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Abstract

Most popular deep models for action recognition split

video sequences into short sub-sequences consisting of a

few frames; frame-based features are then pooled for rec-

ognizing the activity. Usually, this pooling step discards

the temporal order of the frames, which could otherwise be

used for better recognition. Towards this end, we propose

a novel pooling method, generalized rank pooling (GRP),

that takes as input, features from the intermediate layers of

a CNN that is trained on tiny sub-sequences, and produces

as output the parameters of a subspace which (i) provides

a low-rank approximation to the features and (ii) preserves

their temporal order. We propose to use these parameters as

a compact representation for the video sequence, which is

then used in a classification setup. We formulate an objec-

tive for computing this subspace as a Riemannian optimiza-

tion problem on the Grassmann manifold, and propose an

efficient conjugate gradient scheme for solving it. Experi-

ments on several activity recognition datasets show that our

scheme leads to state-of-the-art performance.

1. Introduction

Activity recognition from videos is challenging as real-

world actions are often complex, confounded with back-

ground activities and vary significantly from one actor to

another. Efficient solutions to this difficult problem can fa-

cilitate several useful applications such as human-robot co-

operation, visual surveillance, augmented reality, and med-

ical monitoring systems. The recent resurgence of deep

learning algorithms has demonstrated significant advance-

ments in several fundamental problems in computer vi-

sion, including activity recognition. However, such solu-

tions are still far from being practically useful and thus

activity recognition continues to be a challenging research

topic [2, 12, 34, 38, 45, 47].

Deep learning algorithms on long video sequences de-

mand huge computational resources, such as GPU, memory,

etc. One popular approach to circumvent this practical chal-

Figure 1. An illustration of our pooling scheme. For every video,

our formulation learns the parameters of a low-dimensional sub-

space in which the projected video frames conform to their tempo-

ral order. We use the subspaces as respective representations of the

sequences. Such subspaces belong to the Grassmann manifold, on

which we learn non-linear action classifiers.

lenge is to train networks on sub-sequences consisting of

one to a few tens of video frames. The activity predictions

from such short temporal receptive fields are then aggre-

gated via a pooling step [25, 7, 38], such as computing the

average or maximum of the generated CNN features. Given

that the features are from temporally-ordered input data, it

is likely that they capture the temporal evolution of the ac-

tions in the sequence. Thus, a pooling scheme that can use

this temporal structure is preferred for activity recognition.

In Fernando et al. [15, 13], the problem of pooling using

the temporal structure is cast in a learning-to-rank setup,

termed Rank Pooling, that computes a line in input space;

the projection of input data onto this line preserving the

temporal order. The parameters of this line are then used

as a summarization of the video sequence. However, sev-

eral issues remain unanswered, namely (i) while the line is

assumed to belong to the input space, there is no guarantee

that it captures other properties of the data (other than or-

der), such as background, context, etc. which may be useful

for recognition, (ii) the ranking constraints are linear, (iii)

13222



each data channel (such as RGB) is assumed independent,

and (iv) a single line for ordering is considered, while using

multiple hyperplanes might lead to better characterization

of the temporal action dynamics. In this paper, we propose a

novel re-formulation of rank pooling that addresses all these

drawbacks.

Instead of using a single line as a representation for the

sequence, our main idea is to use a subspace parameterized

by several orthonormal hyperplanes. We propose a novel

learning-to-rank formulation to compute this subspace by

minimizing an objective that jointly provides a low-rank

approximation to the input data, while also preserves their

temporal order in the subspace. The low-rank approxima-

tion helps capture the essential properties of the data that are

useful for summarizing the action. Further, the temporal

order is captured via a quadratic ranking function thereby

capturing non-linear dependencies between the input data

channels. Specifically, in our formulation, the temporal or-

der is encoded as increasing lengths of the projections of the

input data onto the subspace.

While our formulation provides several advantages for

temporal pooling, it leads to a difficult non-convex opti-

mization problem, due to the orthogonality constraints. For-

tunately, we show that the subspaces in our formulation sat-

isfy certain mathematical properties, and thus can be cast as

a problem on the so called Grassmann manifold, for which

there exists efficient Riemannian optimization algorithms.

We propose to use a conjugate gradient descent algorithm

for our problem which is often seen to converge fast.

