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Abstract

This paper aims at high-accuracy 3D object detection in

autonomous driving scenario. We propose Multi-View 3D

networks (MV3D), a sensory-fusion framework that takes

both LIDAR point cloud and RGB images as input and pre-

dicts oriented 3D bounding boxes. We encode the sparse

3D point cloud with a compact multi-view representation.

The network is composed of two subnetworks: one for 3D

object proposal generation and another for multi-view fe-

ature fusion. The proposal network generates 3D candi-

date boxes efficiently from the bird’s eye view representa-

tion of 3D point cloud. We design a deep fusion scheme

to combine region-wise features from multiple views and

enable interactions between intermediate layers of different

paths. Experiments on the challenging KITTI benchmark

show that our approach outperforms the state-of-the-art by

around 25% and 30% AP on the tasks of 3D localization

and 3D detection. In addition, for 2D detection, our appro-

ach obtains 14.9% higher AP than the state-of-the-art on

the hard data among the LIDAR-based methods.

1. Introduction

3D object detection plays an important role in the visual

perception system of Autonomous driving cars. Modern

self-driving cars are commonly equipped with multiple sen-

sors, such as LIDAR and cameras. Laser scanners have the

advantage of accurate depth information while cameras pre-

serve much more detailed semantic information. The fusion

of LIDAR point cloud and RGB images should be able to

achieve higher performance and safty to self-driving cars.

The focus of this paper is on 3D object detection utili-

zing both LIDAR and image data. We aim at highly accu-

rate 3D localization and recognition of objects in the road

scene. Recent LIDAR-based methods place 3D windows

in 3D voxel grids to score the point cloud [25, 6] or ap-

ply convolutional networks to the front view point map in

a dense box prediction scheme [16]. Image-based met-

hods [4, 3] typically first generate 3D box proposals and

then perform region-based recognition using the Fast R-

CNN [9] pipeline. Methods based on LIDAR point cloud

usually achieve more accurate 3D locations while image-

based methods have higher accuracy in terms of 2D box

evaluation. [10, 7] combine LIDAR and images for 2D

detection by employing early or late fusion schemes. Ho-

wever, for the task of 3D object detection, which is more

challenging, a well-designed model is required to make use

of the strength of multiple modalities.

In this paper, we propose a Multi-View 3D object de-

tection network (MV3D) which takes multimodal data as

input and predicts the full 3D extent of objects in 3D space.

The main idea for utilizing multimodal information is to

perform region-based feature fusion. We first propose a

multi-view encoding scheme to obtain a compact and ef-

fective representation for sparse 3D point cloud. As illus-

trated in Fig. 1, the multi-view 3D detection network con-

sists of two parts: a 3D Proposal Network and a Region-

based Fusion Network. The 3D proposal network utilizes

a bird’s eye view representation of point cloud to generate

highly accurate 3D candidate boxes. The benefit of 3D ob-

ject proposals is that it can be projected to any views in

3D space. The multi-view fusion network extracts region-

wise features by projecting 3D proposals to the feature maps

from mulitple views. We design a deep fusion approach

to enable interactions of intermediate layers from different

views. Combined with drop-path training [14] and auxili-

ary loss, our approach shows superior performance over the

early/late fusion scheme. Given the multi-view feature re-

presentation, the network performs oriented 3D box regres-

sion which predict accurate 3D location, size and orienta-

tion of objects in 3D space.

We evaluate our approach for the tasks of 3D propo-

sal generation, 3D localization, 3D detection and 2D de-

tection on the challenging KITTI [8] object detection ben-

chmark. Experiments show that our 3D proposals signifi-

cantly outperforms recent 3D proposal methods 3DOP [4]

and Mono3D [3]. In particular, with only 300 proposals,

we obtain 99.1% and 91% 3D recall at Intersection-over-

Union (IoU) threshold of 0.25 and 0.5, respectively. The
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Figure 1: Multi-View 3D object detection network (MV3D): The network takes the bird’s eye view and front view of

LIDAR point cloud as well as an image as input. It first generates 3D object proposals from bird’s eye view map and project

them to three views. A deep fusion network is used to combine region-wise features obtained via ROI pooling for each view.

