
Counting Everyday Objects in Everyday Scenes

Prithvijit Chattopadhyay∗,1 Ramakrishna Vedantam∗,1 Ramprasaath R. Selvaraju1

Dhruv Batra2 Devi Parikh2

1Virginia Tech 2Georgia Institute of Technology
1{prithv1,vrama91,ram21}@vt.edu 2{dbatra,parikh}@gatech.edu

Abstract

We are interested in counting the number of instances of

object classes in natural, everyday images. Previous count-

ing approaches tackle the problem in restricted domains

such as counting pedestrians in surveillance videos. Counts

can also be estimated from outputs of other vision tasks like

object detection. In this work, we build dedicated models

for counting designed to tackle the large variance in counts,

appearances, and scales of objects found in natural scenes.

Our approach is inspired by the phenomenon of subitizing

– the ability of humans to make quick assessments of counts

given a perceptual signal, for small count values. Given

a natural scene, we employ a divide and conquer strategy

while incorporating context across the scene to adapt the

subitizing idea to counting. Our approach offers consis-

tent improvements over numerous baseline approaches for

counting on the PASCAL VOC 2007 and COCO datasets.

Subsequently, we study how counting can be used to im-

prove object detection. We then show a proof of concept

application of our counting methods to the task of Visual

Question Answering, by studying the ‘how many?’ ques-

tions in the VQA and COCO-QA datasets.

1. Introduction

We study the scene understanding problem of counting

common objects in natural scenes. That is, given for ex-

ample the image in Fig. 1, we want to count the number

of everyday object categories present in it: for example 4

chairs, 1 oven, 1 dining table, 1 potted plant and 3 spoons.

Such an ability to count seems innate in humans (and even

in some animals [10]). Thus, as a stepping stone towards

Artificial Intelligence (AI), it is desirable to have intelligent

machines that can count.

Similar to scene understanding tasks such as object de-

tection [43, 14, 18, 37, 17, 44, 34, 29] and segmenta-

tion [4, 30, 36] which require a fine-grained understanding

of the scene, object counting is a challenging problem that

∗ Denotes equal contribution.

Bottle : 3

Spoon : 3

Chair : 4

Potted Plant : 1

Dining Table : 1

Oven : 1

Figure 1: We study the problem of counting everyday objects in every-

day scenes. Given an everyday scene, we want to predict the number of

instances of common objects like bottle, chair etc.

requires us to reason about the number of instances of ob-

jects present while tackling scale and appearance variations.

Another closely related vision task is visual question

answering (VQA), where the task is to answer free form

natural language questions about an image. Interestingly,

questions related to the count of a particular object - How

many red cars do you see? form a significant portion of

the questions asked in common visual question answering

datasets [2, 35]. Moreover, we observe that end-to-end net-

works [2, 35, 31, 15] trained for this task do not perform

well on such counting questions. This is not surprising,

since the objective is often setup to minimize the cross-

entropy classification loss for the correct answer to a ques-

tion, which ignores ordinal structure inherent to counting.

In this work we systematically benchmark how well cur-

rent VQA models do at counting, and study any benefits

from dedicated models for counting on a subset of counting

questions in VQA datasets in Sec. 5.4.

Counts can also be used as complimentary signals to aid

other vision tasks like detection. If we had an estimate of

how many objects were present in the image, we could use

that information on a per-image basis to detect that many

objects. Indeed, we find that our object counting models

improve object detection performance.

We first describe some baseline approaches to counting

and subsequently build towards our proposed model.

11135

1

3

5

8

2

4

7

9

6

Glance Associative Subitizing (aso-sub)Detect

9 7
2

2

+
2

2

+
3

2

2

2

+
+ + ….

+ + ….

Figure 2: A toy example explaining the motivation for three categories

of counting approaches explored in this paper. The task is to count the

number of stars and circles. In detect, the idea is to detect instances of

a category, and then report the total number of instances detected as the

count. In glance, we make a judgment of count based on a glimpse of

the full image. In aso-sub, we divide the image into regions and judge

count based on patterns in local regions. Counts from different regions are

added through arithmetic.

Counting by Detection: It is easy to realize that perfect

detection of objects would imply a perfect count. While de-

tection is sufficient for counting, localizing objects is not

necessary. Imagine a scene containing a number of mugs

kept on a table where the objects occlude each other. In or-

der to count the number of mugs, we need not determine

with pixel-accurate segmentations or detections where they

are (which is hard in the presence of occlusions) as long

as say we can determine the number of handles. Relieving

the burden of detecting objects is also effective for count-

ing when objects occur at smaller scales where detection is

hard [18]. However, counting by detection or detect still

forms a natural approach for counting.

Counting by Glancing: Representations extracted from

Deep Convolutional Neural Networks [42, 26] trained on

image classification have been successfully applied to a

number of scene understanding tasks such as finegrained

recognition [12], scene classification [12], object detec-

tion [12], etc. We explore how well features from a deep

CNN perform at counting through instantiations of our

glancing (glance) models which estimate a global count

for the entire scene in a single forward pass. This can be

thought of as estimating the count at one shot or glance.

