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Abstract

Person re-identification (ReID) is an important task in

wide area video surveillance which focuses on identifying

people across different cameras. Recently, deep learning

networks with a triplet loss become a common framework

for person ReID. However, the triplet loss pays main at-

tentions on obtaining correct orders on the training set. It

still suffers from a weaker generalization capability from

the training set to the testing set, thus resulting in inferior

performance. In this paper, we design a quadruplet loss,

which can lead to the model output with a larger inter-class

variation and a smaller intra-class variation compared to

the triplet loss. As a result, our model has a better general-

ization ability and can achieve a higher performance on the

testing set. In particular, a quadruplet deep network using

a margin-based online hard negative mining is proposed

based on the quadruplet loss for the person ReID. In

extensive experiments, the proposed network outperforms

most of the state-of-the-art algorithms on representative

datasets which clearly demonstrates the effectiveness of our

proposed method.

1. Introduction

Person re-identification (ReID) is an important task in

wide area video surveillance. The key challenge is the large

appearance variations, usually caused by the significant

changes in human body poses, illumination and views.

As person ReID commonly uses the Cumulative Match-

ing Characteristic curve [11, 13, 45] for performance eval-

uation which follows rank-n criteria, recently deep learning

approaches [7, 2, 29, 32, 4] usually treat the person ReID

as a ranking task and apply a triplet loss to address the

problem. The main purpose of the triplet loss is to obtain a

correct order for each probe image and distinguish identities

in the projected space. However, in person ReID the cate-

gories (i.e. person identities) in the testing set are unseen

and have no overlap with the training categories. As shown

Figure 1. (a) and (b) illustrate the effects of two models (e.g. with

triplet loss vs. quadruplet loss) learned on the same training set

(left) when applied on the same test set (right). We can see that the

model trained in case (b) has output a small intra-class variation

and a large inter-class variation, thus tends to perform better on

the testing set than the model trained in case (a).

in Fig. 1 (a), a model learned (e.g. typically by a triplet

loss) in the training set is specific to the training identities,

and performs well in distinguishing these identities. When

it is applied on the unseen testing identities, the trained

model struggles to be a good performer, showing a weaker

generalization capability from training to testing. The

underlying reason is that the model trained by a triplet loss

would still cause a relatively large intra-class variation1,

which was also observed in [4]. It is noted that reducing

intra-class variations and enlarging inter-class variations

can decrease the generalization error of trained models [34].

1The category for the intra- and inter- class variations refers to person

identities in person ReID.
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We argue that the performance of the triplet loss on the

testing set can be improved by further reducing the intra-

class variations and enlarging the inter-class variations. A

desired output is shown in Fig. 1 (b).

In this paper, we introduce a quadruplet ranking loss,

which is modified based on the triplet loss and capable

of achieving a smaller intra-class variation and a larger

inter-class variation with significant performance on the

testing set. Our designed loss simultaneously considers

the following two aspects in one quadruplet: 1) obtaining

correct orders for pairs w.r.t the same probe image (e.g.

B1B3 < B1A3 in Fig. 1); and 2) pushing away negative

pairs from positive pairs w.r.t different probe images (e.g.

C1C2 < B1A3 in Fig. 1). The first aspect shares the same

idea with the triplet loss and is to keep the correct orders of

each probe image in the training set, while the second aspect

focuses on further reducing the intra-class variations and

enlarging the inter-class variations. The balance of these

two aspects is controlled implicitly by two margins. It is

worth mentioning that, the second aspect is not necessary

for a good result on the training set, but we argue it’s helpful

to enhance the generalization ability of the trained models

on the testing set. Experiments in Section 5 demonstrate

that this design can produce larger inter-class variations

and smaller intra-class variations, and thus lead to a better

performance on the testing set.

In addition to a triplet loss, some deep learning method-

s [19, 1, 41, 35, 29, 32] address the person ReID problem

from the classification aspect and adopt a binary classifi-

cation loss to train their models. To justify the proposed

loss, we present a theoretical analysis of the relationships

of three different losses: our quadruplet loss, the triplet loss

and the commonly used binary classification loss. To the

best of our knowledge, this is the first detailed study of such

relationships in a unified view for person ReID.

Meanwhile, we propose a quadruplet deep network

based on our quadruplet loss. In the proposed network,

the input sample is a quadruplet. In practice, even for a

small dataset, it can produce an overwhelming number of

quadruplet samples. Selecting suitable samples for training

a deep net is a big challenge. We introduce a margin-based

online hard negative mining to select hard samples to

train the model. Our algorithm adaptively sets the margin

threshold according to the trained model, and uses this

margin threshold to automatically select hard samples.

