
StyleBank: An Explicit Representation for Neural Image Style Transfer

Dongdong Chen1, Lu Yuan2, Jing Liao2, Nenghai Yu1, Gang Hua2

1University of Science and Technology of China 2Microsoft Research, Beijing, China

cd722522@mail.ustc.edu.cn, {luyuan, jliao, ganghua}@microsoft.com, ynh@ustc.edu.cn

Abstract

We propose StyleBank, which is composed of multiple

convolution filter banks and each filter bank explicitly rep-

resents one style, for neural image style transfer. To transfer

an image to a specific style, the corresponding filter bank

is operated on top of the intermediate feature embedding

produced by a single auto-encoder. The StyleBank and the

auto-encoder are jointly learnt, where the learning is con-

ducted in such a way that the auto-encoder does not encode

any style information thanks to the flexibility introduced by

the explicit filter bank representation. It also enables us to

conduct incremental learning to add a new image style by

learning a new filter bank while holding the auto-encoder

fixed. The explicit style representation along with the flexi-

ble network design enables us to fuse styles at not only the

image level, but also the region level. Our method is the first

style transfer network that links back to traditional texton

mapping methods, and hence provides new understanding

on neural style transfer. Our method is easy to train, runs

in real-time, and produces results that qualitatively better

or at least comparable to existing methods.

1. Introduction

Style transfer is to migrate a style from an image to an-

other, and is closely related to texture synthesis. The core

problem behind these two tasks is to model the statistics of

a reference image (texture, or style image), which enables

further sampling from it under certain constraints. For tex-

ture synthesis, the constraints are that the boundaries be-

tween two neighboring samples must have a smooth tran-

sition, while for style transfer, the constraints are that the

samples should match the local structure of the content im-

age. So in this sense, style transfer can be regarded as a

generalization of texture synthesis.

Recent work on style transfer adopting Convolutional

Neural Networks (CNN) ignited a renewed interest in this

problem. On the machine learning side, it has been shown

that a pre-trained image classifier can be used as a fea-

ture extractor to drive texture synthesis [11] and style trans-

fer [12]. These CNN algorithms either apply an iterative op-

timization mechanism [12], or directly learn a feed-forward

generator network [19, 37] to seek an image close to both

the content image and the style image – all measured in the

CNN (i.e., pre-trained VGG-16 [36]) feature domain. These

algorithms often produce more impressive results compared

to the texture-synthesis ones, since the rich feature repre-

sentation that a deep network can produce from an image

would allow more flexible manipulation of an image.

Notwithstanding their demonstrated success, the princi-

ples of CNN style transfer are vaguely understood. After

a careful examination of existing style transfer networks,

we argue that the content and style are still coupled in their

learnt network structures and hyper-parameters. To the best

of our knowledge, an explicit representation for either style

or content has not yet been proposed in these previous neu-

ral style transfer methods.

As a result, the network is only able to capture a spe-

cific style one at a time. For a new style, the whole net-

work has to be retrained end-to-end. In practice, this makes

these methods unable to scale to large number of styles, es-

pecially when the style set needs to be incrementally aug-

mented. In addition, how to further reduce run time, net-

work model size and enable more flexibilities to control

transfer (e.g., region-specific transfer), remains to be chal-

lenges yet to be addressed.

To explore an explicit representation for style, we recon-

sider neural style transfer by linking back to traditional tex-

ton (known as the basic element of texture) mapping meth-

ods, where mapping a texton to the target location is equiv-

alent to a convolution between a texton and a Delta function

(indicating sampling positions) in the image space.

Inspired by this, we propose StyleBank, which is com-

posed of multiple convolution filter banks and each filter

bank represents one style. To transfer an image to a specific

style, the corresponding filter bank is convolved with the

intermediate feature embedding produced by a single auto-

encoder, which decomposes the original image into multi-

ple feature response maps. This way, for the first time, we

provide a clear understanding of the mechanism underneath

neural style transfer.
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The StyleBank and the auto-encoder are jointly learnt in

our proposed feed-forward network. It not only allows us to

simultaneously learn a bundle of various styles, but also en-

ables a very efficient incremental learning for a new image

style. This is achieved by learning a new filter bank while

holding the auto-encoder fixed.