We provide experiments on several popular action recog-

nition datasets, preprocessed by extracting features from

the fully-connected layers of VGG-net [39]. Following

the standard practice, we use a two stream network [38]

trained on single RGB frames and 20-channel optical flow

images. Our experimental results show that the proposed

scheme is significantly better at capturing the temporal

structure of CNN features in action sequences compared to

conventional pooling schemes or the basic form of rank-

pooling [14], while also achieving state-of-the-art perfor-

mances.

Before moving on, we summarize the main contributions

of our work:

• We propose a novel learning-to-rank formulation for

capturing the temporal evolution of actions in video

sequences by learning subspaces.

• We propose an efficient Riemannian optimization al-

gorithm for solving our objective.

• We show that subspace representation on CNN fea-

tures is highly beneficial for action recognition.

• We provide experiments on standard benchmarks

demonstrating state-of-the-art performance.

2. Related Work

Training of convolutional neural networks directly on

long video sequences is often computationally prohibitive.

Thus, various simplifications have been explored to make

the problem amenable, such as using 3D spatio-temporal

convolutions [42], recurrent models such as LSTMs or

RNNs [7, 8], decoupling spatial and temporal action com-

ponents via a two-stream model [38, 12], early or late fusion

of predictions from a set of frames [25]. While 3D convolu-

tions and recurrent models can potentially learn the dynam-

ics of actions in long sequences, training them is difficult

due to the need for very large datasets and volumetric nature

of the search space in a structurally-complex domain. Thus,

in this paper, we focus on late fusion techniques on the CNN

features generated by a two-stream model, and refer to re-

cent surveys for a review of alternative schemes [23].

Typically, the independent action predictions by a CNN

along the video sequence is averaged or fused via a lin-

ear SVM [38] without considering the temporal evolution

of the CNN features. Rank-pooling [15] demonstrates bet-

ter performances by accounting for the temporal informa-

tion. They cast the problem in a learning-to-rank frame-

work and propose an efficient algorithm for solving it via

support-vector regression. While, this scheme uses hand-

crafted features, extensions are explored in Fernando et

al. [13, 16, 41] in a CNN setting via end-to-end learning.

However, training such a deep architecture is slow as it re-

quires computing the gradients of a bi-level optimization

loss [18]. This difficulty can be circumvented via early-

fusion of the frames as described in Bilen et al. [3], Wang

et al. [46] by pooling the input frames or optical flow im-

ages, however one needs to solve a very high-dimensional

ranking problem (with dimensionality equal to the size of

input images), which may be slow. Instead, in this paper,

we propose a generalization of the original ranking formu-

lation [15] using subspace representations and show that

our formulation leads to significantly better representation

of the dynamic evolution of actions, while being computa-

tionally cheap.

There have been approaches using subspaces for ac-

tion representations in the past. These methods are devel-

oped mostly for hand-crafted features and thus their per-

formances on CNN features are not thoroughly understood.

For example, in the method of Li et al [29], it is assumed

that trajectories from actions evolve in the same subspace,

and thus computing the subspace angles may capture the

similarity between activities. In contrast, we learn sub-

spaces over more general CNN features and constrain them

to capture dynamics. In Le et al. [28], the standard indepen-

dent subspace analysis algorithm is extended to learn in-

variant spatio-temporal features from unlabeled video data.

Principal components analysis and its variants have been

suggested for action recognition in Karthikeyan et al. [26]
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using multi-set partial least squares to capture the tempo-

ral dynamics. This method also uses probabilistic subspace

similarity learning proposed by Moghaddam et al. [31] to

learn intra-action and inter-action models. An adaptive lo-

cality preserving projection method is proposed in Tseng

et al. [43] to obtain a low-dimensional spatial subspace in

which the linear structure of the data (such as that arising

out of human body shape) is preserved.

Similar to our proposed approach, O’Hara et al. [32] in-

troduce a subspace forest representation for action recog-

nition that considers each video segment as points on a

Grassmann manifold and a random-forest based approxi-

mate nearest neighbor scheme is used to find similar videos.

Subspaces-of-Features, formed from local spatio-temporal

features, is presented in Raytchev et al. [35], and uses

Grassmann SVM kernels [37] for classification. A frame-

work using multiple orthogonal classifiers for domain adap-

tation is presented in Etai and Wolf [30]. Similar kernel

based recognition schemes are also proposed in Harandi et

al. [21] and Turaga et al. [44]. In contrast, we are the first

to propose subspace representations on CNN features for

action recognition in a joint framework that includes non-

linear chronological ordering constraints to capture the tem-

poral evolution of actions.