This is in contrast with detect, which sequentially incre-

ments its count with each detected object (Fig. 2). Note that

unlike detection, which optimizes for a localization objec-

tive, the glance models explicitly learn to count.

Counting by Subitizing: Subitizing is a widely stud-

ied phenomenon in developmental psychology [8, 25, 10]

which indicates that children have an ability to directly map

a perceptual signal to a numerical estimate, for a small num-

ber of objects (typically 1-4). Subitizing is crucial for de-

velopment and assists arithmetic and reasoning skills. An

example of subitizing is how we are able to figure out the

number of pips on a face of a die without having to count

them or how we are able to reason about tally marks.

Inspired by subitizing, we devise a new counting ap-

proach which adopts a divide and conquer strategy, using

the additive nature of counts. Note that glance can be

thought of as an attempt to subitize from a glance of the im-

age. However, as illustrated in Fig. 2 (center), subitizing is

difficult at high counts for humans.

Inspired by this, using the divide and conquer strat-

egy, we divide the image into non-overlapping cells (Fig. 2

right). We then subitize in each cell and use addition to get

the total count. We call this method associative subitizing

or aso-sub.

In practice, to implement this idea on real images, we in-

corporate context across the cells while sequentially subitiz-

ing in each one of them. We call this sequential subitiz-

ing or seq-sub. For each of these cells we curate real-

valued ground truth, which helps us deal with scale vari-

ations. Interestingly, we found that by incorporating con-

text seq-sub significantly outperforms the naive subitiz-

ing model aso-sub described above. (see Sec. 5.1 for

more details).

Counting by Ensembling: It is well known that when hu-

mans are given counting problems with large ground truth

counts (e.g. counting number of pebbles in a jar), individual

guesses have high variance, but an average across multi-

ple responses tends to be surprisingly close to the ground

truth. This phenomenon is popularly known as the wisdom

of the crowd [16]. Inspired by this, we create an ensemble

of counting methods (ens).

In summary, we evaluate several natural approaches to

counting, and propose a novel context and subitizing based

counting model. Then we investigate how counting can im-

prove detection. Finally, we study counting questions (‘how

many?’) in the Visual Question Answering (VQA) [2] and

COCO-QA [35] datasets and provide some comparisons

with the state-of-the-art VQA models.

2. Related Work

Counting problems in niche settings have been studied

extensively in computer vision [45, 41, 6, 27]. [6] explores

a Bayesian Poisson regression method on low-level features

for counting in crowds. [5] segments a surveillance video

into components of homogeneous motion and regresses to

counts in each region using Gaussian Process regression.

Since surveillance scenes tend to be constrained and highly

occluded, counting by detection is infeasible. Thus den-

sity based approaches are popular. Lempitsky and Zisser-

man [27] count people by estimating object density using

low-level features. They show applications on surveillance

and cell counting in biological images. Anchovi labs pro-

vided users interactive services to count specific objects

such as swimming pools in satellite images, cells in biolog-

ical images, etc. More recent work constructs CNN-based

models for crowd counting [45, 33] and penguin count-

ing [3] using lower level convolutional features from shal-

lower CNN models.

Counting problems in constrained settings have a funda-

1136

mentally different set of challenges to the counting problem

we study in this paper. In surveillance, for example, the

challenge is to estimate the counts accurately in the pres-

ence of large number of ground truth counts, where there

might be significant occlusions. In the counting problem on

everyday scenes, a larger challenge is the intra-class vari-

ance in everyday objects, and high sparsity (most images

will have 0 count for most object classes). Thus we need a

qualitatively different set of tools to solve this problem.

Other recent work [46] studies the problem of salient ob-

ject subitizing (SOS). This is the task of counting the num-

ber of salient objects in the image (independent of the cat-

egory). In contrast, we are interested in counting the num-

ber of instances of objects per category. Unlike Zhang et

al. [46], who use SOS to improve salient object detec-

tion, we propose to improve generic object detection using

counts. Our VQA experiments to diagnose counting perfor-

mance are also similar in spirit to recent work that studies

how well models perform on specific question categories

(counting, attribute comparison, etc.) [22] or on composi-

tional generalization [1].

3. Approach

Our task is to accurately count the number of instances

of different object classes in an image. For training, we use

datasets where we have access to object annotations such

as object bounding boxes and category wise counts. The

count predictions from the models are evaluated using the

metrics described in Sec. 4.2. The input to the glance,

aso-sub and seq-sub models are fc7 features from a

VGG-16 [42] CNN model. We experiment using both off-

the-shelf classification weights from ImageNet [38] and the

detection fine-tuned weights from our detect models.

3.1. Detection (detect)

We use the Fast R-CNN [18] object detector to count.