We believe this is a very useful functionality to recently

emerged style transfer mobile applications (e.g., Prisma)

since we do not need to train and prepare a complete net-

work for every style. More importantly, it can even allow

users to efficiently create their own style models and conve-

niently share to others. Since the part of our image encoding

is shared for variant styles, it may provide a faster and more

convenient switch for users between different style models.

Because of the explicit representation, we can more con-

veniently control style transfer and create new interesting

style fusion effects. More specifically, we can either linearly

fuse different styles altogether, or produce region-specific

style fusion effects. In other words, we may produce an

artistic work with hybrid elements from van Gogh’s and Pi-

caso’s paintings.

Compared with existing neural style transfer networks

[19, 37], our proposed neural style transfer network is

unique in the following aspects:

• In our method, we provide an explicit representation

for styles. This enables our network to completely de-

couple styles from the content after learning.

• Due to the explicit style representation, our method en-

ables region-based style transfer. This is infeasible in

existing neural style transfer networks, although clas-

sical texture transfer methods were able to achieve it.

• Our method not only allows to simultaneously train

multiple styles sharing a single auto-encoder, but also

incrementally learn a new style without changing the

auto-encoder.

The remainder of the paper is organized as follows. We

summarize related work in Section 2. We devote Section 3

to the main technical design of the proposed StyleBank Net-

work. Section 4 discusses about new characteristics of the

proposed StyleBank Network when compared with previ-

ous work. We present experimental results and comparisons

in Section 5. And finally we conclude in Section 6.

2. Related Work

Style transfer is very related to texture synthesis, which

attempts to grow textures using non-parametric sampling of

pixels [8, 39] or patches [7, 25] in a given source texture.

The task of style transfer can be regarded as a problem of

texture transfer [7, 10, 9], which synthesizes a texture from

a source image constrained by the content of a target im-

age. Hertzman et al. [16] further introduce the concept of

image analogies, which transfer the texture from an already

stylised image onto a target image. However, these meth-

ods only use low-level image features of the target image to

inform the texture transfer.

Ideally, a style transfer algorithm should be able to ex-

tract and represent the semantic image content from the tar-

get image and then render the content in the style of the

source image. To generally separate content from style in

natural images is still an extremely difficult problem before,

but the problem is better mitigated by the recent develop-

ment of Deep Convolutional Neural Networks (CNN) [21].

DeepDream [1] may be the first attempt to generate

artistic work using CNN. Inspired by this work, Gatys et

al. [12] successfully applies CNN (pre-trained VGG-16 net-

works) to neural style transfer and produces more impres-

sive stylization results compared to classic texture transfer

methods. This idea is further extended to portrait painting

style transfer [35] and patch-based style transfer by com-

bining Markov Random Field (MRF) and CNN [22]. Un-

fortunately, these methods based on an iterative optimiza-

tion mechanism are computationally expensive in run-time,

which imposes a big limitation in real applications.

To make the run-time more efficient, more and more

works begin to directly learn a feed-forward generator net-

work for a specific style. This way, stylized results can

be obtained just with a forward pass, which is hundreds of

times faster than iterative optimization [12]. For example,

Ulyanov et al. [37] propose a texture network for both tex-

ture synthesis and style transfer. Johnson et al. [19] define

a perceptual loss function to help learn a transfer network

that aims to produce results approaching [12]. Chuan et

al. [23] introduce a Markovian Generative Adversarial Net-

works, aiming to speed up their previous work [22].

However, in all of these methods, the learnt feed-forward

networks can only represent one specific style. For a new

style, the whole network has to be retrained, which may

limit the scalability of adding more styles on demand. In

contrast, our network allows a single network to simultane-

ously learn numerous styles. Moreover, our work enables

incremental training for new styles.

At the core of our network, the proposed StyleBank rep-

resents each style by a convolution filter bank. It is very

analogous to the concept of ”texton” [30, 41, 24] and filter

bank in [42, 29], but StyleBank is defined in feature em-

bedding space produced by auto-encoder [17] rather than

image space. As we known, embedding space can pro-

vide compact and descriptive representation for original

data [4, 32, 40]. Therefore, our StyleBank would provide a

better representation for style data compared to predefined

dictionaries (such as wavelet [31] or pyramid [15] ).
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Figure 1. Our network architecture consists of three modules: image encoder E , StyleBank layer K and image decoder D

3. StyleBank Network

3.1. StyleBank

At its core, the task of neural style transfer requires a

more explicit representation, like texton [30, 24] (known as

the basic element of texture) used in classical texture syn-

thesis. It may provide a new understanding for the style

transfer task, and then help design a more elegant architec-

ture to resolve the coupling issue in existing transfer net-

works [19, 37], which have to retrain hyper-parameters of

the whole network for each newly added style end-to-end.