3. Proposed Method

Let X = 〈x1, x2, ..., xn〉 be a sequence of n consecutive

data features, each xt ∈ R
d, produced by some dynamic

process at discrete time instances t. In case of action recog-

nition in video sequences using a two-stream CNN model,

X represents a sequence of features where each xt is the

output of some CNN layer (for example, fully-connected

FC6 of a VGG-net as used in our experiments) from a sin-

gle RGB video frame or a small stack of consecutive optical

flow images (similar to [38]).

Our goal in this paper is to generate a compact represen-

tation for X that summarizes the human action category and

could be used for recognition of human actions from video.

Towards this end, we assume that the per-frame features xt

encapsulates the action properties of a frame (such as local

dynamics or object appearance), and such features across

the sequence captures the dynamics of the action as charac-

terized by the temporal variations in xt. That is, we assume

the features are generated by a function g parameterized by

time t:

xt = g(t), (1)

where g abstracts the action dynamics and produces the ac-

tion feature for every time instance. However, in the case

of real-world actions in arbitrary video sequences, finding

such a generator g is not viable. Instead, using the unidirec-

tional nature of time, we impose an order to the generated

features as suggested in [15, 14], where it is assumed that

the projections of xt onto some line preserves the order.

Given that the features xt are often high-dimensional (as

the ones we use, which are from the intermediate layers of a

CNN), it is highly likely that the information regarding ac-

tions inhabits a low-dimensional feature subspace (instead

of a line). Thus, we could write such a temporal order as:

∥

∥UTxt

∥

∥

2
≤

∥

∥UTxt+1

∥

∥

2
− η, (2)

where U ∈ S(p, d) denotes the parameters of a p-

dimensional subspace, usually called a frame (p ≪ d) and

η is a positive constant controlling the degree to which the

temporal order is enforced. Such frames have orthonormal

columns and belongs to the Stiefel manifold S(p, d) [9].

Our main idea is to use U to represent the sequence X .

To this end, we propose the following formulation for ob-

taining the low-rank subspace U from X given a rank p as

follows:

min
U∈S(p,d)

L(U) ,
1

2

n
∑

i=1

∥

∥xi − UUTxi

∥

∥

2
(3)

subject to
∥

∥UTxi

∥

∥

2
≤

∥

∥UTxj

∥

∥

2
− η, ∀i < j.

In the above formulation, the objective seeks a p-rank ap-

proximation to X . Note that the Stiefel manifold enforces

the property that U has orthogonal columns, i.e., UTU =
Ip, the p× p identity matrix.

3.1. Properties of Formulation

In this subsection, we explore some properties of this

formulation that allows for its efficient optimization.

Invariance to Right-Action by Orthogonal Group:

Note that our formulation in (3) can be written as L(U) =
H(UUT ) for some function H . This means that for

any matrix R in the orthogonal group O(p), L(UR) =
H(URRTU) = H(UUT ). This implies that all points of

the form UR are minimizers of L(U). Such a set forms an

equivalence class of all linear subspaces that can be gener-

ated from a given U and is a point in the so called Grass-

mann manifold G(p, d). Thus, instead of minimizing over

the Stiefel manifold, we could optimize the problem on the

more general Grasssmann manifold.

Idempotence: While, the objective in (3) appears to be

a quadratic function in U , it can be shown to be reduced

to a convex quadratic objective as follows. Observe that

the matrix P = (I − UUT ) is symmetric idempotent, i.e.,

PTP = PP = P 2 = P . This implies that we can simplify

the objective as follows:

∥

∥xi − UUTxi

∥

∥

2
= Tr(xix

T
i (Id − UUT )). (4)
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Unfortunately, the overall formulation remains non-convex

due to the orthogonality constraints on the subspace. How-

ever, this property comes handy in our convex reformulation

of the objective in Section 3.3.

Using the above simplifications, introducing slack vari-

ables, and rewriting the constraints as hinge-loss, we can

reformulate (3) and present our generalized rank pooling

(GRP) objective as follows:

min
U :U∈G(p,d)

ξ≥0

F (U) ,
1

2

n
∑

i=1

Tr
(

xix
T
i (Id − UUT )

)

+C
∑

i<j

ξij

+
λ

2

∑

i<j

max(0,
∥

∥UTxi

∥

∥

2
−
∥

∥UTxj

∥

∥

2
+ 1− ξij), (5)

where λ → ∞ is a regularization parameter and ξ are non-

negative slack variables.