In summary, our contributions are four-fold: 1) a quadru-

plet loss, with strong and weak push strategies; 2) a quadru-

plet deep network with a margin-based online hard negative

mining strategy; 3) a theoretical and insightful analysis of

loss relationships, putting different losses in a unified view;

4) significant performance on representative datasets (e.g.

CUHK03, CUHK01 and VIPeR), being superior to most of

the state-of-the-art methods.

2. Related work

Most of existing methods in person ReID focus on

either feature extraction [44, 28, 23, 8, 40], or similarity

measurement [17, 27, 22, 39]. Person image descriptors

commonly used include color histogram [14, 17, 38], local

binary patterns [14], Gabor features [17], and etc., which

show certain robustness to the variations of poses, illumi-

nation and viewpoints. For similarity measurement, many

metric learning approaches are proposed to learn a suitable

metric, such as locally adaptive decision functions [20],

local fisher discriminant analysis [25], cross-view quadratic

discriminant analysis [21], and etc. However, manually

crafting features and metrics are usually not optimal to cope

with large intra-class variations.

Since feature extraction and similarity measurement are

independent, the performance of the whole system is often

suboptimal compared with an end-to-end system using

CNN that can be globally optimized via back-propagation.

With the development of deep learning and the increasing

availability of datasets, the handcrafted features and metrics

struggle to keep top performance widely, especially on large

scale datasets. Alternatively, deep learning is attempted

for person ReID to automatically learn features and metrics

[19, 1, 32, 3, 16]. Some deep methods [7, 2, 4] consider

person ReID as a ranking issue. For example, Ding et al. [7]

use a triplet loss to get the relative distance between images.

Chen et al. [2] design a ranking loss which minimizes

the cost corresponding to the sum of the gallery ranking

disorders. Our method also solves person ReID on ranking

aspect and introduces a quadruplet loss which enlarges

inter-class variations and reduces intra-class variations.

Meanwhile, there are approaches [19, 1, 41, 35, 32,

30, 31] which tackle the person ReID problem from the

classification aspect. Some of them adopt a softmax layer

with the cross-entropy loss in their networks [19, 1, 35].

The cross-entropy loss can well represent the probability

that the two images in the pair are of the same person or

not. Others [32, 30, 31] import a margin-based loss (e.g.

a contrastive loss [10]), which builds a margin to keep

the largest separation between positive and negative pairs.

For instance, Varior et al. [31] design a siamese LSTM

architecture with a contrastive loss. In Section 4, we analyse

the relationship between different losses which justifies the

proposal of our quadruplet loss.

It is worth mentioning that there are two deep methods

(DeepLDA [36] and ImpTrpLoss [4]) which also manage

to reduce the intra-class variations like us in person ReID.

DeepLDA [36] imports a LDA objective function using

fisher vectors. However, it pays all its attentions on the

intra- and inter- class variations and partly ignore the

relative relationships between pairs. Our quadruplet loss

is expanded from the triplet loss which reserves the relative

relationships in the trained model. ImpTrpLoss [4] imports
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Figure 2. Three networks with different losses. (a) the triplet

loss with Euclidean distance [26]; (b) the triplet loss with learned

metric [32]; (c) our improved net with the normalised triplet loss.

an additional constraint in the traditional triplet loss, which

limits the distances of positive pairs to be smaller than a

pre-defined value, while in our method, the new constraint

comes from the pairs with different probe images.

What’s more, there are works exploring effective sam-

pling schemes [1, 7] in person ReID. Ahmed et al. [1] it-

eratively fine-tune their models with hard negative samples

selected by a previous trained model, which is an offline

hard negative mining method. While Ding et al. [7] design

a predefined triplet generation scheme. In each iteration,

they randomly select a small number of classes (persons)

and generate triplets using only those images. However,

these methods can’t select samples adaptively according to

the trained model. The margin threshold in our method is

adaptively set according to the trained model, which can be

used to automatically select hard samples.

3. The proposed approach

Our quadruplet is designed based on the commonly used

triplet loss. So, in this section, we first introduce the triplet

loss and then present our quadruplet loss. The proposed

network with the margin-based online hard negative mining

would be introduced at last.