We build a feed-forward network based on a simple im-

age auto-encoder (shown in Figure 1), which would first

transform the input image (i.e., the content image) into the

feature space through the encoder subnetwork. Inspired by

the texton concept, we introduce StyleBank as style repre-

sentation by analogy, which is learnt from input styles.

Indeed, our StyleBank contains multiple convolution fil-

ter banks. Every filter bank represents one kind of style,

and all channels in a filter bank can be regarded as bases

of style elements (e.g., texture pattern, coarsening or soft-

ening strokes). By convolving with the intermediate feature

maps of content image, produced by auto-encoder, Style-

Bank would be mapped to the content image to produce dif-

ferent stylization results. Actually, this manner is analogy

to texton mapping in image space, which can also be inter-

preted as the convolution between texton and Delta function

(indicating sampling positions).

3.2. Network Architecture

Figure 1 shows our network architecture, which consists

of three modules: image encoder E , StyleBank layer K and

image decoder D, which constitute two learning branches:

auto-encoder (i.e., E → D) and stylizing (i.e., E → K →
D). Both branches share the same encoder E and decoder

D modules.

Our network requires the content image I to be the in-

put. Then the image is transformed into multi-layer feature

maps F through the encoder E : F = E(I ). For the auto-

encoder branch, we train the auto-encoder to produce an

image that is as close as possible to the input image, i.e.,

O = D(F ) → I . In parallel, for the stylizing branch, we

add an intermediate StyleBank layer K between E and D.

In this layer, StyleBank {Ki}, (i = 1, 2, ..., n), for n styles

would be respectively convolved with features F to obtain

transferred features F̃i. Finally, the stylization result Oi for

style i is achieved by the decoder D: Oi = D(F̃i).
In this manner, contents could be encoded to the auto-

encoder E and D as much as possible, while styles would

be encoded into StyleBank. As a result, content and style

are decoupled from our network as much as possible.

Encoder and Decoder. Following the architecture used

in [19], the image encoder E consists of one stride-1 convo-

lution layer and two stride-2 convolution layers, symmetri-

cally, the image decoderD consists of two stride- 1
2

fraction-

ally strided convolution layers and one stride-1 convolution

layer. All convolutional layers are followed by instance nor-

malization [38] and a ReLU nolinearity except the last out-

put layer. Instance normalization has been demonstrated to

perform better than spatial batch normalization [18] in han-

dling boundary artifacts brought by padding. Other than

the first and last layers which use 9 × 9 kernels, all convo-

lutional layers use 3 × 3 kernels. Benefited from the ex-

plicit representation, our network can remove all the resid-

ual blocks [14] used in the network presented in Johnson et

al. [19] to further reduce the model size and computation

cost without performance degradation.

StyleBank Layer. Our architecture allows multiple styles

(by default, 50 styles, but there is really no limit on it) to

be simultaneously trained in the single network at the be-

ginning. In the StyleBank layer K, we learn n convolution

filter banks {Ki}, (i = 1, 2, ...n) (referred as StyleBank).

During training, we need to specify the i-th style, and use

the corresponding filter bank Ki for forward and backward

propagation of gradients. At this time, transferred features

F̃i is achieved by

F̃i = Ki ⊗ F , (1)

where F ∈ Rcin×h×w, Ki ∈ R
cout×cin×kh×kw , F̃ ∈

Rcout×h×w, cin and cout are numbers of feature channels

for F and F̃ respectively, (h,w) is the feature map size,

and (kw, kh) is the kernel size. To allow efficient training
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of new styles in our network, we may reuse the encoder E
and the decoder D in our new training. We fix the trained

E and D, and only retrain the layer K with new filter banks

starting from random initialization.