3.2. Efficient Optimization

The optimization problem F (U) can be solved via Rie-

mannian conjugate gradient on the Grassmann manifold.

The gradient of the objective at the k-th conjugate gradient

step has the following form:

∇UF (Uk) =











∑

(∀i<j)∧

‖UT
k xj‖

2

−‖UT
k xi‖

2

≤1

λ
(

xix
T
i − xjx

T
j

)

−XXT











Uk,

(6)

where the summation is over all constraint violations at

a given iteration. Note that the complexity of this gradi-

ent computation is O(d2) where d is the dimensionality of

xi, which may be expensive. Instead, below we propose a

cheaper expression that leads to the same gradient.

Suppose V ∈ {0, 1}
n×n

be a binary upper-triangular

matrix whose ij-th (j > i) entry describes if the points

xi and xj violate the ordering constraints given Uk. Then,

we can rewrite the above gradient as:

∇UF (Uk) =

[

∑

i

ηixi(x
T
i Uk)

]

−X(XTUk), (7)

where ηi =
(

∑

V(i,:) −
∑

V(:,i)

)

, (8)

where V(i,:) and V(:,j) stand for the i-th row and j-th col-

umn of V , respectively. The complexity of computing ηi is

O(n), and the cost of computing the gradient is reduced to

O(n+ np).

3.3. Convex Reformulation

The formulation introduced in (3) estimates all the sub-

spaces together, however is non-convex. Instead, we show

below that if we estimate the subspaces incrementally, that

is one at a time, then each sub-problem can be made convex

and thus solved exactly. To this end, suppose we have ob-

tained the subspace Uq−1 ∈ S(p, q − 1) and we are solving

for the q-th basis vector uq . The objective for finding uq can

be recursively written as:

min
‖uq‖=1,ξ≥0

1

2

n
∑

i=1

∥

∥x̂i − uqu
T
q x̂i

∥

∥

2
+ C

∑

i<j

ξij

subject to
∥

∥uT
q x̂i

∥

∥

2
≤

∥

∥uT
q x̂j

∥

∥

2
− 1 + ξij , ∀i < j,

x̂i = xi − Uq−1〈Uq−1, xi〉, ∀i

uqUq−1 = 0. (9)

In the above formulation, the main idea is to estimate each

1-dimensional subspace, and then subtract off the energy

in X associated with this subspace, thus generating x̂i from

xi. Such unit subspaces are incrementally estimated (greed-

ily) by following this procedure. As is clear, each solution

of this objective is convex as it involves a quadratic objec-

tive, quadratic constraints, and a linear equality. Note that

Uq−1 is a constant matrix when estimating uq . However,

the greedy strategy may lead to sub-optimal results, as is

empirically also observed in Table 4.

3.4. Conjugate Gradient on the Grassmannian

As described in the last section, we cast the generalized

rank pooling objective as an optimization problem with an

orthogonality constraint, which can generally be written as

minimize
U

F (U)

subject to UTU = Ip, (10)

where F (U) is the desired cost function and U ∈ R
d×p. In

the Euclidean space, problems of the form of (10) are typi-

cally cast as eigenvalue problems. However, the complexity

of our cost function prohibits us from doing so. Instead, we

propose to make use of manifold-based optimization tech-

niques.

Recent advances in optimization methods formulate

problems with unitary constraints as optimization problems

on Stiefel or Grassmann manifolds [10, 1]. More specif-

ically, the geometrically correct setting for the minimiza-

tion problem in (10) is, in general, on a Stiefel manifold.

However, if the cost function F (U) is independent from

the choice of basis spanned by U , then the problem is on

a Grassmann manifold. This is indeed what we showed in

Section 3.1. We can therefore make use of Grassmannian

optimization techniques, and, in particular, of Newton-type

optimization, which we briefly review below.

