at level k = 1 ... K, all its convolutional layers

have 64 filters except for the last layer, which has C filters

to produce an output feature map with C channels. We set

C = 4 for a good compromise between accuracy and effi-

ciency. In addition, the first K − k convolutional layers are

set to have a stride 2 to produce a downsampled feature map

with a factor of 2K−k.

For the stopping criterion in the Lucas-Kanade layer, the

change of motion parameters is measured by the corner er-

ror (Equation 18) at the original resolution. The maximum

number of iterations for each Lucas-Kanade layer is set to

20, which is sufficient in our experiments.

For the hinge loss in Equation 17, the setting of the mar-

gin δ is driven by the corner error. If each corner decreases

its L2 error by α pixels, then such amount of improvement

corresponds to δ = d(p0, p̂)−max(0,
√

d(p0, p̂)− 2α)2.

We utilized the open source Torch framework [7] to im-

plement the proposed method. We trained our network us-

ing an NVIDIA GeForce GTX TITAN X GPU. It took ap-

proximately 25 hours to train our network with four lev-

els, each of which is trained for 50 epochs. Our network

is trained by stochastic gradient descent. We preprocessed

the images by the standard normalization (subtract mean

and divide by standard deviation). The mini-batch size

is 64. The network’s parameters are initialized by He’s

method [14]. Table 1. lists the hyperparameter setting of

our CLKN. The hyperparameters are determined from eval-

uating the average 0-1 loss (Equation 16) on the validation

set. We used a shallower CNN (three layers) in the last

level to reduce the memory usage and the training time. We

found that such CNN is sufficient to bring roughly aligned

images into sub-pixel alignment.
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the corner error in log scale, and the Y-axis is the fraction of the number of test images. Right: The histograms of the number of iterations

required to converge successfully (i.e. corner error is less than 1.0 pixel). The X-axis is the number of iterations used to converge. The

Y-axis is the number of test images in log scale.
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Figure 7. The cumulative error distributions of our method and

four representative methods on the test set.

Comparison with the Lucas-Kanade algorithm. We first

compare our method (CLKN) with the inverse composi-

tional Lucas-Kanade (IC-LK) algorithm [3]. The coarse-to-

fine strategy is adopted in IC-LK to deal with large motions.

Three different numbers of pyramid levels are evaluated in

this experiment. Figure 6 (left) shows the cumulative er-

ror distributions of CLKN and IC-LK. We also show the

distribution of the corner errors of using the initial motion

parameters p0 as the estimated ones. The results show that

our method performs significantly better than IC-LK. We

can see that adopting the coarse-to-fine strategy in IC-LK

does not improve the range of convergence. The main rea-

son is that the motion magnitude between the downsampled

images is still too large, which makes IC-LK give a large

but inaccurate motion update. Figure 6 (right) shows the

histograms of the number of iterations, and we can see that

our method requires much less iterations to converge.

Comparison with the other methods. We compare with

the following three representative methods:

1. SIFT-LK [2]: A feature-based Lucas-Kanade method

that performs the inverse compositional Lucas-Kanade

algorithm on dense SIFT features. (We implemented

their method.)

2. SIFT+RANSAC [13]: A feature-based method that

extracts SIFT feature points, performs sparse feature

matching, and then applies the direct linear transform

(DLT) with RANSAC to estimate the homography.

(We used the implementation in the OpenCV library.)

3. DHN [10]: A deep learning based method that trains

a VGG-style CNN to directly regress the homography.

(We implemented their method and trained their model

on our training set.)

Figure 7 shows the comparison of our method with the

aforementioned methods. The IC-LK (1 level), as a pixel-

based method, is also included into the comparison. SIFT-

LK enjoys a higher accuracy at threshold 3 than IC-LK due

to its robustness to color variations. However, SIFT-LK suf-

fers from a lower alignment accuracy compared to IC-LK.

Both IC-LK and SIFT-LK degrade in the presence of large

motions. SIFT+RANSAC is the second best in terms of

alignment accuracy, while it often fails in processing low-

textured images. Among these methods, DHN performs

the most consistently across all test samples. However, it

could only give a rough alignment. The reason may be

that its network architecture is suboptimal to the task of

homography estimation. Our method significantly outper-

forms all the competing methods. Our success lies in the

pyramid representation of data-driven features, which effec-

tively learn/extract features under different circumstances.

Visualization of feature pyramids. In Figure 8, we show

examples of our learned pyramid representation. Different

feature maps in the same level focus on different aspects
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Image

3x192x192

Level 1

4x24x24

(coarsest)

Level 2

4x48x48

Level 3

4x96x96

Level 4

4x192x192

(finest)

Figure 8. Representative examples of our 4-level convolutional feature pyramids, where each level is a 4-channel feature map.

# levels # params # iterations Time (ms)

3 79.1K 15.6 265

4 98.0K 13.9 260

5 116.9K 19.6 304

Table 2. Performance analysis of CLKN with different number of

pyramid levels.

of salient information and complement to each other. The

CNNs at level 1 and 2 capture mid-level semantic informa-

tion such as object parts, and render the feature maps in a

spatially-smooth way. On the other hand, the CNNs at level

3 and 4 capture semantic edge information and also fine-

scale structures.

Number of pyramid levels. In our method, the number of

pyramid levels is an important hyperparameter. We evalu-

ated different numbers of pyramid levels and show the re-

sults in Figure 9. Using a 3-level pyramid already outper-

forms all the competing methods. Using four levels fur-

ther improves the alignment accuracy. Using more pyramid

levels (e.g., five) may degrade the accuracy. The reason is

that as the feature map at stage one becomes smaller, the

Lucas-Kanade layer has less information to perform align-

ment. Table 2 summarizes performance analysis. We set

the number of pyramid levels to 4 since it achieves the best

performance in terms of both accuracy and efficiency.
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Figure 9. The cumulative error distributions of CLKN with differ-

ent number of pyramid levels.

5. Conclusion

In this paper, we presented a novel network architec-

ture that performs the Lucas-Kanade algorithm on convolu-

tional feature maps. Adopting our cascaded feature learning

method leads to a cascaded Lucas-Kanade network, which

performs alignment in a coarse-to-fine manner. Experi-

mental results show that our pyramid representation sig-

nificantly improves the convergence range of the Lucas-

Kanade algorithm. In future work we plan to apply our

model to other tasks, such as non-rigid registration and

multi-modal image matching.
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