The fused features are used to jointly predict object class and do oriented 3D box regression.

LIDAR-based variant of our approach achieves around 25%

higher accuracy in 3D localization task and 30% higher 3D

Average Precision (AP) in the task of 3D object detection. It

also outperforms all other LIDAR-based methods by 14.9%

AP for 2D detection on KITTI’s hard test set. When com-

bined with images, further improvements are achieved over

the LIDAR-based results.

2. Related Work

We briefly review existing work on 3D object detection

from point cloud and images, multimodal fusion methods

and 3D object proposals.

3D Object Detection in Point Cloud. Most existing met-

hods encode 3D point cloud with voxel grid representation.

Sliding Shapes [21] and Vote3D [25] apply SVM classi-

fers on 3D grids encoded with geometry features. Some

recently proposed methods [22, 6, 15] improve feature re-

presentation with 3D convolutions.networks, which, howe-

ver require expensive computations. In addition to the 3D

voxel representation, VeloFCN [16] projects point cloud to

the front view, obtaining a 2D point map. They apply a

fully convolutional network on the 2D point map and pre-

dict 3D boxes densely from the convolutional feature maps.

[23, 17, 11] investigate volumetric and multi-view repre-

sentation of point cloud for 3D object classification. In this

work, we encode 3D point cloud with multi-view feature

maps, enabling region-based representation for multimodal

fusion.

3D Object Detection in Images. 3DVP [27] introduces

3D voxel patterns and employ a set of ACF detectors to

do 2D detection and 3D pose estimation. 3DOP [4] recon-

structs depth from stereo images and uses an energy mini-

mization approach to generate 3D box proposals, which are

fed to an R-CNN [9] pipeline for object recognition. While

Mono3D [3] shares the same pipeline with 3DOP, it gene-

rates 3D proposals from monocular images. [30, 31] intro-

duces a detailed geometry representation of objects using

3D wireframe models. To incorporate temporal informa-

tion, some work[5, 20] combine structure from motion and

ground estimation to lift 2D detection boxes to 3D bounding

boxes. Image-based methods usually rely on accurate depth

estimation or landmark detection. Our work shows how to

incorporate LIDAR point cloud to improve 3D localization.

Multimodal Fusion Only a few work exist that exploit

multiple modalities of data in the context of autonomous

driving. [10] combines images, depth and optical flow

using a mixture-of-experts framework for 2D pedestrian de-

tection. [7] fuses RGB and depth images in the early stage

and trains pose-based classifiers for 2D detection. In this

paper, we design a deep fusion approach inspired by Frac-

talNet [14] and Deeply-Fused Net [26]. In FractalNet, a

base module is iteratively repeated to construct a network

with exponentially increasing paths. Similarly, [26] con-

structs deeply-fused networks by combining shallow and

deep subnetworks. Our network differs from them by using

the same base network for each column and adding auxili-

ary paths and losses for regularization.
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Figure 2: Input features of the MV3D network.

3D Object Proposals Similarly to 2D object propo-

sals [24, 32, 2], 3D object proposal methods generate a

small set of 3D candidate boxes in order to cover most

of the objects in 3D space. To this end, 3DOP [4] de-

signs some depth features in stereo point cloud to score a

large set of 3D candidate boxes. Mono3D [3] exploits the

ground plane prior and utilizes some segmentation featu-

res to generate 3D proposals from a single image. Both

3DOP and Mono3D use hand-crated features. Deep Sliding

Shapes [22] exploits more powerful deep learning features.

However, it operates on 3D voxel grids and uses compu-

tationally expensive 3D convolutions. We propose a more

efficient approach by introducing a bird’s eye view repre-

sentation of point cloud and employing 2D convolutions to

generate accurate 3D proposals.

3. MV3D Network

The MV3D network takes a multi-view representation of

3D point cloud and an image as input. It first generates 3D

object proposals from the bird’s eye view map and deeply

fuses multi-view features via region-based representation.

The fused features are used for category classification and

oriented 3D box regression.