Newton-type optimization, such as conjugate gradient

(CG), over a Grassmannian is an iterative optimization rou-

tine that relies on the notion of Riemannian gradient. On
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G(p, d), the gradient is expressed as

gradUF (U) = (Id − UUT )∇U (F ), (11)

where ∇U (F ) is the d × p matrix of partial derivatives of

F (U) with respect to the elements of U . This is computed

in Eq.(9) for our method. The descent direction expressed

by gradUF (U) identifies a curve γ(t) on the manifold,

moving along it ensures a decrease in the cost function (at

least locally). Points on γ(t) are obtained by the exponential

map. In practice, the exponential map is approximated lo-

cally by a retraction (see Chapter 4 in [1] for definitions and

detailed explanations). In the case of the Grassmannian, this

can be understood as forcing the orthogonality constraint

while making sure that the cost function decreases.

In our experiments, we make use of a conjugate gradient

(CG) method on the Grassmannian. CG methods compute

the new descent direction by combining the gradient at the

current and the previous solutions. To this end, it requires

transporting the previous gradient to the current point on

the manifold which is achieved by the concept of Rieman-

nian connections. On the Grassmann manifold, operations

required for a CG method, have efficient numerical forms,

which makes them well-suited to perform optimization on

the manifold.

3.5. Classification on the Grassmanian

Once we obtain the subspace representation solving the

GRP objective using manifold CG method, the next step is

to train a classifier on these subspaces for action recogni-

tion. Since these subspaces are elements of the Grassman-

nian, we must use an SVM kernel defined on this manifold.

To this end, there are several potential kernels [20], of which

we use the exponential Projection metric kernel due to its

empirical benefits on our problem as validated in Table 2.

For two subspaces U1 and U2, the exponential projection

metric kernel K has the following form:

K(U1, U2) = exp
(

β
∥

∥UT
1 U2

∥

∥

2

F

)

, for β > 0. (12)

4. Experiments

This section evaluates the proposed ranking method on

four standard benchmark datasets on activity recognition,

namely (i) the JHMDB dataset [24], (ii) the MPII Cooking

activities dataset [36], (iii) the HMDB-51 dataset [27], and

the UCF101 dataset [40]. In all our experiments, we use

the standard 16-layer Imagenet pre-trained VGG-net deep

learning network [39], which is then fine-tuned on the re-

spective dataset and input modality, such as single RGB or a

stack of 10 consecutive optical flow images. We provide the

details and evaluation protocols for each of these datasets

below.

HMDB Dataset: consists of 6766 videos from 51 differ-

ent action categories. The videos are generally of low qual-

ity, with strong camera motion, and non-centered people.

JHMDB Dataset: is a subset of HMDB dataset consist-

ing of 968 clips and 21 different action classes. The dataset

was mainly created for evaluating the impact of human pose

estimation for action recognition, and thus all videos con-

tain humans whose body-parts are clearly visible.

MPII Cooking Activities Dataset: consists of high-

resolution videos of activities in a kitchen related to cooking

several dishes. In comparison to the other two datasets, the

videos are captured by a static camera. However, the activ-

ities could be very subtle such as slicing or cutting vegeta-

bles, washing or wiping plates, etc. that needs to be recog-

nized. There are 5609 video clips and 65 annotated actions.

UCF101 Dataset: contains 13320 videos distributed in

101 action categories. This dataset is different from the

above ones in that it contains mostly coarse sports activi-

ties with strong camera motion and low resolution videos.

4.1. Evaluation

The HMDB, UCF101, and JHMDB datasets use mean

average accuracy over 3-splits as their evaluation criteria.

The MPII dataset uses 7-fold cross-validation and reports

results on mean average precision (mAP). For the latter, we

use the evaluation code published with the dataset.

4.2. Preprocessing

The JHDMB, HMDB, and UCF101 datasets are rela-

tively low resolution and thus we resize the images to input

sizes that are required by the standard VGG-net model (that

is, 224x224). We use the TVL1 optical flow implementation

in Opencv to generate the 10-channel stack of flow images,

where each flow image is rescaled in the range 0-255, and

then saved as a JPEG image, which is the standard practice.