Loss Functions. Our network consists of two branches:

auto-encoder (i.e., E → D) and stylizing (i.e., E → K →
D), which are alternatively trained. Thus, we need to define

two loss functions respectively for the two branches.

In the auto-encoder branch, we use MSE (Mean Square

Error) between input image I and output image O to mea-

sure an identity loss LI :

LI(I ,O) = ‖O − I ‖2. (2)

At the stylizing branch, we use perceptual loss LK pro-

posed in [19], which consists of a content loss Lc, a style

loss Ls and a variation regularization loss Ltv(Oi):

LK(I ,Si ,Oi) = αLc(Oi , I ) + βLs(Oi ,Si) + γLtv(Oi)
(3)

where I , Si , Oi are the input content image, style image and

stylization result (for the i-th style) respectively. Ltv(Oi) is

a variation regularizer used in [2, 19]. Lc and Ls use the

same definition in [12]:

Lc(Oi , I ) =
∑

l∈{lc}
‖F l(Oi)− F l(I)‖2

Ls(Oi ,Si) =
∑

l∈{ls}
‖Gi(F

l(Oi))−Gi(F
l(Si))‖

2

(4)

where F l and Gi are respectively feature map and Gram

matrix computed from layer l of VGG-16 network [36](pre-

trained on the ImageNet dataset [34]). {lc}, {ls} are VGG-

16 layers used to respectively compute the content loss and

the style loss.

Training Strategy. We employ a (T +1)-step alternative

training strategy motivated by [13] in order to balance the

two branches (auto-encoder and stylizing). During train-

ing, for every T + 1 iterations, we first train T iterations on

the branch with K, then train one iteration for auto-encoder

branch. We show the training process in Algorithm 1.

3.3. Understanding StyleBank and Auto­encoder

For our new representation of styles, there are several

questions one might ask:

1) How does StyleBank represent styles?

After training the network, each style is encoded in one

convolution filter bank. Each channel of filter bank can be

considered as dictionaries or bases in the literature of repre-

sentation learning method [3]. Different weighted combina-

tions of these filter channels can constitute various style el-

ements, which would be the basic elements extracted from

Algorithm 1 Two branches training strategy. Here λ is the

tradeoff between two branches. ∆θK denote gradients of

filter banks in K. ∆K
θE,D

,∆I
θE,D

denote gradients of E ,D in

stylizing and auto-encoder branches respectively.

for every T + 1 iterations do

// Training at branch E → K → D:

for t = 1 to T do

• Sample m images X = {xi} and style indices

Y = {yi}, i ∈ {1, ...,m} as one mini-batch.

• Update E ,D and {Kj}, j ∈ Y :

∆K
θE,D
←▽θE,D

LK

∆θK ←▽θKLK

end for

// Training at branch E → D:

• Update E ,D only:

∆I
θE,D
←▽θE,D

LI

∆I
θE,D
← λ

‖∆K

θE,D
‖

‖∆I

θE,D
‖
∆I

θE,D

end for

the style image for style synthesis. We may link them to

“textons” in texture synthesis by analogy.

For better understanding, we try to reconstruct style el-

ements from a learnt filter bank in an exemplar stylization

image shown in Figure 2. We extract two kinds of represen-

tative patches from the stylization result (in Figure 2(b))–

stroke patch (indicated by red box) and texture patch (indi-

cated by green box) as an object to study. Then we apply

two operations below to visualize what style elements are

learnt in these two kinds of patches.

First, we mask out other regions but only remain these

corresponding positions of the two patches in feature maps

(as shown in Figure 2(c)(d)), that would be convolved with

the filter bank (corresponding to a specific style). We fur-

ther plot feature responses in Figure 2(e) for the two patches

along the dimension of feature channels. As we can ob-

serve, their responses are actually sparsely distributed and

some peak responses occur at individual channels. Then,

we only consider non-zero feature channels for convolu-

tion and their convolved channels of filter bank (marked by

green and red colors in Figure 2(f)) indeed contribute to a

certain style element. Transferred features are then passed

to the decoder. Recovery style elements are shown in Fig-

ure 2(g), which are very close in appearance to the origi-

nal style patches (Figure 2(i)) and stylization patches (Fig-

ure 2(j)).