3.1. The triplet loss

The triplet loss [26] is normally trained on a series of

triplets {xi, xj , xk}, where xi and xj are images from

the same person, and xk is from a different person. The

triplet loss is designed to keep xi closer to xj than xk, and

widely used in many areas, such as image retrieval [33],

face recognition [26] and person re-identification [7, 4]. It

is formulated as following:

Ltrp=

N∑

i,j,k

[‖f(xi)−f(xj)‖
2
2−‖f(xi)−f(xk)‖

2
2+αtrp]+ (1)

where [z]+ = max(z, 0), and f(xi), f(xj), f(xk) mean

features of three input images.

In most cases, the image feature f is well normalized

during training. The threshold αtrp is a margin that is

enforced between positive and negative pairs. The related

network is shown in Fig. 2 (a). In Eq. 1, the triplet loss

adopts the Euclidean distance to measure the similarity of

extracted features from two images. We replace the Eu-

clidean distance with a learned metric g(xi, xj), similar to

Wang et al. [32], which can effectively model the complex

relationships between the gallery and probe images, and can

be more robust to appearance changes across cameras. The

loss with the learned metric is formulated as:

Ltrp =

N∑

i,j,k

[g(xi, xj)
2 − g(xi, xk)

2 + αtrp]+ (2)

In Eq. 1, f(xi) is well normalized and keeps ‖f(xi) −
f(xj)‖2 ranging in [0,1]. But in Eq. 2, g(xi, xj) is a

value instead of a vector. Wang et al. [32] use a fully

connected layer with a one-dimensional output to learn the

value g(xi, xj) as shown Fig. 2 (b). It would cause the value

g(xi, xj) can’t maintain the range of [0,1], and partly inval-

idate the margin threshold αtrp. For example, no matter

how large the threshold αtrp, the model can simultaneously

multiply g(xi, xj) and g(xi, xk) by an appropriate value to

meet the requirement of the margin threshold.

So in Section 3.2, we first introduce our improvement on

the triplet loss and then present our quadruplet loss.

3.2. The quadruplet loss

At beginning, we first propose an improvement to handle

the lack of normalization in Fig. 2 (b). A fully connected

layer with a two-dimensional output is adopted in our

net as shown in Fig. 2 (c). As g(xi, xj) represents the

distance of two images, the larger g(xi, xj) is, the more

dissimilar two images are. The value g(xi, xj) should be

positively correlated with the probability of dissimilarity of

two images. Thus we assumed that one of two dimensions

in our fully connected layer can represent probabilities of

dissimilarity of two images to some extent. A softmax

layer is adopted to normalize the two dimensions. Then one

dimension, i.e. the one representing the dissimilarity of two

images (red point in Fig. 2 (c)), is used to serve as g(xi, xj)
to be sent to the loss and be trained. As a result, the value

g(xi, xj) can be well normalized and range in [0,1] which

ensures the effectiveness of the margin threshold αtrp.

Additionally we have explored to import a softmax loss

in Fig. 2 (c) after the final fully connected layer, which can

enhance the two outputs on representing probabilities of

similarity and dissimilarity of two images to some extent.

Its influence is discussed in Section 5.2 with the comparison

between Triplet(Improved w/o sfx) and Triplet(Improved).

From Eq. 2, it’s evident that the triplet loss trains the

model only based on the relative distances between positive

and negative pairs w.r.t the same probe images. Our

quadruplet loss introduces a new constraint which pushes

away negative pairs from positive pairs w.r.t different probe

images. The quadruplet loss is as below:
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Figure 3. The framework of the proposed quadruplet deep network. The red shadow region indicates elements of the new constraint.

Lquad =
N∑

i,j,k

[g(xi, xj)
2 − g(xi, xk)

2 + α1]+

+

N∑

i,j,k,l

[g(xi, xj)
2 − g(xl, xk)

2 + α2]+

si = sj , sl 6= sk, si 6= sl, si 6= sk

(3)

where α1 and α2 are the values of margins in two terms and

si refers to the person ID of image xi.

The first term is the same as Eq. 2. It focuses on

the relative distances between positive and negative pairs

w.r.t the same probe images. The second term is the

new constraint which considers the orders of positive and

negative pairs with different probe images. With the

help of this constraint, the minimum inter-class distance is

required to be larger than the maximum intra-class distance

regardless of whether pairs contain the same probe.