Detectors typically perform two post processing steps on a

set of preliminary boxes: non maximal suppression (NMS)

and score thresholding. NMS discards highly overlapping

and likely redundant detections (using a threshold to con-

trol the overlap), whereas the score threshold filters out all

detections with low scores.

We steer the detector to count better by varying these two

hyperparameters to find the setting where counting error is

the least. We pick these parameters using grid search on a

held-out val set. For each category, we first select a fixed

NMS threshold of 0.3 for all the classes and vary the score

threshold between 0 and 1. We then fix the score threshold

to the best value and vary the NMS threshold from 0 to 1.

3.2. Glancing (glance)

Our glance approach repurposes a generic CNN archi-

tecture for counting by training a multi-layered perceptron

Figure 3: Canonical counting scale: Consider images with grids 2 × 2

(left) and 6 × 6 (right). Notice the red cells in both images: it is evident

that if the cell size is too large compared to the object (left), it is difficult

to estimate the large integer count of ‘sheep’ in the cell. However, if the

cell is too small (right), it might be hard to estimate the small fractional

count of ‘bus’ in the cell. Hence, we hypothesize that there exists a sweet

spot in discretization of the cells that would results in optimum counting

performance.

(MLP) with a L2 loss to regress to image level counts from

deep representations extracted from the CNN. The MLP has

batch normalization [20] and Rectified Linear Unit (ReLU)

activations between hidden layers. The models were trained

with a learning rate of 10−3 and weight decay set to 0.95.

We experiment with choices of a single hidden layer, and

two hidden layers for the MLP, as well as the sizes of the

hidden units. More details and ablation studies can be found

in [7].

3.3. Subitizing (aso-sub, seq-sub)

In our subitizing inspired methods, we divide our count-

ing problem into sub-problems on each cell in a non-

overlapping grid, and add the predicted counts across the

grid. In practice, since objects in real images occur at dif-

ferent scales, such cells might contain fractions of an object.

We adjust for this by allowing for real valued ground truth.

If a cell overlapping an object is very small compared to

the object, the small fractional count of the cell might be

hard to estimate. On the other hand, if a cell is too large

compared to objects present it might be hard to estimate

the large integer count of the cell (see Fig. 3). This trade-

off suggests that at some canonical resolution, we would be

able to count the smaller objects more easily by subitizing

them, as well as predict the partial counts for larger objects.

More concretely, we divide the image I , into a set of n non-

overlapping cells P = {p1, · · · , pn} such that I =
⋃n

i=1 pi
and pi ∩ pj(i 6=j) = φ. Given such a partition P of the im-

age I and associated CNN features X = {xi, · · · , xn}, we

now explain our models based on this approach:

aso-sub : Our naive aso-sub model treats each cell

independently to regress to the real-valued ground truth.

We train on an augmented version of the dataset where the

dataset size is n-fold (n cells per image). Unlike glance,

where feature extracted on the full image is used to regress

to integer valued counts, aso-sub models regress to real-

1137

#person ~ 0

#person ~ 1

#person ~ 0.5

#person ~ 0.5

Figure 4: For both these images, the count of person is 1. Consider split-

ting this image into 2 × 1 cells (for illustration) for aso-sub. The bottom

half of the left image and top half of the right image both contains similar

visual signals – top-half of a person. However, the ground truth count on

the cell on the left is 1, and the one on the right is 0.5. An approach that es-

timates counts from individual cells out of context is bound to fail at these

cases. This motivates our proposed approach seq-sub.

valued counts on non-overlapping cells from features ex-

tracted per cell. Given class instance annotations as bound-

ing boxes b = {b1, · · · , bN} for a category k in an image

I , we compute the ground truth partial counts (ckgt) for the

grid-cells (pi) to be used for training as follows:

pi : c
k
gt =

N
∑

j=1

pi ∩ bj

bj
(1)

We compute the intersection of each box bi with the cell

pi and add up the intersections normalized by bi. Further,

given the cell-level count predictions cpi
, the image level

count prediction is computed as c =
∑n

i=1 max(0, cpi
).

We use max to filter out negative predictions.

We experiment with dividing the image into equally

sized 3× 3, 5× 5, and 7× 7 grid-cells. The architecture of

the models trained on the augmented dataset are the same

as glance. For more details, refer to [7].

seq-sub : We motivate our proposed seq-sub (Sequen-

tial Subitizing) approach by identifying a potential flaw in

the naive aso-sub approach. Fig. 4 reveals the limitation

of the aso-sub model. If the cells are treated indepen-

dently, the naive aso-sub model will be unaware of the

partial presence of the concerned object in other cells. This

leads to situations where similar visual signals need to be

mapped to partial and whole presence of the object in the

cells (see Fig. 4). This is especially pathological since Hu-

ber or L-2 losses cannot capture this multi-modality in the

output space, since the implicit density associated with such

losses is either laplacian or gaussian.

Interestingly, a simple solution to mitigate this issue is

to model context, which resolves this ambiguity in counts.