3.1. 3D Point Cloud Representation

Existing work usually encodes 3D LIDAR point cloud

into a 3D grid [25, 6] or a front view map [16]. While the 3D

grid representation preserves most of the raw information

of the point cloud, it usually requires much more complex

computation for subsequent feature extraction. We propose

a more compact representation by projecting 3D point cloud

to the bird’s eye view and the front view. Fig. 2 visualizes

the point cloud representation.

Bird’s Eye View Representation. The bird’s eye view re-

presentation is encoded by height, intensity and density. We

discretize the projected point cloud into a 2D grid with re-

solution of 0.1m. For each cell, the height feature is com-

puted as the maximum height of the points in the cell. To

encode more detailed height information, the point cloud is

devided equally into M slices. A height map is computed

for each slice, thus we obtain M height maps. The inten-

sity feature is the reflectance value of the point which has

the maximum height in each cell. The point cloud density

indicates the number of points in each cell. To normalize

the feature, it is computed as min(1.0, log(N+1)
log(64) ), where N

is the number of points in the cell. Note that the intensity

and density features are computed for the whole point cloud

while the height feature is computed for M slices, thus in

total the bird’s eye view map is encoded as (M+2)-channel

features.

Front View Representation. Front view representation

provides complementary information to the bird’s eye view

representation. As LIDAR point cloud is very sparse, pro-

jecting it into the image plane results in a sparse 2D point

map. Instead, we project it to a cylinder plane to gene-

rate a dense front view map as in [16]. Given a 3D point

p = (x, y, z), its coordinates pfv = (r, c) in the front view

map can be computed using

c = ⌊atan2(y, x)/∆θ]⌋

r = ⌊atan2(z,
√

x2 + y2)/∆φ⌋,
(1)

where ∆θ and ∆φ are the horizontal and vertical resolution

of laser beams, respectively. We encode the front view map

with three-channel features, which are height, distance and

intensity, as visualized in Fig. 2.

3.2. 3D Proposal Network

Inspired by Region Proposal Network (RPN) which has

become the key component of the state-of-the-art 2D ob-

ject detectors [18], we first design a network to generate 3D

object proposals. We use the bird’s eye view map as in-

put. In 3D object detection, The bird’s eye view map has

several advantages over the front view/image plane. First,

objects preserve physical sizes when projected to the bird’s

eye view, thus having small size variance, which is not the

case in the front view/image plane. Second, objects in the

bird’s eye view occupy different space, thus avoiding the

occlusion problem. Third, in the road scene, since objects

typically lie on the ground plane and have small variance in

vertical location, the bird’s eye view location is more cru-

cial to obtaining accurate 3D bounding boxes. Therefore,

using explicit bird’s eye view map as input makes the 3D

location prediction more feasible.

Given a bird’s eye view map. the network generates 3D

box proposals from a set of 3D prior boxes. Each 3D box
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Figure 3: Architectures of different fusion schemes: We

instantiate the join nodes in early/late fusion with concate-

nation operation, and deep fusion with element-wise mean

operation.

is parameterized by (x, y, z, l, w, h), which are the center

and size (in meters) of the 3D box in LIDAR coordinate sy-

stem. For each 3D prior box, the corresponding bird’s eye

view anchor (xbv, ybv, lbv, wbv) can be obtained by discre-

tizing (x, y, l, w). We design N 3D prior boxes by clus-

tering ground truth object sizes in the training set. In the

case of car detection, (l, w) of prior boxes takes values in

{(3.9, 1.6), (1.0, 0.6)}, and the height h is set to 1.56m. By

rotating the bird’s eye view anchors 90 degrees, we obtain

N = 4 prior boxes. (x, y) is the varying positions in the

bird’s eye view feature map, and z can be computed ba-

sed on the camera height and object height. We do not do

orientation regression in proposal generation, whereas we

left it to the next prediction stage. The orientations of 3D

boxes are restricted to {0◦, 90◦}, which are close to the ac-

tual orientations of most road scene objects. This simplifi-

cation makes training of proposal regression easier.