As mentioned above, the first term aims to obtain the

correct orders with the same probe in training data. The

second term provides a help from the perspective of orders

with different probe images. It can further enlarge the

inter-class variations and improve the performance on the

testing data. Though it’s a useful auxiliary term, it should

not lead the training phase and be considered as equally

important as the first term. Therefore, we treat the two terms

differently in Eq. 3. We adopts the margin thresholds to

determine the balance of two terms in our loss instead of

using weights. We require that the margin between pairs

with the same probe should be large enough to maintain the

main constraint. And the second term could hold a smaller

margin to achieve a relatively weaker auxiliary constraint.

So in our method, α1 is set to be larger than α2.

The framework of our network using the quadruplet loss

is shown in Fig. 3. The architecture without the red shadow

region is the network in Fig. 2 (c). After bringing in the new

constraint, the architecture changes from a triplet network

to a quadruplet network. The quadruplet network not only

treats positive and negative pairs differently as the triplet

loss does, but also distinguishes two pairs on whether the

probe images are same or not. For the pairs from the same

probe, the quadruplet loss produces a strong push between

positive and negative pairs, while for those with different

probes, our loss provides a relatively weaker push to reduce

the inter-class variations.

3.3. Margin­based online hard negative mining

As we know, the margin thresholds are to confine the

distance between positive and negative pairs in a quadruplet

sample. In Eq. 1, Schroff et al. [26] select the samples

which hold a smaller distance than the margin threshold

as hard samples to achieve an online hard negative mining.

However, it’s hard to predefine a suitable margin threshold.

A small threshold would result in few hard samples. As

only hard samples are feedback to train the model, few hard

samples would cause a slow convergence and easily lead

the model to a suboptimal solution. In contrast, a large

threshold would produce too much hard training samples

to cause over fitting. Our algorithm manages to adaptively

set the margin threshold according to the trained model, and

use this margin threshold to select hard samples.

The main idea behind our adaptive margin is the avoid-

ance of the over- or under-sampling problems mentioned

above with the assumption that the distances (or similari-

ties) between features of the same class (i.e. positive pairs)
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or different classes (i.e. negative pairs) are samples from

two distinct distributions, i.e. the positive pair distance

distribution and the negative pair distance distribution. The

adaptive margin threshold is substantially used to express

the average distance of the two distributions, which should

have a positive relationship with the average distance. So

we use the average distance of two distinct distributions to

adaptively represent our margin thresholds.

α = w(µn − µp)

= w(
1

Nn

N∑

i,k

g(xi,xk)
2−

1

Np

N∑

i,j

g(xi,xj)
2)

si = sj , si 6= sk

(4)

where µp and µn are mean values of two distributions.

Np and Nn are numbers of positive and negative pairs

respectively, and w is the correlation coefficient. We set

w = 1 for α1 and w = 0.5 for α2 in Eq. 3.

In the implementation, computing the mean of two

distributions for each iteration is time consuming. We

use the mean of two distributions in each batch instead.

Assuming the batch size is M , and Np and Nn would be

set to M and 2M respectively. Given that we use stochastic

gradient descent (SGD) for the optimisation process, we

need to derive the gradient of our loss function, as follows:

∂Lquad

∂g(xi,xj)
=(2−

2

M
)g(xi,xj)1l[g(xi,xk)

2−g(xi,xj)
2<max(µ,0)]

+(2−
1

M
)g(xi,xj)1l[g(xl,xk)

2−g(xi,xj)
2<

max(µ,0)

2
]

∂Lquad

∂g(xi,xk)
=(−2+

3

2M
)g(xi,xk)1l[g(xi,xk)

2−g(xi,xj)
2<max(µ,0)]

∂Lquad

∂g(xl,xk)
=(−2+

3

2M
)g(xl,xk)1l[g(xl,xk)

2−g(xi,xj)
2<

max(µ,0)

2
]

si = sj , sl 6= sk, si 6= sl, si 6= sk
(5)

where µ = µn − µp, and 1l[a] is an indicator function with

value 1 when a is true, otherwise 0.

Thus the margin threshold is self-adaptive based on

the two distributions of the trained model. During each

iteration, only the samples holding smaller distances than

the average are selected and back propagated, which are

considered as hard samples in current trained model.

4. Relationships of different losses

In this section, we theoretically discuss the relationships

of our quadruplet loss, the triplet loss and the traditional

binary classification loss.

Under a learned metric, the triplet loss and our quadru-

plet loss can be formulated as Eq. 2 and Eq. 3 respectively.