To further explore the effect of kernel size (kw, kh) in

the StyleBank, we set a comparison experiment to train our

network with two different kernel size of (3, 3) and (7, 7).
Then we use similar method to visualize the learnt filter

banks, as shown in Fig. 3. Here the green and red box in-

dicate representative patches from (3,3) and (7,7) kernels
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Figure 2. Reconstruction of the style elements learnt from two kinds of representative patches in an exemplar stylization image.

(a) (b) (c) (d) (e) (f)

Figure 3. Learnt style elements of different StyleBank kernel sizes.

(b) and (c) are stylization results of (3, 3) and (7, 7) kernels re-

spectively. (d), (e) and (f) respectively show learnt style elements,

original style patches and stylization patches.

Figure 4. k-means clustering result of feature maps(left) and cor-

responding stylization result(right).

respectively. After comparison, it is easy to observe that

bigger style elements can be learnt with larger kernel size.

For example, in the bottom row , bigger sea spray appears in

the stylization result with (7,7) kernels. That suggests our

network supports the control on the style element size by

tuning parameters to better characterize the example style.

2) What is the content image encoded in?

In our method, the auto-encoder is learnt to decompose

the content image into multi-layer feature maps, which are

independent of any styles. When further analyzing these

feature maps, we have two observations.

First, these features can be spatially grouped into mean-

ingful clusters in some sense (e.g., colors, edges, textures).

To verify this point, we extract each feature vector at every

position of feature maps. Then, an unsupervised clustering

(e.g., K-means algorithms) is applied to all feature vectors

(based on L2 normalized distance). Finally, we can obtain

the clustering results shown in left of Figure 4, which sug-

gests a certain segmentation to the content image.

Comparing the right stylization result with left cluster-
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Figure 5. Sparsity analysis. Top-left: means and standard devia-

tions of per-channel average response; top-right: distributions of

sorted means of per-channel average response for different model

sizes (Cmax = 32, 64, 128); bottom: corresponding stylization

results.

ing results, we can easily find that different segmented re-

gions are indeed rendered with different kinds of colors or

textures. For regions with the same cluster label, the filled

color or textures are almost the same. As a result, our auto-

encoder may enable region-specific style transfer.

Second, these features would distribute sparsely in chan-

nels. To exploit this point, we randomly sample 200 content

images, and for each image, we compute the average of all

non-zero responses at every of 128 feature channels (in the

final layer of encoder). And then we plot the means and

standard deviations of those per-channel averages among

200 images in the top-left of Figure 5. As we can see, valu-

able responses consistently exist at certain channels. One

possible reason is that these channels correspond to specific

style elements for region-specific transfer, which is in con-

sistency with our observation in Figure 2(e).

The above sparsity property will drive us to consider

smaller model size of the network. We attempt to reduce all

channel numbers in our auto-encoder and StyleBank layer

by a factor of 2 or 4. Then the maximum channel number

Cmax become 64, 32 respectively from the original 128. We

also compute and sort the means of per-channel averages, as

plotted in the top-right of Fig. 5. We can observe that the
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Figure 6. Illustration of the effects of two branches. The middle

and right ones are reconstructed input image (left) with and with-

out auto-encoder branch during training.

(a) (b) (c) (d) (e) (f)

Figure 7. Stylization result of a toy image, which consists of four

parts of different color or different texture.

final layer of our encoder still maintains the sparsity even

for smaller models although sparsity is decreased in smaller

models (Cmax = 32). On the bottom of Figure 5, we show

corresponding stylization results of Cmax = 32, 64, 128 re-

spectively. By comparison, we can notice that Cmax = 32
obviously produces worse results than Cmax = 128 since

the latter may encourage better region decomposition for

transfer. Nevertheless, there may still be a potential to de-

sign a more compact model for content and style represen-

tation. We leave that to our future exploration.

3) How are content and style decoupled from each other?

To further know how well content is decoupled from

style, we need to examine if the image is completely en-

coded in the auto-encoder. We compare two experiments

with and without the auto-encoder branch in our training.

When we only consider the stylizing branch, the decoded

image (shown in the middle of Figure 6) produced by solely

auto-encoder without K fails to reconstruct the original in-

put image (shown in the left of Figure 6), and instead

seems to carry some style information. When we enable

the auto-encoder branch in training, we obtain the final im-

age (shown in the right of Figure 6) reconstructed from the

auto-encoder, which has very close appearance to the in-

put image. Consequently, the content is explicitly encoded

into the auto-encoder, and independent of any styles. This

is very convenient to carry multiple styles learning in a sin-

gle network and reduce the interferences among different

styles.

