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Abstract

We propose a new tracking framework with an attentional

mechanism that chooses a subset of the associated corre-

lation filters for increased robustness and computational

efficiency. The subset of filters is adaptively selected by a

deep attentional network according to the dynamic proper-

ties of the tracking target. Our contributions are manifold,

and are summarised as follows: (i) Introducing the Atten-

tional Correlation Filter Network which allows adaptive

tracking of dynamic targets. (ii) Utilising an attentional net-

work which shifts the attention to the best candidate modules,

as well as predicting the estimated accuracy of currently in-

active modules. (iii) Enlarging the variety of correlation

filters which cover target drift, blurriness, occlusion, scale

changes, and flexible aspect ratio. (iv) Validating the robust-

ness and efficiency of the attentional mechanism for visual

tracking through a number of experiments. Our method

achieves similar performance to non real-time trackers, and

state-of-the-art performance amongst real-time trackers.

1. Introduction

Humans rely on various cues when observing and tracking

objects, and the selection of attentional cues highly depends

on knowledge-based expectation according to the dynamics

of the current scene [13, 14, 28]. Similarly, in order to infer

the accurate location of the target object, a tracker needs

to take changes of several appearance (illumination change,

blurriness, occlusion) and dynamic (expanding, shrinking,

aspect ratio change) properties into account. Although visual

tracking research has achieved remarkable advances in the

past decades [21–23,32,38–40], and thanks to deep learning

especially in the recent years [6,8,29,35,36,41], most meth-

ods employ only a subset of these properties, or are too slow

to perform in real-time.

The deep learning based approaches can be divided into

two large groups. Firstly, online deep learning based track-
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Figure 1. Attentional Mechanism for Visual Tracking. The

tracking results of the proposed framework (red) are shown along

with the ground truth (cyan). The circles represent the attention at

that time, where one region represents one tracking module. When

the target shrinks as in the first row, the attention is on modules

with scale-down changes in the left-top region of the circles. If

the target suffers from shape deformation as in the second row,

modules with colour features are chosen because they are robust to

shape deformation.

ers [29, 33, 35, 36, 41] which require frequent fine-tuning of

the network to learn the appearance of the target. These ap-

proaches show high robustness and accuracy, but are too slow

to be applied in real-world settings. Secondly, correlation

filter based trackers [6,8,26,30] utilising deep convolutional

features have also shown state-of-the-art performance. Each

correlation filter distinguishes the target from nearby outliers

in the Fourier domain, which leads to high robustness even

with small computational time. However, in order to cover

more features and dynamics, more diverse correlation filters

need to be added, which slows the overall tracker.

As previous deep-learning based trackers focus on the

changes in the appearance properties of the target, only lim-

ited dynamic properties can be considered. Furthermore,

updating the entire network for online deep learning based

trackers is computationally demanding, although the deep

network is only sparsely activated at any time [29, 33, 35, 36,
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41]. Similarly, for correlation filter based trackers, only some

of the convolutional features are useful at a time [6,8,26,30].

Therefore, by introducing an adaptive selection of attentional

properties, additional dynamic properties can be considered

for increased accuracy and robustness while keeping the

computational time constant.

In this paper, we propose an attentional mechanism to

adaptively select the best fitting subset of all available corre-

lation filters, as shown in Fig. 1. This allows increasing the

number of overall filters while simultaneously keeping the

computational burden low. Furthermore, the robustness of

the tracker increases due to the exploitation of previous expe-

rience, which allows concentrating on the expected appear-

ance and dynamic changes and ignoring irrelevant properties

of a scene. The importance of attentional mechanisms of the

human visual system is highlighted by recent trends in neu-

roscience research [13,14,28], as well as by theoretical work

on the computational aspects of visual attention [12, 34].

Similarly, we find that our framework using the attentional

mechanism outperforms a network which utilises all module

trackers while being significantly faster.

2. Related Research

Deep learning based trackers: Recent works based

on online deep learning trackers have shown high perfor-

mance [29, 33, 35, 36]. Wang et al. [35] proposed a frame-

work which fuses shallow convolutional layers with deep

convolutional layers to simultaneously consider detailed and

contextual information of the target. Nam and Han [29] intro-

duced a multi-domain convolutional neural network which

determines the target location from a large set of candidate

patches. Tao et al. [33] utilised a Siamese network to es-

timate the similarities between the previous target and the

candidate patches. Wang et al. [36] proposed a sequential

training method of convolutional neural networks for visual

tracking, which utilises an ensemble strategy to avoid over-

fitting the network. However, because these trackers learn

the appearance of the target, the networks require frequent

fine-tuning which is slow and prohibits real-time tracking.