With a disretization resolution of 0.1m, object boxes in

the bird’s eye view only occupy 5∼40 pixels. Detecting

such extra-small objects is still a difficult problem for deep

networks. One possible solution is to use higher resolution

of the input, which, however, will require much more com-

putation. We opt for feature map upsampling as in [1]. We

use 2x bilinear upsampling after the last convolution layer in

the proposal network. In our implementation, the front-end

convolutions only proceed three pooling operations, i.e., 8x

downsampling. Therefore, combined with the 2x deconvo-

lution, the feature map fed to the proposal network is 4x

downsampled with respect to the bird’s eye view input.

We do 3D box regression by regressing to

t = (∆x,∆y,∆z,∆l,∆w,∆h), similarly to RPN [18].

(∆x,∆y,∆z) are the center offsets normalized by

anchor sizes, and (∆l,∆w,∆h) are computed as

∆s = log sGT

sanchor
, s ∈ {l, w, h}. we use a multi-task

loss to simultaneously classify object/background and do

3D box regression. In particular, we use class-entropy for

the “objectness” loss and Smooth ℓ1 [9] for the 3D box

regression loss. Background anchors are ignored when
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Figure 4: Training strategy for the Region-based Fusion

Network: During training, the bottom three paths and los-

ses are added to regularize the network. The auxiliary lay-

ers share weights with the corresponding layers in the main

network.

computing the box regression loss. During training, we

compute the IoU overlap between anchors and ground

truth bird’s eye view boxes. An anchor is considered to

be positive if its overlap is above 0.7, and negative if the

overlap is below 0.5. Anchors with overlap in between are

ignored.

Since LIDAR point cloud is sparse, which results in

many empty anchors, we remove all the empty anchors du-

ring both training and testing to reduce computation. This

can be achieved by computing an integral image over the

point occupancy map.

For each non-empty anchor at each position of the

last convolution feature map, the network generates a 3D

box. To reduce redundancy, we apply Non-Maximum Sup-

pression (NMS) on the bird’s eye view boxes. Different

from [22], we did not use 3D NMS because objects should

occupy different space on the ground plane. We use IoU

threshold of 0.7 for NMS. The top 2000 boxes are kept du-

ring training, while in testing, we only use 300 boxes.

3.3. Region­based Fusion Network

We design a region-based fusion network to effectively

combine features from multiple views and jointly classify

object proposals and do oriented 3D box regression.

Multi-View ROI Pooling. Since features from different

views/modalities usually have different resolutions, we em-

ploy ROI pooling [9] for each view to obtain feature vectors

of the same length. Given the generated 3D proposals, we

can project them to any views in the 3D space. In our case,

we project them to three views, i.e., bird’s eye view (BV),

front view (FV), and the image plane (RGB). Given a 3D

proposal p3D, we obtain ROIs on each view via:

ROIv = T3D→v(p3D), v ∈ {BV, FV,RGB} (2)
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Figure 5: 3D bounding box Recall: From left to right: Recall vs IoU using 300 proposals, Recall vs #Proposals at IoU

threshold of 0.25 and 0.5 respectively. Recall are evaluated on moderate data of KITTI validation set.

where T3D→v denotes the tranformation functions from the

LIDAR coordinate system to the bird’s eye view, front view,

and the image plane, respectively. Given an input feature

map x from the front-end network of each view, we obtain

fixed-length features fv via ROI pooling:

fv = R(x,ROIv), v ∈ {BV, FV,RGB}. (3)

Deep Fusion. To combine information from different fe-

atures, prior work usually use early fusion [1] or late fu-

sion [22, 12]. Inspired by [14, 26], we employ a deep fusion

approach, which fuses multi-view features hierarchically. A

comparison of the architectures of our deep fusion network

and early/late fusion networks are shown in Fig. 3. For a

network that has L layers, early fusion combines features

{fv} from multiple views in the input stage:

fL = HL(HL−1(· · ·H1(fBV ⊕ fFV ⊕ fRGB))) (4)

{Hl, l = 1, · · · , L} are feature transformation functions

and ⊕ is a join operation (e.g., concatenation, summation).