For the binary classification aspect, either the cross-entropy

loss [19, 1] or the contrastive loss [30, 31] can be used as

a binary classification loss. The cross-entropy loss can well

Figure 4. The binary classification loss prefers to training a lower

misclassification rate model like Case 2 rather than Case 1, which

imports a wrong order (Probe C). And it is an undesired locally

optimal solution for person ReID. (Best viewed in color)

represent the probability that the two images in the pair are

of the same person or not. However, it can’t obtain a largest

separation between positive and negative pairs due to lack

of the margin threshold. The margin in the contrastive loss

can partly enhance the generalization ability of the classifier

from the training set to the testing set. Because in general

the larger the margin, the lower the generalization error of

the classifier [5]. So in this section, we mainly compare our

quadruplet loss with the contrastive loss, which contains a

margin threshold consistently with ours. The contrastive

loss can be formulated as follows:

Lcts =
N∑

i,j

[yijd+ (1− yij)max(0, αcts − d)]

d = ‖f(xi)− f(xj)‖
2
2

(6)

where y = 1 for positive pairs, and y = 0 for negative ones,

and αcts is the margin threshold. When a learned metric

g(xi, xj) is applied, the loss becomes:

Lcts=

N∑

i,j

[yijg(xi,xj)
2+(1−yij)max(0, αcts−g(xi,xj)

2)]

(7)
The input of the contrastive loss in Eq. 7 is doublets

{(xi, xj), y}, while the training samples sent to our quadru-

plet loss in Eq. 3 are quadruplets {xi, xj , xk, xl}. If we

want to compare Eq. 7 and Eq. 3, we have to keep their

inputs consist. Therefore, we manage to transform the

doublet samples into quadruplets. In Eq. 7, the input

sample is a doublet (i.e. a pair) containing two images.

We assume that the batch has M samples, which contains

(Np=a) positive pairs and (Nn=M−a) negative doublets.

During the transformation, we change the input sample into

two doublets including a positive doublet and a negative

doublet. As a result, the transformed sample contains four

images from two doublets. Both positive and negative

doublets are selected from M original samples, so that the

images used in the training of this batch are not changed and
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no additional image is imported during the transformation.

The only change is the increased frequency of usages of

image pairs. We assume that this increased frequency would

make no difference on performance as long as the usage

ratio of positive and negative pairs are unchanged2. The

batch size would become a(M − a), and we adopt “⇒” to

express the transformation. For a batch, the contrastive loss

can be formulated as following:

Lcts=

M∑

(i,j)

[yijg(xi,xj)
2+(1−yij)max(0, αcts−g(xi,xj)

2)]

=

a∑

(i,j)|si=sj

[g(xi,xj)
2] +

M−a∑

(i,j)|si6=sj

[max(0, αcts−g(xi,xj)
2)]

⇒

a(M−a)∑

(i,j,l,k)|si=sj,sl6=sk

[g(xi,xj)
2+max(0, αcts−g(xl,xk)

2)]

=

a(M−a)∑

(i,j,l,k)|si=sj,sl6=sk

max[g(xi,xj)
2,g(xi,xj)

2+αcts−g(xl,xk)
2]

=

b∑

(i,j,l,k)|si=sj=sl,sl6=sk

max[g(xi,xj)
2,g(xi,xj)

2+αcts−g(xl,xk)
2]

+

a(M−a)−b∑

(i,j,l,k)|si=sj,si6=sl6=sk

max[g(xi,xj)
2,g(xi,xj)

2+αcts−g(xl,xk)
2]

(8)
where si indicates the person ID of image xi.

In Eq. 8, the contrastive loss is split into two terms

after the transformation. The first term focuses on two

pairs which hold the same probe image, with the size of

b < a(M−a), while the second term trains on a quadruplet

set that contains two pairs with different probe images.

Triplet vs. Contrastive: Compared the triplet loss in

Eq. 2 and the first term of the contrastive loss in Eq. 8, It

can be seen that the only difference is the threshold u in

max[u, g(xi, xj)
2+αcts−g(xl, xk)

2]. The triplet loss purely

considers the error (i.e. g(xi, xj)
2+αcts− g(xl, xk)

2) of

the relative distance between positive and negative pairs as

long as its exists (> 0). But the first term of the contrastive

loss gives priority to the absolute distance of positive pairs

g(xi, xj) when the error of the relative distance is not large

enough. It would cause the contrastive loss to obtain a

small positive distance with the risk of existing errors in

the relative distances between positive and negative pairs.