That is, if we knew about the partial class presence in other

cells, we could use that information to predict the correct

cell count. Thus, although the independence assumption in

aso-sub is convenient, it ignores the fact that the aug-

mented dataset is not IID. While it is important to reason at

VGG
(fc7)

5
0
0

4
0
0
0

8
0

 Context
 Aggregator
 (Bi-LSTM)

GT

Pred

Huber Loss

9

3

3 3

3

3

3

 Feature
 Volume

 Context
 Volume

 fc layer
 (4096 x 500)

 Count
 Volume

 Concat Bi-LSTM
 Output States

 80
#classes

5
0
0

3

3

 fc layer
 (4000 x 80)

Figure 5: Architecture used for our seq-submodels. We extract a hidden

layer representation of the fc7 feature volume corresponding to the 3× 3

discretization of the image. Subsequently, we traverse this representation

volume in two particular sequences in parallel as shown via two stacked bi-

LSTMs per sequence and aggregate context over the image. We get output

states corresponding to each of the cells and subsequently get cell-counts

via another hidden layer. The hidden layers use ReLU as non-linearity.

a cell level, it is also necessary to be aware of the global im-

age context to produce meaningful predictions. In essence,

we propose seq-sub, that takes the best of both worlds

from glance and aso-sub.

The architecture of seq-sub is shown in Fig. 5. It consists

of a pair of 2 stacked bi-directional sequence-to-sequence

LSTMs [40]. We incorporate context across cells as

cpi
= h(f1(x1, θ1), · · · , fn(xn, θn), i, θ) (2)

where individual fi(xi, θi) are hidden layer representations

of each cell feature with respective parameters and h(., θ)
is the mechanism that captures context. This can be broken

down as follows. Let H be the set containing fi(xi, θi)s.

Let HO1 and HO2 be 2 ordered sets which are permutations

of H based on 2 particular sequence structures. The (traver-

sal) sequences, as we move across the grid in the feature col-

umn, is decided on the basis of nearness of cells (see Fig. 5).

We experiment with the sequence structures best described

for a 3 × 3 grid as Nand Z which correspond to HO1 and

HO2. Each of these feature sequences are then fed to a pair

of stacked Bi-LSTMs (Lj(., i, θl)) and the corresponding

cell output states are concatenated to obtain a context vec-

tor (vi) for each cell as vi = L1(HO1, i, θl)||L2(HO2, i, θl).
The cell counts are then obatined as cpi

= g(vi, θg). The

composition of Lj(., i, θl) and g(., θg) implements h(., θ).
We use a Huber Loss objective to regress to the count

values with a learning rate of 10−4 and weight decay set

to 0.95. For optimization, we use Adam [24] with a mini-

batch size of 64. The ground truth construction procedure

for training and the count aggregation procedure for evalu-

ation are as defined in aso-sub.

4. Experimental Setup

4.1. Datasets

We experiment with two datasets depicting everyday ob-

jects in everyday scenes: the PASCAL VOC 2007 [13] and

1138

COCO [28]. The PASCAL VOC dataset contains a train

set of 2501 images, val set of 2510 images and a test set

of 4952 images, and has 20 object categories. The COCO

dataset contains a train set of 82783 images and a val set

of 40, 504 images, with 80 object categories. On PASCAL,

we use the val set as our Count-val set and the test set as

our Count-test set. On COCO, we use the first half of val as

the Count-val set and the second half of val as the Count-

test set. The most frequent count per object category (as

one would expect in everyday scenes) is 0. Although, the

two datasets have a fair amount of count variability, there

is a clear bias towards lower count values. Note that this is

unlike the crowd-counting datasets, in particular [19] where

mean count is 1279.48 ± 960.42 and also unlike PASCAL

and COCO, the images have very little scale and appearance

variations in terms of objects.

4.2. Evaluation

We adopt the root mean squared error (RMSE) as our

metric. We also evaluate on a variant of RMSE that might

be better suited to human perception. The intuition behind

this metric is as follows. In a real world scenario, humans

tend to perceive counts in the logarithmic scale [11]. That

is, a mistake of 1 for a ground truth count of 2 might seem

egregious but the same mistake for a ground truth count of

25 might seem reasonable. Hence we scale each deviation

by a function of the ground truth count.

We first post-process the count predictions from each

method by thresholding counts at 0, and rounding predic-

tions to closest integers to get predictions ĉik. Given these

predictions and ground truth counts cik for a category k and

image i, we compute RMSE as follows:

RMSEk =

√

√

√

√

1

N

N
∑

i=1

(ĉik − cik)2 (3)

and relative RMSE as:

relRMSEk =

√

√

√

√

1

N

N
∑

i=1

(ĉik − cik)2

cik + 1
(4)

where N is the number of images in the dataset. We then

average the error across all categories to report numbers on

the dataset (mRMSE and m-relRMSE).