In contrast, late fusion uses seperate subnetworks to learn

feature transformation independently and combines their

outputs in the prediction stage:

fL =(HBV
L (· · ·HBV

1 (fBV )))⊕

(HFV
L (· · ·HFV

1 (fFV )))⊕

(HRGB
L (· · ·HRGB

1 (fRGB)))

(5)

To enable more interactions among features of the inter-

mediate layers from different views, we design the follo-

wing deep fusion process:

f0 =fBV ⊕ fFV ⊕ fRGB

fl =H
BV
l (fl−1)⊕H

FV
l (fl−1)⊕H

RGB
l (fl−1),

∀l = 1, · · · , L

(6)

We use element-wise mean for the join operation for deep

fusion since it is more flexible when combined with drop-

path training [14].

Oriented 3D Box Regression Given the fusion featu-

res of the multi-view network, we regress to oriented

3D boxes from 3D proposals. In particular, the re-

gression targets are the 8 corners of 3D boxes: t =
(∆x0, · · · ,∆x7,∆y0, · · · ,∆y7,∆z0, · · · ,∆z7). They are

encoded as the corner offsets normalized by the diagonal

length of the proposal box. Despite such a 24-D vector

representation is redundant in representing an oriented 3D

box, we found that this encoding approach works better than

the centers and sizes encoding approach. Note that our 3D

box regression differs from [22] which regresses to axis-

aligned 3D boxes. In our model, the object orientations can

be computed from the predicted 3D box corners. We use a

multi-task loss to jointly predict object categories and orien-

ted 3D boxes. As in the proposal network, the category loss

uses cross-entropy and the 3D box loss uses smooth ℓ1. Du-

ring training, the positive/negative ROIs are determined ba-

sed on the IoU overlap of brid’s eye view boxes. A 3D pro-

posal is considered to be positive if the bird’s eye view IoU

overlap is above 0.5, and negative otherwise. During infe-

rence, we apply NMS on the 3D boxes after 3D bounding

box regression. We project the 3D boxes to the bird’s eye

view to compute their IoU overlap. We use IoU threshold

of 0.05 to remove redundant boxes, which ensures objects

can not occupy the same space in bird’s eye view.

Network Regularization We employ two approaches to

regularize the region-based fusion network: drop-path trai-

ning [14] and auxiliary losses. For each iteration, we rand-

omly choose to do global drop-path or local drop-path with

a probability of 50%. If global drop-path is chosen, we se-

lect a single view from the three views with equal probabi-

lity. If local drop-path is chosen, paths input to each join

node are randomly dropped with 50% probability. We en-

sure that for each join node at least one input path is kept.

To further strengthen the representation capability of each

view, we add auxiliary paths and losses to the network. As

shown in Fig. 4, the auxiliary paths have the same number

of layers with the main network. Each layer in the auxili-

ary paths shares weights with the corresponding layer in the
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Method Data
IoU=0.5 IoU=0.7

Easy Moderate Hard Easy Moderate Hard

Mono3D [3] Mono 30.5 22.39 19.16 5.22 5.19 4.13

3DOP [4] Stereo 55.04 41.25 34.55 12.63 9.49 7.59

VeloFCN [16] LIDAR 79.68 63.82 62.80 40.14 32.08 30.47

Ours (BV+FV) LIDAR 95.74 88.57 88.13 86.18 77.32 76.33

Ours (BV+FV+RGB) LIDAR+Mono 96.34 89.39 88.67 86.55 78.10 76.67

Table 1: 3D localization performance: Average Precision (APloc) (in %) of bird’s eye view boxes on KITTI validation set.