Quadruplet vs. Contrastive: Then we compare our

quadruplet loss in Eq. 3 with the contrastive loss. Besides

the difference of the threshold u in max(u, ·), we can

find that the two margin thresholds in Eq. 3 are different.

In the contrastive loss of Eq. 8, the two terms share

the same margin threshold αcts, which indicates that the

2In this batch, we can set a = M/2 to keep the ratio consistent.

second term plays an equally important role as the first

term. It causes the contrastive loss prefers to the model

with a low misclassification rate, no matter whether the

misclassifications come from orders with the same probe

images or with different probe images. This problem is

ubiquitous in binary classifiers. But in person ReID, what

we care most is those with the same probe. This setting

would lead the trained model to an undesired solution.

An example is shown in Fig. 4. Case 1 and 2 illustrate

two projected distributions of scores obtained by binary

classifiers containing images from three persons (person

A, B and C). For each pair sample, the score underneath

is a probability denoting the similarity between its two

images. Probe:X indicates where an image from person X

is used as a probe image (the left image in a pair). For

example, Probe:A means an image from person A is used

as a probe image. The green-coloured rectangle indicates

a positive pair, and the red rectangle for the negative pair.

In Case 1, it is evident that for each probe image (w.r.t

one particular person), we can get the correct rank-1 result.

However, in this case it is very difficult for a classifier to

determine a suitable threshold to distinguish positive and

negative pairs (e.g., less than two misclassified samples).

On the contrary in Case 2, where the vertical dashed line

denotes the decision threshold learned by the classifier, the

classifier has a lower misclassification rate. As a result,

a binary classifier in Eq. 8 will favor Case 2 rather than

Case 1, as the binary classification loss in Case 2 (one

misclassified sample) will be lower than that in Case 1. But

in person ReID, we prefer Case 1, which outputs correct

rank-1 results for all of the three persons, rather than Case

2 that contains a false rank-1 result.

In our quadruplet loss, we treat two terms in Eq. 3

differently to solve this problem3, which are trained with

different margin thresholds. The second term provides a

relatively weaker auxiliary constraint, while the first term

maintains the stronger constraint and plays a dominant role.

Quadruplet vs. Triplet: As shown in Section 3, the triplet

loss is part of our quadruplet loss, but without the second

term in Eq. 3. The second term provides a help from the

perspective of orders with different probe images. It can

further enlarge the inter-class variations and improve the

performance on the testing data.

As a result, we can find that our quadruplet loss covers

the weaknesses from both the binary classification loss and

the triplet loss to some extent, and takes their advantages

in person ReID which achieves a better performance than

either of them. In Section 5.2, we also provide related

experiments to compare our quadruplet network with the

traditional networks using the contrastive loss in Eq. 7.

3This can’t be achieved in a traditional network with the binary

classification loss, unless the input of the network changes from doublets

into quadruplets as ours.
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Figure 5. The distributions of intra- and inter- class distances from

different models on CUHK03 training set. The red and blue lines

indicate intra- and inter- distance respectively.

5. Experiment

We conduct two sets of experiments: 1) to evaluate the

performance of different losses; 2) to compare the proposed

approach with state-of-the-art methods.

5.1. Implementation and Datasets

Our method is implemented on the Caffe framework

[12]. All images are resized to 227 × 227 before being

fed to network. The learning rate is set to 10−3, and the

batch size is 128. For all the datasets, we horizontally

mirror each image and increase the dataset sizes fourfold.

As the marge-based hard negative mining is switched off,

the margin thresholds α1 and α2 in Eq. 3 are set to 1 and 0.5

respectively. In the beginning of the training on the margin-

based hard negative mining, the two distributions are chaos,

and the average distance would be meaningless. To provide

an effective startup and accelerate the convergence, we

initialize the network with a pre-trained model on fixed

margin thresholds. For all other networks, we use a pre-

trained AlexNet model (trained on Imagenet dataset [15])

to initialize the kernel weights of the first two convolutional

layers. Cumulative Matching Characteristics (CMC) curves

are employed to measure the ReID performance. We report

the single-shot results on all the datasets.

The experiment is conducted on three datasets includ-

ing CUHK03 [19], CUHK01 [18], and VIPeR [9]. The

CUHK03 [19] contains 13164 images from 1360 persons.