We also evaluate the above metrics for ground truth in-

stances with non-zero counts. This reflects more clearly

how accurate the counts produced by a method (beyond pre-

dicting absence) are.

4.3. Methods and Baselines

We compare our approaches to the following baselines:

always-0: predict most-frequent ground truth count (0).

mean: predict the average ground truth count on the Count-

val set.

always-1: predict the most frequent non-zero value (1)

for all classes.

category-mean: predict the average count per category

on Count-val.

gt-class: treat the ground truth counts as classes and

predict the counts using a classification model trained with

cross-entropy loss.

We evaluate the following variants of counting ap-

proaches (see Sec. 3 for more details):

detect: We compare two methods for detect. The

first method finds the best NMS and score thresholds as ex-

plained in Sec. 3.1. The second method uses vanilla Fast

R-CNN as it comes out of the box, with the default NMS

and score thresholds.

glance: We explore the following choices of features:

(1) vanilla classification fc7 features noft, (2) detection

fine tuned fc7 features ft, (3) fc7 features from a CNN

trained to perform Salient Object Subitizing sos [46] and

(4) flattened conv-3 features from a CNN trained for clas-

sification

aso-sub, seq-sub: We examine three choices of grid

sizes (Sec. 3.3): 3× 3, 5× 5, and 7× 7 and noft and ft

features as above.

ens: We take the best performing subset of methods and

average their predictions to perform counting by ensem-

bling (ens).

5. Results

All the results presented in the paper are averaged on 10

random splits of the test set sampled with replacement.

5.1. Counting Results

PASCAL VOC 2007 : We first present results (Table. 1)

for the best performing variants (picked based on the val

set) of each method. We see that seq-sub outperforms

all other methods. Both glance and detect which per-

form equally well as per both the metrics, while glance

does slightly better on both metrics when evaluated on non-

zero ground truth counts. To put these numbers in perspec-

tive, we find that the difference of 0.01mRMSE-nonzero

between seq-sub and aso-sub leads to a difference of

0.19% mean F-measure performance in our counting to im-

prove detection application (Sec. 5.3). We also experiment

with conv3 features to regress to the counts, similar to

Zhang.et.al. [45]. We find that conv3 gets mRMSE of

0.63 which is much worse than fc7. We also tried PCA on

the conv3 features but that did not improve performance.

This indicates that our counting task is indeed more high

level and needs to reason about objects rather than low-

level textures. We also compare our approach with the SOS

model [46] by extracting fc7 features from a model trained

to perform category-independent salient object subitizing.

We observe that our best performing glance setup using

1139

Approach mRMSE mRMSE-nz m-relRMSE m-relRMSE-nz

always-0 0.66 ± 0.02 1.96 ± 0.03 0.28 ± 0.03 0.59 ± 0.00
mean 0.65 ± 0.02 1.81 ± 0.03 0.31 ± 0.01 0.52 ± 0.00
always-1 1.14 ± 0.01 0.96 ± 0.03 0.98 ± 0.00 0.17 ± 0.03
category-mean 0.64 ± 0.02 1.60 ± 0.03 0.30 ± 0.00 0.45 ± 0.00
gt-class 0.55 ± 0.02 2.12 ± 0.07 0.24 ± 0.00 0.88 ± 0.01
detect 0.50 ± 0.01 1.92 ± 0.08 0.26 ± 0.01 0.85 ± 0.02

glance-noft-2L 0.50 ± 0.02 1.83 ± 0.09 0.27 ± 0.00 0.73 ± 0.00
glance-sos-2L 0.51 ± 0.02 1.87 ± 0.08 0.29 ± 0.01 0.75 ± 0.02
aso-sub-ft-1L-3 × 3 0.43 ± 0.01 1.65 ± 0.07 0.22 ± 0.01 0.68 ± 0.02
seq-sub-ft-3 × 3 0.42 ± 0.01 1.65 ± 0.07 0.21 ± 0.01 0.68 ± 0.02
ens 0.42 ± 0.17 1.68 ± 0.08 0.20 ± 0.00 0.65 ± 0.01

Table 1: Counting performance on PASCAL VOC 2007 Count-test Set

(L implies the number of hidden layers). Lower is better. ens is

a combination of glance-noft-2L, aso-sub-ft-1L-3 × 3 and

seq-sub-ft-3× 3.

Imagenet trained VGG-16 features outperforms the one us-

ing SOS features. This is also intuitive since SOS is a cat-

egory independent task, while we want to count number of

object instances of each category. Finally, we observe that

the performance increment from aso-sub to seq-sub is

not statistically significant. We hypothesize that this is be-

cause of the smaller size of the PASCAL dataset. Note that

we get more consistent improvements on COCO (Table. 2),

which is not only a larger dataset, but also contains scenes

that are contextually richer.1

COCO : We present results for the best performing variants

(picked based on the val set) of each method. The results

are summarized in Table. 2. We find that seq-sub does

the best on both mRMSE and m-relRMSE as well as

their non-zero variants by a significant margin. A compar-

ison indicates that the always-0 baseline does better on

COCO than on PASCAL. This is because COCO has many

more categories than PASCAL. Thus, the chances of any

particular object being present in an image decrease com-

pared to PASCAL. The performance jump from aso-sub

to seq-sub here is much more compared to PASCAL. Re-

cent work by Ren and Zemel [36] on Instance Segmentation

also reports counting performance on two COCO categories

- person and zebra.2

For both PASCAL and COCO we observe that while ens

outperforms other approaches in some cases, it does not al-

ways do so. We hypothesize that this is due to the poor

performance of glance. For detailed ablation studies on

ens see [7].