Method Data
IoU=0.25 IoU=0.5 IoU=0.7

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Mono3D [3] Mono 62.94 48.2 42.68 25.19 18.2 15.52 2.53 2.31 2.31

3DOP [4] Stereo 85.49 68.82 64.09 46.04 34.63 30.09 6.55 5.07 4.1

VeloFCN [16] LIDAR 89.04 81.06 75.93 67.92 57.57 52.56 15.20 13.66 15.98

Ours (BV+FV) LIDAR 96.03 88.85 88.39 95.19 87.65 80.11 71.19 56.60 55.30

Ours (BV+FV+RGB) LIDAR+Mono 96.52 89.56 88.94 96.02 89.05 88.38 71.29 62.68 56.56

Table 2: 3D detection performance: Average Precision (AP3D) (in %) of 3D boxes on KITTI validation set.

main network. We use the same multi-task loss, i.e. classi-

fication loss plus 3D box regression loss, to back-propagate

each auxiliary path. We weight all the losses including auxi-

liary losses equally. The auxiliary paths are removed during

inference.

3.4. Implementation

Network Architecture. In our multi-view network, each

view has the same architecture. The base network is built on

the 16-layer VGG net [19] with the following modifications:

• Channels are reduced to half of the original network.

• To handle extra-small objects, we use feature approx-

imation to obtain high-resolution feature map. In par-

ticular, we insert a 2x bilinear upsampling layer be-

fore feeding the last convolution feature map to the

3D Proposal Network. Similarly, we insert a 4x/4x/2x

upsampling layer before the ROI pooling layer for the

BV/FV/RGB branch.

• We remove the 4th pooling operation in the original

VGG network, thus the convolution parts of our net-

work proceed 8x downsampling.

• In the muti-view fusion network, we add an extra fully

connected layer fc8 in addition to the original fc6 and

fc7 layer.

We initialize the parameters by sampling weights from the

VGG-16 network pretrained on ImageNet. Despite our net-

work has three branches, the number of parameters is about

75% of the VGG-16 network. The inference time of the

network for one image is around 0.36s on a Titan X GPU.

Input Representation. In the case of KITTI, which pro-

vides only annotations for objects in the front view (around

90◦ field of view), we use point cloud in the range of [0,

70.4] × [-40, 40] meters. We also remove points that are

out of the image boundaries when projected to the image

plane. For bird’s eye view, the discretization resolution is

set to 0.1m, therefore the bird’s eye view input has size

of 704×800. Since KITTI uses a 64-beam Velodyne la-

ser scanner, we can obtain a 64×512 map for the front view

points. The RGB image is up-scaled so that the shortest size

is 500.

Training. The network is trained in an end-to-end

fashion. For each mini-batch we use 1 image and sample

128 ROIs, roughly keeping 25% of the ROIs as positive. We

train the network using SGD with a learning rate of 0.001

for 100K iterations. Then we reduce the learning rate to

0.0001 and train another 20K iterations.

4. Experiments

We evaluate our MV3D network on the challenging

KITTI object detection benchmark [8]. The dataset provi-

des 7,481 images for training and 7,518 images for testing.

As the test server only evaluates 2D detection, we follow [4]

to split the training data into training set and validation set,

each containing roughly half of the whole training data. We

conduct 3D box evaluation on the validation set. We fo-

cus our experiments on the car category as KITTI provides

enough car instances for our deep network based approach.

Following the KITTI setting, we do evaluation on three dif-

ficulty regimes: easy, moderate and hard.

Metrics. We evaluate 3D object proposals using 3D box

recall as the metric. Different from 2D box recall [13],

we compute the IoU overlap of two cuboids. Note that the

cuboids are not necessary to align with the axes, i.e., they

could be oriented 3D boxes. In our evaluation, we set the

3D IoU threshold to 0.25 and 0.5, respectively. For the fi-

nal 3D detection results, we use two metrics to measure the

accuracy of 3D localization and 3D bounding box detection.

For 3D localization, we project the 3D boxes to the ground

plane (i.e., bird’s eye view) to obtain oriented bird’s eye
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Data
AP3D (IoU=0.5) APloc (IoU=0.5) AP2D (IoU=0.7)

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Early Fusion 93.92 87.60 87.23 94.31 88.15 87.61 87.29 85.76 78.77

Late Fusion 93.53 87.70 86.88 93.84 88.12 87.20 87.47 85.36 78.66

Deep Fusion w/o aux. loss 94.21 88.29 87.21 94.57 88.75 88.02 88.64 85.74 79.06

Deep Fusion w/ aux. loss 96.02 89.05 88.38 96.34 89.39 88.67 95.01 87.59 79.90

Table 3: Comparison of different fusion approaches: Peformance are evaluated on KITTI validation set.