We randomly select 1160 persons for training, 100 persons

for validation and 100 persons for testing, following exactly

the same setting as [19] and [1]. The CUHK01 [18] and

VIPeR [9] datasets have 971 and 632 persons respectively,

captured from two camera views. Every individual contains

two images from each camera. For VIPeR and CUHK01

dataset, the individuals are randomly divided into two equal

parts, with one used for training and the other for testing.

Note that for the comparison purpose, we further report our

results on CUHK01 with another setting: 100 persons are

randomly chosen for testing, and the rest 871 persons are

used for training, denoted by CUHK01(p=100).

5.2. Results of Quadruplet Network

Different Losses. We conduct experiments with different

losses and provide several baselines to illustrate the

effectiveness of each component in our method. Results

are shown in Table 1. There are three baselines. The

first two baselines are the networks in Fig. 2 (a) and

(b) using a triplet loss with an embedding Euclidean

distance and a learned metric respectively, denoted

by BL1:Triplet(Embedding) and BL2:Triplet(Learned

Metric). The third one is a traditional network using a

binary classification loss mentioned in Section. 4 with

the same eight layers as our framework, denoted by

BL3:Classification. Our improved triplet loss containing

a normalization with a two-dimensional output in Fig. 2

(c) is denoted by Triplet(Improved), and Triplet(Improved

w/o sfx) means that without the help of the softmax loss.

The network Quadruplet indicates the proposed quadruplet

network in Fig. 3. Compared our Triplet(Improved)

with two baselines (BL1:Triplet(Embedding) and

BL2:Triplet(Learned Metric)), it’s obvious that the learned

similarity metric with a two-dimensional output is better

than the embedding one or that with a one-dimensional

output like Wang’s [32]. When comparing the performance

between Triplet(Improved w/o sfx) and Triplet(Improved),

adding the softmax loss could slightly boost the overall

performance of our improved triplet loss. And if the

new constraint is brought in, for all three datasets, the

performance of Quadruplet is consistently better than

Triplet(Improved), which implies the effectiveness of

our proposed quadruplet loss. What’s more, as said in

Section 4, our quadruplet loss has connections with the

binary classification loss. From the comparison between

Quadruplet and the baseline BL3:Classification, it can be

found that our quadruplet loss can overcome the weakness

of the binary classification loss and produce a great

improvement on the performance.

With vs without margin-based hard negative mining.

Then we test the effectiveness of our margin-based hard

negative mining. In Table 1, the term +MargOHNM

indicates the network using our margin-based online hard

negative mining. It is obvious that when the +MargOHNM

is used, the results of Quadruplet+MargOHNM are further

improved, which suggest that the margin-based online hard

negative mining can select samples effectively and enhance

the performance. It can be seen that +MargOHNM per-

forms better for rank-n (n>1) in CUHK03 and CUHK01,

but on the opposite way in VIPeR. As we adopt the

mean values of two learned distributions to replace the

margins. The confidences of two distributions have a great
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Table 1. The CMC performance of the state-of-the-art methods and different architectures in our method on three representative datasets.

Method
CUHK03 CUHK01(p=486) CUHK01(p=100) VIPeR

r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 r = 1 r = 5 r = 10 r = 1 r = 5 r = 10
ITML [6] 5.53 18.89 29.96 15.98 35.22 45.60 17.10 42.31 55.07 - - -
eSDC [43] 8.76 24.07 38.28 19.76 32.72 40.29 22.84 43.89 57.67 26.31 46.61 58.86

KISSME [14] 14.17 48.54 52.57 - - - 29.40 57.67 62.43 19.60 48.00 62.20
FPNN [19] 20.65 51.00 67.00 - - - 27.87 64.00 77.00 - - -
mFilter [44] - - - 34.30 55.00 65.30 - - - 29.11 52.34 65.95
kLFDA [38] 48.20 59.34 66.38 32.76 59.01 69.63 42.76 69.01 79.63 32.33 65.78 79.72
DML [41] - - - - - - - - - 34.40 62.15 75.89
IDLA [1] 54.74 86.50 94.00 47.53 71.50 80.00 65.00 89.50 93.00 34.81 63.32 74.79

SIRCIR [32] 52.17 85.00 92.00 - - - 72.50 91.00 95.50 35.76 67.00 82.50
DeepRanking [2] - - - 50.41 75.93 84.07 70.94 92.30 96.90 38.37 69.22 81.33

DeepRDC [7] - - - - - - - - - 40.50 60.80 70.40
NullReid [42] 58.90 85.60 92.45 64.98 84.96 89.92 - - - 42.28 71.46 82.94