Correlation filter based trackers: Correlation filter

based approaches have recently become increasingly pop-

ular due to the rapid speed of correlation filter calcula-

tions [2,3,5,7,16,18,27]. Henriques et al. [16] improved the

performance of correlation filter based trackers by extend-

ing them to multi-channel inputs and kernel based training.

Danelljan et al. [5] developed a correlation filter covering

scale changes of the target, and Ma et al. [27] and Hong et

al. [18] used the correlation filter as a short-term tracker

with an additional long-term memory system. Choi et al. [3]

proposed an integrated tracker with various correlation filters

weighted by a spatially attentional weight map. Danelljan et

al. [7] developed a regularised correlation filter which can ex-

tend the training region for the correlation filter by applying

spatially regularised weights to suppress the background.

Deep learning + correlation filter trackers: Correla-

tion filter based trackers show state-of-the-art performance

when rich features such as deep convolution features are

utilised [6, 8, 26, 30]. Danelljan et al. [6] extended the reg-

ularised correlation filter to use deep convolution features.

Danelljan et al. [8] also proposed a novel correlation filter to

find the target position in the continuous domain, while in-

corporating features of various resolutions. Their framework

showed state-of-the-art performance with deep convolution

features. Ma et al. [30] estimated the position of the target

by fusing the response maps obtained from the convolution

features of various resolutions in a coarse-to-fine scheme.

Qi et al. [26] tracked the target by utilising an adaptive

hedge algorithm applied to the response maps from deep

convolution features. However, even though each correla-

tion filter works fast, deep convolutional features have too

many dimensions to be handled in real-time. Furthermore,

to recognise scale changes of the target, correlation filter

based algorithms need to train scale-wise filters, or apply

the same filter repeatedly. As this increases the computation

time significantly with deep convolutional features, several

approaches do not consider scale changes, including the

methods proposed by Ma et al. [30] and Qi et al. [26].

Adaptive module selection frameworks: In the ac-

tion recognition area, Spatio-Temporal Attention REloca-

tion (STARE) [25] provides an information-theoretic ap-

proach for attending the activity with the highest uncertainty

amongst multiple activities. However, STARE determined

the attention following a predefined strategy. In the robotics

area, Hierarchical, Attentive, Multiple Models for Execution

and Recognition (HAMMER) [9–11] is selecting modules

based on their prediction error. A method to predict the

performance of thousands of different robotic behaviours

based on a pre-computed performance map was presented

in [4]. In our framework, we focus on enhancing the ability

to adapt to dynamic changes.

3. Methodology

The overall scheme of the proposed Attentional Corre-

lation Filter Network (ACFN) is depicted in Fig. 2. ACFN

consists of two networks: the correlation filter network and

the attention network. The correlation filter network has a

lot of tracking modules, which estimate the validation scores

as their precisions. In the attention network, the prediction

sub-network predicts the validation scores of all modules for

the current frame, and the selection sub-network selects the

active modules based on the predicted scores. The active

module with the highest estimated validation score, the best

module, is used to determine the position and scale of the

target. Finally, the estimated validation scores of the active

modules are used along with the predicted validation scores

of the inactive modules to generate the final validation scores
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Figure 2. Proposed Algorithm Scheme. The proposed framework consists of the correlation filter network and the attention network.

According to the results from the attention network obtained by the previous validation scores, an adaptive subset of tracking modules in the

correlation filter network is operated. The target is determined based on the tracking module with the best validation score among the subset,

and the tracking modules are updated accordingly.

used for the next frames. Every tracking module is updated

according to the tracking result of the best module. As the

attention network learns the general expectation of dynamic

targets rather than scene or target specific properties, it can

be pre-trained and does not need updating while tracking.

3.1. Correlation Filter Network

The correlation filter network incorporates a large variety

of tracking modules, each covering a specific appearance or

dynamic change, including changes due to blurring, struc-

tural deformation, scale change, and occlusion. The atten-

tional feature-based correlation filter (AtCF) [3] is utilised

as tracking module, which is composed of the attentional

weight map (AWM) and the Kernelized Correlation Filter

(KCF) [16]. As only a subset of all tracking modules is

active at a time, we can increase the total number of modules

which allows us to consider novel property types: variable

aspect ratios and the delayed update for drifting targets.