For the MPII dataset, as the videos are originally in very

high-resolution, we use a set of morphological operations

to crop regions of interest before resizing them to the CNN

input size. To be specific, we first resize the images into

half their resolution, followed by computing the absolute

difference between the frames, and summing up the differ-

ences across the sequence. Next, we apply median filtering,

dilation, and connected component analysis to generate bi-

nary activity masks, and crop the sequences to the smallest

rectangle that includes all the valid components. Once the

sequences are cropped to these regions of interest, we use

them as inputs to the CNNs, and also use them to compute

stacked flow images.
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4.3. Training CNNs

As alluded to earlier, we use the two-stream model

of [38], but uses the VGG-net architecture as it has demon-

strated significant benefits [22, 12]. However, our meth-

ods are not restricted to any specific architecture and could

be used for deeper models such as the ResNet [11]. The

two network streams are trained independently against the

softmax cross-entropy loss. The RGB stream is fine-tuned

from the ImageNet model, while the flow stream is fine-

tuned from the UCF101 model publicly available as part

of [12]. We used a fixed learning rate of 10−4 and an in-

put batch size of 50 frames. The CNN training was stopped

as soon as the loss on the validation set started increasing,

which happened in about 6K iterations for the RGB stream

and 40K iterations for the optical flow. For the HMDB and

JHMDB dataset, we use the 95% of the respective training

set in each split for fine-tuning the models, and rest is used

as the validation set. The MPII cooking activities dataset

comes with a training, validation, and a test set. For the

UCF101 dataset, we used the models from [12] directly.

4.4. Results

This section provides a systematic evaluation of the in-

fluence of various hyper-parameters in our model, namely

(i) influence of the number of subspaces used in our model,

(ii) influence of the threshold used in enforcing the tem-

poral order, (iii) comparison of the performance difference

FC6 and FC7 CNN layer outputs in GRP, and (iv) an anal-

ysis of various Grassmannian kernels. We use the JHMDB

and MPII datasets as common test beds for this analysis. In

the following, we use the notations FLOW to denote a 10-

channel stack of flow images, and RGB to denote the single

RGB images.

We use the rectified output of the fully-connected layer

fc6 of the VGG-net for all our evaluations which are 4096

dimensional vectors. All the features are unit-normalized

before applying the pooling. We use the MANOPT [4] soft-

ware package for implementing the Grassmannian conju-

gate gradient. We run 100 iterations of this algorithm in

all our experiments. Unless otherwise specified, we use the

projection metric kernel [19] for classifying the subspaces

on the Grassmannian. As for FLOW + RGB, which com-

bines the GRP results from both FLOW and RGB streams,

we use sum of two separate projection metric kernels one

from each modality for classification.

4.4.1 Number of Subspaces and Ranking Threshold

In Figure 2(a), we compare the accuracy against an increas-

ing number of subspaces used in the GRP formulation on

the split-1 of the JHMDB dataset. We also compare the

performance when not using the ranking constraints in the

formulation. As is clear, temporal order constraints is ben-

(a) (b)

Figure 2. Left: Evaluation of accuracy against increasing subspace

dimensionality (keeping fixed ranking threshold at 0.1). Right:

Evaluation of accuracy against increasing ranking threshold η

keeping subspace dimensions fixed. Both results are on split 1

of JHMDB dataset and uses FLOW + RGB and does not use slack

variables in the optimization.

eficial, leading to about 9% improvement in accuracy when

using 1-2 subspaces, and about 3-5% when using a larger

number. This difference suggests that larger number of sub-

spaces, which more closely approximates the input data,

may be perhaps be capturing the background non-dynamics

related features, which are not useful for classification.

To further validate the usefulness of our ranking strategy,

we fixed the number of subspaces and increased the rank-

ing threshold η in (3) from 10−3 to 2 in steps. Our plot

in Figure 2(b) shows that the accuracy of recognition in-

creases significantly when the temporal order is enforced in

the subspace reconstruction. However, when the number of

subspaces is larger, this constraint does not help much, as

is observed in the previous experiment as well. These two

plots clearly demonstrate the correctness of our scheme and

the usefulness of the ranking constraints in subspace repre-

sentation. In the sequel, we use 2 subspaces in all our ex-

periments, as it was seen most often to provide good results

on the validation datasets.

In Table 1, we compare the influence of the ranking con-

straints on the FLOW and the RGB channels separately.

We note that these constraints have a bigger influence on

the FLOW stream than on the RGB stream, implying that

the dynamics are mostly being captured in the FLOW, as

is obvious, while the RGB stream CNN is perhaps learning

mostly the background context. A similar observation is

also made in [46]. Nevertheless, it is noteworthy that these

constraints does improve the performance even on the RGB

stream.