5.2. Analysis of the Predicted Counts

Count versus Count Error : We analyze the performance

of each of the methods at different count values on the

1When the Count-val split is considered, PASCAL has an average of

1.98 annotated objects per scene, unlike COCO which has 7.22 annotated

objects per scene.
2We compare our best performing seq-sub model with their ap-

proach. On person, seq-sub outperforms by 1.29 RMSE and 0.24

relRMSE. On zebra, [36] outperforms seq-sub by a margin of 0.4

RMSE and 0.23 relRMSE. A recent exchange with the authors sug-

gested anomalies in their experimental setup, which may have resulted in

their reported numbers being optimistic estimates of the true performance.

Approach mRMSE mRMSE-nz m-relRMSE m-relRMSE-nz

always-0 0.54 ± 0.01 3.03 ± 0.03 0.21 ± 0.00 1.22 ± 0.01
mean 0.54 ± 0.00 2.96 ± 0.03 0.23 ± 0.00 1.17 ± 0.01
always-1 1.12 ± 0.00 2.39 ± 0.03 1.00 ± 0.00 0.80 ± 0.00
category-mean 0.52 ± 0.01 2.97 ± 0.03 0.22 ± 0.00 1.18 ± 0.01
gt-class 0.47 ± 0.00 2.70 ± 0.03 0.20 ± 0.00 1.08 ± 0.00
detect 0.49 ± 0.00 2.78 ± 0.03 0.20 ± 0.00 1.13 ± 0.01

glance-ft-1L 0.42 ± 0.00 2.25 ± 0.02 0.23 ± 0.00 0.91 ± 0.00
glance-sos-1L 0.44 ± 0.00 2.32 ± 0.03 0.24 ± 0.00 0.92 ± 0.01
aso-sub-ft-1L-3 × 3 0.38 ± 0.00 2.08 ± 0.02 0.24 ± 0.00 0.87 ± 0.01
seq-sub-ft-3 × 3 0.35 ± 0.00 1.96 ± 0.02 0.18 ± 0.00 0.82 ± 0.01
ens 0.36± 0.00 1.98± 0.02 0.18± 0.00 0.81± 0.01

Table 2: Counting performance on COCO Count-test set (L implies the

number of hidden layers). Lower is better. ens is a combination of

glance-ft-1L, aso-sub-ft-1L-3× 3 and seq-sub-ft-3× 3.

Figure 6: We plot the mRMSE (across all categories) with error bars (too

small to be visible) at a count against the count (x-axis) on the Count-test

split of the COCO dataset. We find that the seq-sub-ft-3×3 and ens

perform really well at higher count values whereas at lower count values

the results of all the models are comparable except detect.

COCO Count-test set (Fig. 6). We pick each count value on

the x-axis and compute the RMSE over all the instances

at that count value. Interestingly, we find that the subitizing

approaches work really well across a range of count values.

This supports our intuition that aso-sub and seq-sub

are able to capture partial counts (from larger objects) as

well as integer counts (from smaller objects) better which is

intuitive since larger counts are likely to occur at a smaller

scale. Of the two approaches, seq-sub works better,

likely because reasoning about global context helps us cap-

ture part-like features better compared to aso-sub. This is

quite clear when we look at the performance of seq-sub

compared to aso-sub in the count range 11 to 15. For

lower count values, ens does the best (Fig. 6). We can see

that for counts > 5, glance and detect performances

start tailing off.

Detection : We tune the hyperparameters of Fast R-CNN

in order to find the setting where the mean squared error is

the lowest, on the Count-val splits of the datasets. We show

some qualitative examples of the detection ground truth, the

performance without tuning for counting (using black-box

Fast R-CNN), and the performance after tuning for counting

1140

 Fixed
Threshold
 (0.8)
Count : 1

 Fixed
Threshold
 (0.8)
 Count : 1

 Counting
Threshold
 Count : 17

 Counting
Threshold
 Count : 4

 24 Bottles 11 Persons

Figure 7: We show the ground truth count (top), outputs of detect with

a default score threshold of 0.8 (row 1), and outputs of detect with hy-

perparameters tuned for counting (row 2). Clearly, choosing a different

threshold allows us to trade-off localization accuracy for counting accu-

racy (see bottle image). The method finds partial evidence for counts, even

if it cannot localize the full object.