3.1.1 Tracking module types

The tracking modules are based on a combination of four

different types of target properties and dynamics: two fea-

ture types, two kernel types, thirteen relative scale changes,

and five steps of the delayed update. Thus, the correlation

filter network contains 260 (2×2×13×5) different tracking

modules in total.

Feature types: We utilise two feature types: a colour

feature and a histogram of oriented gradients (HOG) feature.

We discretise the tracking box into a grid with cell size Ng×
Ng. For colour images, we build a 6-dimensional colour

feature vector by averaging the R, G, B and L, a, b values in

the RGB and Lab space respectively. For grey images, we

average the intensity and Laplacian values along the x and

y-direction as a 3-dimensional colour feature vector. The

HOG feature of a cell is extracted with Nh dimensions.

Kernel types: As the correlation filters of the tracking

modules, KCF [16] is used. It allows varying the kernel type,

and we utilise a Gaussian kernel and a polynomial kernel.

Relative scale changes: In order to handle shape defor-

mations as well as changes in the viewing directions, we

use flexible aspect ratios. The target scale is changed from

the previous target size in four steps (±1 cell and ±2 cells)

along the x-axis, along the y-axis, and along both axes si-

multaneously, which leads to 13 possible variations of scale

including the static case.

Delayed update: To handle target drift, partial occlu-

sions, and tiny scale changes (too small to be detected in a

frame-to-frame basis), we introduce tracking modules with

delayed updates. For these modules, the module update is

delayed such that the tracking module has access to up to

four previous frames, i.e. before the drift / occlusion / scale

change occurred.

3.1.2 Tracking module

Feature map extraction: The region of interest (ROI) of

each tracking module is centred at the previous target’s loca-

tion. To cover nearby areas, the size of the ROI is β times

the previous target’s size. For tracking modules with scale

changes, we normalise the ROI’s image size into the initial

ROI’s size to conserve the correlation filter’s size (see Fig. 2).
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From the resized ROI, the feature map with size W ×H is

obtained by the specific feature type of the tracking module.

Attentional weight map estimation: The attentional

weight map (AWM) W ∈ R
W×H is the weighted sum of

the target confidence regression map Ws and the centre bias

map Ww as obtained in [3]. However, to estimate Wt at

time t we weight Wt
s and Ww differently:

Wt(p) = λsWw(p)W
t
s(p) + (1− λs)Ww(p), (1)

where p = (p, q) with p ∈ {1, ...,W} and q ∈ {1, ..., H}.

Contrary to [3], Wt
s is weighted by Ww in the first term

to give more weight to features in the centre, which results

in higher performance if Wt
s is noisy. As [3] estimated the

weight factor λs dynamically from the previous frames, the

tracker shows low robustness for the abrupt changes of the

target appearance. Thus, we fix λs to provide a stable weight

to the target confidence regression map.

Target position adjustment: The response map Rt ∈
R

W×H at time t is obtained by applying the associated cor-

relation filter to the feature map weighted by the AWM Wt.

The position of the target is quantised due to the grid of

the feature map with cell size Ng ×Ng. This can lead to a

critical drift problem when the cell size increases due to an

increased target size. Thus, we find the target position p̂t

within the ROI by interpolating the response values near the

peak position p′t with interpolation range Np as follows:

p̂t = p′t +

Np∑

i=−Np

Np∑

j=−Np

(i, j)Rt
(
p′ + (i, j)

)
. (2)

Using the interpolated position within the ROI, the position

of the target on the image is estimated by

(xt, yt) = (xt−1, yt−1) + ⌊Ng × p̂t⌋. (3)

Validation:

The precision of the tracking module is estimated by the

validation score. Previous correlation filter-based trackers [5,

18] determine the scale change by comparing the peak values

of the correlation filter response maps obtained with various

scale changes. However, Fig. 3(a) shows that this measure is

not informative enough in the proposed network due to the

significantly varying intensity ranges of the response map

according to the various characteristics of the correlation

filters (feature type, kernel).

We thus select the filter with the least number of noisy

peaks as it most likely represents the target as shown in

Fig. 3(b). Based on this intuition, our novel validation score

Qt
o is estimated by the difference between the response map

Rt and the ideal response map Rt
o:

Qt
o = exp(−‖Rt −Rt

o‖22), (4)

where Rt
o=G

(
p′t, σ2

G

)
W×H

is a two-dimensional Gaussian

window with size W ×H centred at p′t, and variance σ2

G.