Ensembles [24] 62.10 89.10 94.30 53.40 76.30 84.40 - - - 45.90 77.50 88.90
DeepLDA [36] 63.23 89.95 92.73 - - - 67.12 89.45 91.68 44.11 72.59 81.66

GOG [23] 67.30 91.00 96.00 57.80 79.10 86.20 - - - 49.70 79.70 88.70
GatedSiamese [30] 68.10 88.10 94.60 - - - - - - 37.80 66.90 77.40

ImpTrpLoss [4] - - - 53.70 84.30 91.00 - - - 47.80 74.70 84.80
DGD [37] 80.50 94.90 97.10 71.70 88.60 92.60 - - - 35.40 62.30 69.30

BL1: Triplet(Embedding) 60.13 90.51 95.15 44.24 67.08 77.57 63.50 80.00 89.50 28.16 52.22 65.19
BL2: Triplet(Learned Metric) 61.60 92.41 97.47 58.74 80.35 88.07 77.00 94.00 97.50 40.19 70.25 82.91

Triplet(Improved w/o sfx) 70.25 95.97 98.10 58.85 82.61 88.37 77.50 95.00 96.50 44.30 72.47 80.06
Triplet(Improved) 72.78 95.97 97.68 59.26 82.41 88.27 78.00 95.50 98.00 44.30 71.84 81.96

Quadruplet 74.47 96.62 98.95 62.55 83.02 88.79 79.00 96.00 97.00 48.42 74.05 84.49
BL3: Classification 68.35 93.46 97.47 58.74 79.01 87.14 76.50 94.00 97.00 44.30 69.94 81.96

Quadruplet + MargOHNM 75.53 95.15 99.16 62.55 83.44 89.71 81.00 96.50 98.00 49.05 73.10 81.96

influence on the results of +MargOHNM. For CUHK03 and

CUHK01, the performance (i.e. learned distributions) is on

a high-confidence level (rank1 70%+), much higher than

that of VIPeR (rank1 40%+). As a result, +MargOHNM

can work better on CUHK03 and CUHK01.

Effects on intra- and inter- class variations. We

also provide the distributions of intra- and inter- class

distances from models trained with different losses on

CUHK03 training set in Fig. 5. As the distances from

BL2:Triplet(Learned Metric) do not range from 0 to 1, we

normalize the distances into [0,1] and get the results. From

Fig. 5, we can see that our Triplet (Improved), Quadruplet

and Quadruplet+MargOHNM gradually make the average

intra-class distance smaller and smaller, and make the

average inter-class distance larger and larger. For the large

intra-class distance and the small inter-class distance of

BL2:Triplet(Learned Metric), that’s due to the lack of

normalization on the output layers as said in Section 3.1.

5.3. Comparison with the state of the arts

We compare ours with representative ReID methods

including 18 algorithms. In Table 1, it is noted that our

results are better than most approaches above, which further

confirm the effectiveness of our proposed method. Under

the rank-1 accuracy, our multi-task network outperform-

s most of existing person ReID algorithms on all three

datasets. The DGD [37] achieves better performance than

us, but it combines all current datasets together as its

training data which is much larger than ours. Even so,

our rank-n (n>1) performance on CUHK03 is higher than

DGD’s. The loss in DGD is designed for maximizing

the top-1 classification accuracy, with less emphasis on

top-n (n>1) accuracies. The top-1 classification accuracy

corresponds to the rank-1 result. Our quadruplet loss

cares both the ranking orders and the rank-1 accuracy,

that’s why our method outperforms DGD in rank-n (n>1)

though not better in terms of rank-1. Since VIPeR is

relatively small, it is expected that deep learning might

not be demonstrated to reach its full potential; instead, a

hand-crafted metric learning may be more advantageous on

this set, like GOG [23] and Ensembles [24]. It is noted

that DeepLDA [36] and ImpTrpLoss [4] also focus on the

intra- and inter- class variations like us, as mentioned in

Section 2. From the results compared with DeepLDA [36]

and ImpTrpLoss [4], we can conclude that our constraint is

more effective than theirs.

6. Conclusion

In this paper, a quadruplet loss is proposed to handle

the weakness of the triplet loss on person ReID. And a

quadruplet network using a margin-based online hard nega-

tive mining is presented based on the quadruplet loss, which

has outperformed most of the state-of-the-art methods on

CUHK03, CUHK01 and VIPeR.
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