Figure 8: We plot the mRMSE across all categories (y-axis) for

aso-sub and seq-sub on PASCAL Count-val set against the size of

subitizing grid cells (x-axis). As we vary the discretization we conceptually

explore a continuum between glance and detect approaches. We find

that for aso-sub there exists a sweet spot (3×3), where performance on

counting is the best. Interestingly, for seq-sub the discretization sweet-

spot is farther out to the right than aso-sub’s 3× 3.

on the PASCAL dataset in Fig. 7. We use untuned Fast

R-CNN at a score threshold of 0.8 and NMS threshold of

0.3, as used by Girshick et al. [18] in their demo. At this

configuration, it achieves an mRMSE of 0.52 on Count-

test split of COCO. We find that we achieve a gain of 0.02

mRMSE by tuning the hyperparameters for detect.

Subitizing : We next analyze how different design choices

in aso-sub affect performance on PASCAL. We pick the

best performing aso-sub-ft-1L-3× 3 model and vary

the grid sizes (as explained in Sec. 4). We experiment with

3 × 3, 5 × 5, and 7 × 7 grid sizes. We observe that for

aso-sub the performance of 3 × 3 grid is the best and

performance deteriorates significantly as we reach 7 × 7
grids (Fig. 8).3 This indicates that there is indeed a sweet

spot in the discretization as we interpolate between the

3Going from 1×1 to 3×3, one might argue that the gain in performance

in aso-sub is due to more (augmented) training data. However, from the

diminishing performance on increasing grid size to 5× 5 (which has even

more data to train from), we hypothesize that this is not the case.

glance and detect settings. However, we notice that

for seq-sub this sweet spot lies farther out to the right.

5.3. Counting to Improve Detection

We now explore whether counting can help improve de-

tection performance (on the PASCAL dataset). Detectors

are typically evaluated via the Average Precision (AP) met-

ric, which involves a full sweep over the range of score-

thresholds for the detector. While this is a useful investiga-

tive tool, in any real application (say autonomous driving),

the detector must make hard decisions at some fixed thresh-

old. This threshold could be chosen on a per-image or per-

category basis. Interestingly, if we knew how many objects

of a category are present, we could simply set the threshold

so that those many objects are detected similar to Zhang et

al. [46]. Thus, we could use per-image-per-category counts

as a prior to improve detection.

Note that since our goal is to intelligently pick a thresh-

old for the detector, computing AP (which involves a sweep

over the thresholds) is not possible. Hence, to quantify de-

tection performance, we first assign to each detected box

one ground truth box with which it has the highest overlap.

Then for each ground truth box, we check if any detection

box has greater than 0.5 overlap. If so, we assign a match

between the ground truth and detection, and take them out

of the pool of detections and ground truths. Through this

procedure, we obtain a set of true positive and false positive

detection outputs. With these outputs we compute the preci-

sion and recall values for the detector. Finally, we compute

the F-measure as the harmonic mean of these precision and

recall values, and average the F-measure values across im-

ages and categories. We call this the mF (mean F-measure)

metric. As a baseline, we use the Fast-RCNN detector after

NMS to do a sweep over the thresholds for each category

on the validation set to find the threshold that maximizes F-

measure for that category. We call this the base detector.

With a fixed per-category score threshold, the base de-

tector gets a performance of 15.26% mF. With ground truth

counts to select thresholds, we get a best-case oracle per-

formance of 20.17%. Finally, we pick the outputs of ens

and seq-sub-ft models and use the counts from each of

these to set separate thresholds. Our counting methods un-

dercount more often than they overcount4, a high count im-

plies that the ground truth count is likely to be even higher.

Thus, for counts of 0, we default to the base thresholds and

for the other predicted counts, we use the counts to set the

thresholds. With this procedure, we get a gains of 1.64%

mF and 1.74% mF over the base performance using ens

and seq-sub-ft predictions respectively. Thus, count-

ing can be used as a complimentary signal to aid detector

performance, by intelligently picking the detector threshold

in an image specific manner.

4See [7] for more details.

1141

 How many athletes are
 there on the field?
 Resolved COCO category

 person
 VQA : 5 COCO : 5
 detect : 5 glance : 5
 aso-sub : 5 seq-sub : 5

 ens : 5

How many surfboards are
 shown?
 Resolved COCO category
 surfboard
 VQA : 5 COCO : 5
detect : 1 glance : 2
aso-sub : 3 seq-sub : 4
 ens : 3

 How many glasses are
 filled with alcohol?
 Resolved COCO category
 wine glass
 VQA : 10 COCO : 10
 detect : 5 glance : 7
 aso-sub : 8 seq-sub : 9
 ens : 7

Figure 9: Some examples from the Count-QA VQA subset. Given a ques-

tion, we parse the nouns and resolve correspondence to COCO categories.

The resolved ground truth category is denoted after the question. We show

the VQA ground truth and COCO dataset resolved ground truth counts,

followed by outputs from detect, glance, aso-sub, seq-sub and

ens.