By ��
By peak

���
(a) Reliability of validation scores

���

���

(b) Validation score estimation

Figure 3. Validation Score Estimation. (a) Comparison of the

mean square distance errors on the positions of the tracking modules

with respect to the order of the tracking modules based on the peak

values of the correlation filter response map and the proposed

validation scores. Contrary to the peak values, the order obtained

by the new estimation method shows high correlation with the

distance errors. (b) New estimation method for the validation score,

which shows better reliability than using peak values.

3.1.3 Tracking module update

Out of the 260 tracking modules, we only update four ba-

sic tracking modules; one per feature type and kernel type.

Modules with scale changes can share the correlation filter

with the basic module without scale change, as the ROI of

the scaled modules is resized to be the same size as the basic

tracking module’s ROI. Modules with the delayed update

can re-use the correlation filter of the previous frame(s). In

case a module with the delayed update is best performing,

the basic tracking modules with the same delayed update

are used as the update source. The basic tracking modules

are updated by the feature map weighted by the attentional

weight map, as detailed in [3] and [16].

3.2. Attention Network

3.2.1 Prediction Sub-network

We employ a deep regression network to predict the valida-

tion scores Q̂t ∈ R
260 of all modules at the current frame t

based on the previous validation scores {Qt−1,Qt−2, ...},

where Qt ∈ R
260. As long short-term memory (LSTM) [17]

can model sequential data with high accuracy, we use it to

consider the dynamic changes of the validation scores.

We first normalise the validation scores obtained at the

previous frame Qt−1 from zero to one as

Q̃t−1 =
Qt−1 −min(Qt−1)

max(Qt−1)−min(Qt−1)
, (5)

where min and max provide the minimum and maximum

values among all elements of the input vector. Then the

normalised scores Q̃t−1 are sequentially fed in the LSTM,

and the four following fully connected layers estimate the

4810



normalised validation scores of the current frame Q̃t
∗
. The

detailed network architecture is described in Fig. 2. Finally,

based on the assumption that the range of the predicted

validation scores is identical to the range of the previous

validation scores, we transform the normalised scores back

and obtain the predicted validation score Q̂t:

Q̂t = Q̃t
∗

(
max(Qt−1)−min(Qt−1)

)
+min(Qt−1). (6)

3.2.2 Selection Sub-network

Based on the predicted validation scores Q̂t, the selection

sub-network selects the tracking modules which are activated

for the current frame. The role of the selection sub-network

is twofold. On the one hand, it should select tracking mod-

ules which are likely to perform well. On the other hand, if a

tracking module is not activated for a long time, it is hard to

estimate its performance as the prediction error accumulates

over time, so modules should be activated from time to time.

Therefore, the selection sub-network consists of two parts

fulfilling these roles. The first part is a top-k selection layer

which selects the k modules with the highest predicted vali-

dation score, resulting in a binary vector. The second part

consists of four fully connected layers followed by a tanh
layer to estimate the prediction error, resulting in a vector

with values ranging between -1 and 1. The results of both

parts are integrated by max-pooling, resulting in the atten-

tional scores st ∈ [0, 1]. The binary attentional vector 〈st〉
is obtained by selecting the Na tracking modules with the

highest values within st, where 〈·〉 is used to denote vec-

tors containing binary values. As Na is bigger than k and

the results of the tanh layer being smaller than one, 〈st〉
essentially includes all modules of the top-k part and Na−k
modules with the highest estimated prediction error.

At the current frame, the modules within the correlation

filter network which should be activated are chosen accord-

ing to 〈st〉, so the validation scores of the active modules

Qt
o ∈ R

260 can be obtained from the correlation filter net-

work as shown in Fig. 2 (Qt
o contains zeros for the modules

which are not activated). Then, the final validation scores

Qt are formulated as

Qt = (1− 〈st〉) ∗ Q̂t + 〈st〉 ∗Qt
o, (7)

where ∗ represents the element-wise multiplication.

3.2.3 Training

Training Data: We randomly choose the training sample

i out of all frames within the training sequences. Then the

ground truth validation score QGT (i) is obtained by setting

the target position to the ground truth given in the dataset

and operating all correlation filters.