Data
AP3D (IoU=0.5) APloc (IoU=0.5) AP2D (IoU=0.7)

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

FV 67.6 56.30 49.98 74.02 62.18 57.61 75.61 61.60 54.29

RGB 73.68 68.86 61.94 77.30 71.68 64.58 83.80 76.45 73.42

BV 92.30 85.50 78.94 92.90 86.98 86.14 85.00 76.21 74.80

FV+RGB 77.41 71.63 64.30 82.57 75.19 66.96 86.34 77.47 74.59

FV+BV 95.19 87.65 80.11 95.74 88.57 88.13 88.41 78.97 78.16

BV+RGB 96.09 88.70 80.52 96.45 89.19 80.69 89.61 87.76 79.76

BV+FV+RGB 96.02 89.05 88.38 96.34 89.39 88.67 95.01 87.59 79.90

Table 4: An ablation study of multi-view features: Peformance are evaluated on KITTI validation set.

view boxes. We compute Average Precision (APloc) for the

bird’s eye view boxes. For 3D bounding box detection, we

also use the Average Precision (AP3D) metric to evaluate the

full 3D bounding boxes. Note that both the bird’s eye view

boxes and the 3D boxes are oriented, thus object orientati-

ons are implicitly considered in these two metrics. We also

evaluate the performance of 2D detection by projecting the

3D boxes to the image plane. Average Preicision (AP2D) is

also used as the metric. Following the KITTI convention,

IoU threshold is set to 0.7 for 2D boxes.

Baslines. As this work aims at 3D object detection, we

mainly compare our approach to LIDAR-based methods

VeloFCN [16], Vote3Deep [6] and Vote3D [25], as well

as image-based methods 3DOP [4] and Mono3D [3]. For

fair comparison, we focus on two variants of our appro-

ach, i.e., the purely LIDAR-based variant which uses bird’s

eye view and front view as input (BV+FV), and the mul-

timodal variant which combines LIDAR and RGB data

(BV+FV+RGB). For 3D box evaluation, we compare with

VeloFCN, 3DOP and Mono3D since they provide results on

the validation set. For Vote3Deep and Vote3D, which have

no results publicly available, we only do comparison on 2D

detection on the test set.

3D Proposal Recall. 3D box recall are shown in Fig. 5.

We plot recall as a function of IoU threshold using 300 pro-

posals. Our approach significantly outperforms 3DOP [4]

and Mono3D [3] across all the IoU thresholds. Fig. 5 also

shows 3D recall as a function of the proposal numbers un-

der IoU threshold of 0.25 and 0.5, respectively. Using only

300 proposals, our approach obtains 99.1% recall at IoU

threshold of 0.25 and 91% recall at IoU of 0.5. In contrast,

when using IoU of 0.5, the maximum recall that 3DOP can

achieve is only 73.9%. The large margin suggests the ad-

vantage of our LIDAR-based approach over image-based

methods.

Method Data Easy Mod. Hard

Faster R-CNN [18] Mono 86.71 81.84 71.12

3DOP [4] Stereo 93.04 88.64 79.10

Mono3D [3] Mono 92.33 88.66 78.96

SDP+RPN [29, 18] Mono 90.14 88.85 78.38

MS-CNN [1] Mono 90.03 89.02 76.11

SubCNN [28] Mono 90.81 89.04 79.27

Vote3D [25] LIDAR 56.80 47.99 42.57

VeloFCN [16] LIDAR 71.06 53.59 46.92

Vote3Deep [6] LIDAR 76.79 68.24 63.23

Ours (BV+FV) LIDAR 87.00 79.24 78.16

Ours (BV+FV+RGB) LIDAR+Mono 89.11 87.67 79.54

Table 5: 2D detection performance: Average Precision

(AP2D) (in %) for car category on KITTI test set. Methods

in the first group optimize 2D boxes directly while the se-

cond group optimize 3D boxes.