4.4.2 Choice of Grassmannian Kernel

Another choice in our setup is the Grassmannian kernel to

use. In Harandi et al. [20], a list of several useful kernels

on this manifold is presented, each one behaving differently

with respect to the application. To this end, we decided to

evaluate the performance of these kernels on the subspaces
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Method/Dataset FLOW RGB

MPII mAP (%) mAP (%)

GRP (w/o constraints) 51 48.9

GRP-Grassmann 52.1 50.3

JHMDB Avg.Acc.(%) Avg.Acc.(%)

GRP (w/o constraints) 59.4 41.8

GRP-Grassmann 64.2 42.5
Table 1. Comparison between the influence of GRP on FLOW

and RGB separately on JHMDB and MPII datasets. These ex-

periments use the split-1 of the respective datasets. Results of

FLOW+RGB are in Table 4.

generated from GRP. In Table 2, we compare these kernels

on the split-1 of MPII and the JHMDB datasets. We use

the polynomial and RBF variants of the standard Projection

Metric and the Binet-Cauchy distances. As depicted in the

table, the linear kernel and the Binet-Cauchy kernels did not

seem to perform well, but both the projection metric kernels

seems to showcase significant benefits.

Method/Dataset MPII (mAP%) JHMDB(Avg. Acc%)

Linear 24.2 46.6

Poly. Proj. Metric 50.4 65.3

RBF Proj. Metric 52.1 66.8

Poly. Binet-Cauchy 33.6 40.0

RBF Binet-Cauchy 33.5 38.0
Table 2. Comparison between the choice of different kernels for

classification on the Grassmannian. We use the CNN features from

the FLOW stream alone for this evaluation, using 2 subspaces.

4.5. Comparison of CNN Features

Next, we evaluate the usefulness of CNN features from

the FC6 and FC7 layers. In Table 4.5, we provide this com-

parison on the split-1 of the JHMDB dataset, separately for

the FLOW, RGB, and the combined streams. We see that

consistently, the GRP on the FC6 layer performs better, per-

haps it encodes more temporal information than the layers

upper in the hierarchy. While, this posits that perhaps even

lower intermediate layer features such as from Pool5 might

be better. However, the dimensionality of these features is

significantly higher and makes the GRP optimization harder

in its current form.

Features FLOW RGB FLOW + RGB

JHMDB Avg. Acc (%) Avg. Acc (%) Avg. Acc (%)

FC6 64.2 42.5 73.8

FC7 63.4 40.3 72.0

MPII mAP (%) mAP (%) mAP (%)

FC6 52.1 50.3 53.8

FC7 45.6 46.5 50.7

Table 3. Accuracy comparison using FC6 and FC7 features.

Figure 3. Detailed comparison of the improvements afforded by

GRP against the variant without ranking constraints and a recent

state-of-the-art method [6] on the JHMDB dataset (3-splits).

4.6. Comparison between Pooling Techniques

Now that we have a clear understanding of the behavior

of GRP under disparate scenarios, we compare it against

other popular pooling methods. To this end, we compare to

(i) standard average pooling, (ii) Rank pooling [15], which

uses only a line for enforcing the temporal order, (iii) our

GRP scheme but without ordering constraints, (iv) GRP-

Grassmannian, which is our proposed scheme, and (v) our

convex reformulation of GRP, as described in Section 3.3.

For Rank pooling, we use the publicly available code from

the authors without any modifications. In Table 4, we pro-

vide these comparisons on the split-1 of all the four datasets.

The results show that GRP is significantly better than av-

erage or Rank pooling consistently on all the four datasets.

Further, surprisingly, we note that a low-rank reconstruction

of the CNN features by itself provides a very good summa-

rization of the actions useful for recognition. While, us-

ing subspaces for action recognition has been done several

times in the past [21, 44], we are not aware of any work

that shows these benefits on CNN features. However, us-

ing ranking constraints on low-rank subspaces leads to even

better results. Specifically, there is about 7% improvement

on the JHMDB dataset, and about 4% on the MPII dataset,

3% on the HMDB datasets. We also note from these results

that GRP-incremental works similar to GRP-Grassmannian,

but shows slightly lower performance on an average. This

is not surprising, given that it is a greedy method. Com-

putationally it is seen to be significantly slower than GRP-

Grassmannian, that computes all the subspaces together.