Approach mRMSE (VQA) mRMSE (COCO-QA)

detect 2.72 ± 0.09 2.59 ± 0.12

glance-ft-1L 2.19 ± 0.05 1.86 ± 0.12

aso-sub-ft-1L-3× 3 1.94 ± 0.07 1.47 ± 0.04

seq-sub-ft-3× 3 1.81 ± 0.09 1.34 ± 0.07

ens 1.80 ± 0.07 1.40 ± 0.08

Deeper LSTM [21] 2.71 ± 0.23 N/A

SOTA VQA [15] 3.25 ± 0.94 N/A

Table 3: Performance of various methods on counting questions in the

Count-QA splits of the VQA dataset and COCO-QA datasets respec-

tively (L implies the number of hidden layers). Lower is better. ens

is a combination of glance-ft-1L, aso-sub-ft-1L-3 × 3 and

seq-sub-ft-3× 3.

5.4. VQA Experiment

We explore how well our counting approaches do on

simple counting questions. Recent work [2, 35, 31, 15] has

explored the problem of answering free-form natural lan-

guage questions for images. One of the large-scale datasets

in the space is the Visual Question Answering [2] dataset.

We also evaluate using the COCO-QA dataset from [35]

which automatically generates questions from human cap-

tions. Around 10.28% and 7.07% of the questions in VQA

and COCO-QA are “how many” questions related to count-

ing objects. Note that both the datasets use images from the

COCO [28] dataset. We apply our counting models, along

with some basic natural language pre-processing to answer

some of these questions.

Given the question “how many bottles are there in the

fridge?” we need to reason about the object of interest (bot-

tles), understand referring expressions (in the fridge) etc.

Note that since these questions are free form, the category

of interest might not exactly correspond to an COCO cate-

gory. We tackle this ambiguity by using word2vec embed-

dings [32]. Given a free form natural language question, we

extract the noun from the question and compute the clos-

est COCO category by checking similarity of the noun with

the categories in the word2vec embedding space. In case of

multiple nouns, we just retain the first noun in the sentence

(since how many questions typically have the subject noun

first). We then run the counting method for the COCO cat-

egory (see Fig 9). More details can be found in the supple-

mentary. Note that parsing referring expressions is still an

open research problem [23, 39]. Thus, we filter questions

based on an “oracle” for resolving referring expressions.

This oracle is constructed by checking if the ground truth

count of the COCO category we resolve using word2vec

matches with the answer for the question. Evaluating only

on these questions allows us to isolate errors due to inac-

curate counts. We evaluate our outputs using the RMSE

metric. We use this procedure to compile a list of 1774 and

513 questions (Count-QA) from the VQA and COCO-QA

datasets respectively, to evaluate on. We will publicly re-

lease our Count-QA subsets to help future work.

We report performances in Table. 3. The trend of in-

creasing performance is visible from glance to ens.

We find that seq-sub significantly outperforms the other

approaches. We also evaluate a state-of-the-art VQA

model [15] on the Count-QA VQA subset and find that even

glance does better by a substantial margin.5

6. Conclusion

We study the problem of counting everyday objects in

everyday scenes. We evaluate some baseline approaches to

this problem using object detection, regression using global

image features, and associative subitizing which involves

regression on non-overlapping image cells. We propose

sequential subtizing, a variant of the associative subitizing

model which incorporates context across cells using a pair

of stacked bi-directional LSTMs. We find that our proposed

models lead to improved performance on PASCAL VOC

2007 and COCO datasets. We thoroughly evaluate the rel-

ative strengths, weaknesses and biases of our approaches,

providing a benchmark for future approaches on counting,

and show that an ensemble of our proposed approaches pe-

forms the best. Further, we show that counting can be used

to improve object detection and present proof-of-concept

experiments on answering ‘how many?’ questions in vi-

sual question answering tasks. Our code and datasets will

be made publicly available.
Acknowledgements. We are grateful to the developers of Torch [9] for

building an excellent framework. This work was funded in part by NSF

CAREER awards to DB and DP, ONR YIP awards to DP and DB, ONR

Grant N00014-14-1-0679 to DB, a Sloan Fellowship to DP, ARO YIP

awards to DB and DP, an Allen Distinguished Investigator award to DP

from the Paul G. Allen Family Foundation, Google Faculty Research

Awards to DP and DB, Amazon Academic Research Awards to DP and

DB, and NVIDIA GPU donations to DB. The views and conclusions con-

tained herein are those of the authors and should not be interpreted as nec-

essarily representing the official policies or endorsements, either expressed

or implied, of the U.S. Government, or any sponsor.

5For the column corresponding to VQA, all methods are evaluated on

the subset of the predictions where [21] and [15] both produced numerical

answers. For [21], there were 11 non-numerical answers and for [15] there

were 3 (e.g., ”many”, ”few”, ”lot”)

1142