3D Localization. We use IoU threshold of 0.5 and 0.7 for

3D localization evaluation. Table 1 shows APloc on KITTI

validation set. As expected, all LIDAR-based approaches

performs better than stereo-based method 3DOP [4] and

monocular method Mono3D [3]. Among LIDAR-based ap-

proaches, our method (BV+FV) outperforms VeloFCN [16]

by ∼25% APloc under IoU threshold of 0.5. When using

IoU=0.7 as the criteria, our improvement is even larger,

achieving ∼45% higher APloc across easy, moderate and

hard regimes. By combining with RGB images, our ap-

proach is further improved. We visualize the localization

results of some examples in Fig. 6.

3D Object Detection. For the 3D overlap criteria, we fo-

cus on 3D IoU of 0.5 and 0.7 for LIDAR-based methods. As

these IoU thresholds are rather strict for image-based met-

hods, we also use IoU of 0.25 for evaluation. As shown in

Table 2, our “BV+FV” method obtains ∼30% higher AP3D

over VeloFCN when using IoU of 0.5, achieving 87.65%
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3DOP [4] VeloFCN [16] Ours

Figure 6: Qualitative comparisons of 3D detection results: 3D Boxes are projected to the bird’s eye view and the images.

AP3D in the moderate setting. With criteria of IoU=0.7, our

multimodal approach still achieves 71.29% AP3D on easy

data. In the moderate setting, the best AP3D that can be

achieved by 3DOP using IoU=0.25 is 68.82%, while our

approach achieves 89.05% AP3D using IoU=0.5. Some 3D

detectioin results are visualized in Fig. 6.

Ablation Studies. We first compare our deep fusion net-

work with early/late fusion approaches. As commonly used

in literature, the join operation is instantiated with conca-

tenation in the early/late fusion schemes. As shown in Ta-

ble 3, early and late fusion approaches have very similar

performance. Without using auxiliary loss, the deep fusion

method achieves ∼0.5% improvement over early and late

fusion approaches. Adding auxiliary loss further improves

deep fusion network by around 1%.

To study the contributions of the features from diffe-

rent views, we experiment with different combination of the

bird’s eye view (BV), the front view (FV), and the RGB

image (RGB). The 3D proposal network is the same for all

the variants. Detailed comparisons are shown in Table 4. If

using only a single view as input, the bird’s eye view fea-

ture performs the best while the front view feature the worst.

Combining any of the two views can always improve over

individual views. This justifies our assumption that features

from different views are complementary. The best overal

performance can be achieved when fusing features of all

three views.

2D Object Detection. We finally evaluate 2D detection

performance on KITTI test set. Results are shown in Ta-

ble 5. Among the LIDAR-based methods, our “BV+FV”

approach outperforms the recently proposed Vote3Deep [6]

method by 14.93% AP2D in the hard setting. In overall,

image-based methods usually perform better than LIDAR-

based methods in terms of 2D detection. This is due to the

fact that image-based methods directly optimize 2D boxes

while LIDAR-based methods optimize 3D boxes. Note that

despite our method optimizes 3D boxes, it also obtains com-

petitive results compared with the state-of-the-art 2D de-

tection methods.

Qualitative Results. As shown in Fig. 6, our appro-

ach obtains much more accurate 3D locations, sizes and

orientation of objects compared with stereo-based method

3DOP [4] and LIDAR-based method VeloFCN [16]. We

refer readers to the supplementary materials for many addi-

tional results.

5. Conclusion

We have proposed a multi-view sensory-fusion model

for 3D object detection in the road scene. Our model ta-

kes advantage of both LIDAR point cloud and images. We

align different modalities by generating 3D proposals and

projecting them to multiple views for feature extraction.

A region-based fusion network is presented to deeply fuse

multi-view information and do oriented 3D box regression.

Our approach significantly outperforms existing LIDAR-

based and image-based methods on tasks of 3D localiza-

tion and 3D detection on KITTI benchmark [8]. Our 2D

box results obtained from 3D detections also show com-

petitive performance compared with the state-of-the-art 2D

detection methods.
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