4) How does the content image control style transfer?

To know how the content controls style transfer, we con-

sider a toy case shown in Figure 7. On the top, we show

the input toy image consisting of five regions with variant

colors or textures. On the bottom, we show the output styl-

ization result. Below are some interesting observations:

• For input regions with different colors but without tex-

tures, only a purely color transfer is applied (see Fig-

ure 7 (b)(f)).

• For input regions with the same color but different tex-

tures, the transfer consists of two parts: the same color

transfer and different texture transfer influenced by ap-

pearance of input textures. (see Figure 7 (c)(d)).

• For input regions with different colors but the same

textures, the results have the same transferred textures

but different target colors (see Figure 7 (d)(e)).

4. Capabilities of Our Network

Because of an explicit representation, our proposed feed-

forward network provides additional capabilities, when

compared with previous feed-forward networks for style

transfer. They may bring new user experiences or generate

new stylization effects compared to previous methods.

4.1. Incremental Training

Previous style transfer networks (e.g., [19, 37, 22]) have

to be retrained for a new style, which is very inconvenient.

In contrast, an iterative optimization mechanism [12] pro-

vides an online-learning for any new style, which would

take several minutes for one style on GPU (e.g., Titan X).

Our method has virtues of both feed-forward networks [19,

37, 22] and iterative optimization method [12]. We enable

an incremental training for new styles, which has compara-

ble learning time to the online-learning method [12], while

preserving efficiency of feed-forward networks [19, 37, 22].

In our configuration, we first jointly train the auto-

encoder and multiple filter banks (50 styles used at the be-

ginning) with the strategy described in Algorithm 1. After

that, it allows to incrementally augment and train the Style-

Bank layer for new styles by fixing the auto-encoder. The

process converges very fast since only the augmented part

of the StyleBank would be updated in iterations instead of

the whole network. In our experiments, when training with

Titan X and given training image size of 512, it only takes

around 8 minutes with about 1, 000 iterations to train a new

style, which can speed up the training time by 20 ∼ 40
times compared with previous feed-forward methods.

Figure 8 shows several stylization results of new styles

by incremental training. It obtains very comparable styliza-

tion results to those from fresh training, which retrains the

whole network with the new styles.

4.2. Style Fusion

We provide two different types of style fusion: linear

fusion of multiple styles, and region-specific style fusion.

Linear Fusion of Styles. Since different styles are en-

coded into different filter banks {Ki}, we can linearly fuse
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Figure 8. Comparison between incremental training (Left) and

fresh training (Right). The target styles are shown on the top-left.

Figure 9. Results by linear combination of two style filter banks.

multiple styles by simply linearly fusing filter banks in the

StyleBank layer. Next, the fused filter bank is used to con-

volve with content features F :

F̃ = (
∑m

i=1
wi ∗Ki)⊗ F

∑m

i=1
wi = 1, (5)

where m is the number of styles, Ki is the filter bank of

style i. F̃ is then fed to the decoder. Figure 9 shows such

linear fusion results of two styles with variant fusion weight

wi.

Region-specific Style Fusion. Our method naturally al-

lows a region-specific style transfer, in which different im-

age regions can be rendered by various styles. Suppose that

the image is decomposed into n disjoint regions by auto-

matic clustering (e.g., K-means mentioned in Section 3.3

or advanced segmentation algorithms [5, 33]) in our feature

space, and Mi denotes every region mask. The feature maps

can be described as F =
∑m

i=1
(Mi × F ). Then region-

specific style fusion can be formulated as Equation (6):

F̃ =
∑m

i=1
Ki ⊗ (Mi × F ), (6)

where Ki is the i-th filter bank.

Figure 10 shows such a region-specific style fusion result

which exactly borrows styles from two famous paintings of

Picasso and Van Goph. Superior to existing feed-forward

networks, our method naturally obtains image decomposi-

tion for transferring specific styles, and passes the network

only once. On the contrary, previous approaches have to

pass the network several times and finally montage differ-

ent styles via additional segmentation masks.