4.7. Comparison to the State of the Art

In Tables 5, 6, 7, and 8, we compare GRP against state-

of-the-art pooling and action recognition methods using

CNNs and hand-crafted features. For all comparisons, we

use the published results and follow the exact evaluation
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Method/Dataset MPII-mAP (%) JHMDB-Avg.Acc.(%) HMDB-Avg. Acc.(%) UCF101-Avg. Acc. (%)

Avg. Pooling [38] 38.1 55.9 53.6 88.5

Rank Pooling [15] 47.2 55.2 51.4 63.8

GRP (w/o constraints) 50.1 67.5 62.2 90.4

GRP-Grossman 53.8 73.8 65.2 91.2

GRP-incremental 51.2 74.3 64.6 89.9
Table 4. Comparison of various pooling techniques on the four datasets. We use the RGB+FLOW together for this evaluation on split-1.

protocols. From the tables, it is clear that GRP outperforms

the best methods on MPII and JHMDB datasets, while

demonstrates promising results on HMDB and UCF101

datasets. For example, against rank pooling [15], our

scheme leads to significant benefits, by about 10-20% on

MPII and JHMDB datasets (Table 4), while against dy-

namic images [3] without hand-crafted features it is better

by 2-3% on HMDB and UCF101 datasets. This shows that

using subspaces leads to better characterization of the ac-

tions. Our results on these datasets are lower than the re-

cent method in [12] that uses sophisticated residual deep

models with intermediate stream fusion. However, in com-

parison, our pooling scheme is very general and could be

used in any problem where ordering constraints are natural.

In Figure 3, we analyze the results of GRP, GRP-without

constraints, and the recent P-CNN scheme [6]. Out of 21

actions in this dataset, GRP outperforms P-CNN on 13. On

19 actions either GRP performs better or equal than the vari-

ant without constraints, thus substantiating its benefits.

Algorithm mAP(%)

P-CNN + IDT-FV [6] 71.4

Interaction Part Mining [49] 72.4

Holistic + Pose [36] 57.9

Video Darwin [15] 72.0

Semantic Features [50] 70.5

Hierarchical Mid-Level Actions [41] 66.8

Higher-order Pooling [5] 73.1

GRP (w/o constraints) 66.1

GRP 68.4

GRP + IDT-FV 75.5
Table 5. MPII Cooking Activities (7 splits)

Algorithm Avg. Acc. (%)

P-CNN [6] 61.1

P-CNN + IDT-FV [6] 72.2

Action Tubes [17] 62.5

Stacked Fisher Vectors [33] 69.03

IDT + FV [45] 62.8

Higher-order Pooling [5] 73.3

GRP (w/o constraints) 64.1

GRP 70.6

GRP + IDT-FV 73.7
Table 6. JHMDB Dataset (3 splits)

Algorithm Avg. Acc. (%)

Two stream [38] 59.4

Spatio-Temporal ResNet [11] 70.3

Temporal Segment Networks [48] 69.4

TDD + IDT-FV [47] 65.9

Dynamic Image + IDT-FV [3] 65.2

Hier. Rank Pooling + IDT-FV [13] 66.9

Dynamic Flow + IDT-FV [46] 67.4

GRP (w/o constraints) 63.1

GRP 65.4

GRP + IDT-FV 67.0
Table 7. HMDB Dataset (3 splits)

Algorithm Avg. Acc. (%)

Two stream [38] 88.0

Spatio-Temporal ResNet [11] 94.6

Temporal Segment Networks [48] 94.2

TDD + IDT-FV [47] 91.5

C3D + IDT-FV [42] 90.4

Dynamic Image + IDT-FV [3] 89.1

Hier. Rank Pooling + IDT-FV [13] 91.4

Dynamic Flow + IDT-FV [46] 91.3

GRP(w/o constraints) 90.1

GRP 91.9

GRP + IDT-FV 92.3
Table 8. UCF101 Dataset (3 splits)

5. Conclusions

We presented a novel algorithm, generalized rank pool-
ing, to summarize the action dynamics in video sequences.
Our main proposition was to use the parameters of a low-
rank subspace as the pooled representation, where the deep
learned features from each frame of the sequence is as-
sumed to preserve their temporal order in this subspace.
As such subspaces belong to the Grassmannian, we pro-
posed an efficient conjugate gradient optimization scheme
for pooling. Extensive experiments on four action recogni-
tion datasets demonstrated the advantages of our scheme1.
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