Figure 10. Region-specific style fusion with two paintings of Pi-

casso and Van Gophm, where the regions are automatically seg-

mented with K-means method.

5. Experiments

Training Details Our network is trained on 1000 con-

tent images randomly sampled from Microsoft COCO

dataset [27] and 50 style images (from existing papers and

the Internet). Each content image is randomly cropped to

512×512, and each style image is scaled to 600 on the long

side. We train the network with a batch size of 4 (m = 4 in

Algorithm 1) for 300k iterations. And the Adam optimiza-

tion method [20] is adopted with the initial learning rate of

0.01 and decayed by 0.8 at every 30k iterations. In all of our

experiments, we compute content loss at layer relu4 2 and

style loss at layer relu1 2, relu2 2, relu3 2, and relu4 2
of the pre-trained VGG-16 network. We use T = 2, λ = 1
(in Algorithm 1) in our two branches training.

5.1. Comparisons

In this section, we compare our method with other CNN-

based style transfer approaches [12, 19, 37, 6]. For fair com-

parison, we directly borrow results from their papers. It is

difficult to compare results with different abstract styliza-

tion, which is indeed controlled by the ratio α/β in Equa-

tion (3) and different work may use their own ratios to

present results. For comparable perception quality, we

choose different α, β in each comparison. More results are

available in our supplementary material1.

Compared with the Iterative Optimization Method.

We use α/β = 1/100 (in Equation (3)) to produce com-

parable perceptual stylization in Fig. 11. Our method, like

all other feed-forward methods, creates less abstract styliza-

tion results than optimization method [12]. It is still difficult

to judge which one is more appealing in practice. However,

our method, like other feed-forward methods, could be hun-

dreds of times faster than optimization-based methods.

Compared with Feed-forward Networks. In Figure 12

and Figure 13, we respectively compare our results with

two feed-forward network methods [19, 37]. We use α/β =
1/50 (in Equation (3)) in both comparisons. Ulyanov et al.

1http://www.dongdongchen.bid/pubs/sbk_supp.pdf
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Inputs Our Results Gatys �� ��.’s Results

Figure 11. Comparison with optimization-based method [12].

Inputs Our Results Johnson �� ��.’s Results

Figure 12. Comparison with the feed-forward network in [19].

Inputs Our Results Ulyanov �� ��.’s Results

Figure 13. Comparison with the feed-forward network in [37].

[37] design a shallow network specified for the texture syn-

thesis task. When it is applied to style transfer task, the

stylization results are more like texture transfer, sometimes

randomly pasting textures to the content image. Johnson et

al. [19] use a much deeper network and often obtain bet-

ter results. Compared with both methods, our results obvi-

ously present more region-based style transfer, for instance,

the portrait in Figure 13, and river/grass/forest in Fig. 12.

Inputs Our Results Dumoulin �� ��.’s Results

Figure 14. Comparison with the synchronal learning [6],

Moreover, different from their one-network-per-style train-

ing, all of our styles are jointly trained in a single model.

Compared with other Synchronal Learning. Dumoulin

et al., in their very recent work [6], introduce the “con-

ditional instance normalization” mechanism derived from

[38] to jointly train multiple styles in one model, where pa-

rameters of different styles are defined by different instance

normalization factors (scaling and shifting) after each con-

volution layer. However, their network does not explicitly

decouple the content and styles as ours. Compared with

theirs, our method seems to allow more abilities of region-

specific transfer. As shown in Fig. 14, our stylization results

better correspond to the natural regions of content images.

In this comparison, we use α/β = 1/25 (in Equation (3)).

6. Discussion and Conclusion

In this paper, we have proposed a novel explicit repre-

sentation for style and content, which can be well decou-

pled by our network. The decoupling allows faster training

(for multiple styles, and new styles), and enables new in-

teresting style fusion effects, like linear and region-specific

style transfer. More importantly, we present a new inter-

pretation to neutral style transfer which may inspire other

understandings for image reconstruction, and restoration.

There are still some interesting issues for further inves-

tigation. For example, the auto-encoder may integrate se-

mantic segmentation [28, 26] as additional supervision in

the region decomposition, which would help create more

impressive region-specific transfer. Besides, our learnt rep-

resentation does not fully utilize all channels, which may

imply a more compact representation.
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