To train the LSTM layer, the attention network is se-

quentially fed by the validation scores of the previous ten

frames. After feeding the attention network, we obtain

the predicted validation scores Q̂(i) and the attentional

binary vector 〈s(i)〉. The final validation scores from

the i-th training sample is then defined following Eq.(7):

Q(i) = (1− 〈s(i)〉) ∗ Q̂(i) + 〈s(i)〉 ∗QGT (i).
Loss function: We develop a sparsity based loss func-

tion which minimises the error between the final validation

scores Q(i) and the ground truth validation scores QGT (i)
while using the least number of active modules:

E =

N∑

i=1

{
‖Q(i)−QGT (i)‖22 + λ ‖〈s(i)〉‖

0

}
, (8)

where N is the number of training samples. However, as

we need to estimate the gradient of the loss function, the

discrete variable 〈s(i)〉 is substituted with the continuous

attentional scores s(i), resulting in

E =

N∑

i=1

{∥∥∥
(
1−s(i)

)
∗
(
Q̂(i)−QGT (i)

)∥∥∥
2

2

+λ‖s(i)‖0
}
. (9)

Training sequence: We train the network in two steps,

i.e. we first train the prediction sub-network and subse-

quently the selection sub-network. We found that training

the network as a whole leads to the selection of the same

modules by the selection sub-network each time, which in

turn also prohibits the prediction sub-network to learn the

accuracy of the selected tracking modules.

For training the prediction sub-network, the sparsity term

is removed by setting all values of s(i) to zeros, such that

the objective becomes to minimise the prediction error:

E =
N∑

i=1

{∥∥∥Q̂(i)−QGT (i)
∥∥∥
2

2

}
. (10)

The subsequent training of the selection sub-network

should then be performed with the original loss function

as in Eq.(8). However, we found that the error is not suf-

ficiently back-propagated to the fully connected layers of

the selection sub-network because of the max-pooling and

tanh layer. If the prediction is assumed to be fixed, the

output of the top-k part can be regarded as constant. Fur-

thermore, the tanh layer only squashes the output of the last

fully connected layer h, but does not change the sparsity.

Therefore, the loss function can employ h(i) obtained by the

i-th training sample for the sparsity term:

E=
N∑

i=1

{∥∥∥
(
1−s(i)

)
∗
(
Q̂(i)−QGT (i)

)∥∥∥
2

2

+λ ln
(
1+‖h(i)‖1

)}
,

(11)

where the sparsity norm is approximated by a sparsity-aware

penalty term as described in [37].

Optimisation: We use the Adam optimiser [20] to opti-

mise the prediction sub-network, and gradient descent [24]

for the optimisation of the selection sub-network.
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Figure 4. Attention map. (a) Each region within the attention map

represents one tracking module, each covering another scale change.

The green colour indicates the active modules to be operated at a

time, and the best module which is used to determine the tracking

result is coloured red. (b) Multiple attention maps with different

properties of feature types, kernel types, and delayed updates.

3.3. Handling full occlusions

A full occlusion is assumed if the score Qt
max =

max(Qt) of the best performing tracking module drops sud-

denly as described by Qt
max < λrQ

t−1

max with Q
t

max =

(1− γ)Q
t−1

max + γQt
max and Q

0

max = Q1

max. λr is the de-

tection ratio threshold and γ is an interpolation factor. If

a full occlusion is detected at time t, we add and activate

four additional basic tracking modules for the period of Nr

frames without updating them. The ROI of these modules is

fixed to the target position at time t. If one of the re-detection

modules is selected as the best module, all tracking modules

are replaced by the modules saved at time t.

4. Experimental Result

4.1. Implementation

20%(Na = 52) among all modules were selected as ac-

tive modules. One quarter of them (k = 13) were chosen by

the top-k layer. The weight factor for the attentional weight

map estimation was set to λs = 0.9, and the interpolation

range to Np = 2. The sparsity weight for training the at-

tention network was set to λ = 0.1. The parameters for

full occlusion handling, λr and Nr, were experimentally set

to 0.7 and 30 using scenes containing full occlusions. The

other parameters were set as mentioned in [3, 16]: Ng = 4,

Nh = 31, β = 2.5, σG =
√
WH/10, and γ = 0.02. The pa-

rameters were fixed for all training and evaluation sequences.

The input image was resized such that the minimum length

of the initial bounding box equals 40 pixels. To initialise

the LSTM layer, all modules were activated for the first ten

frames.

We used MATLAB to implement the correlation filter

network, and TensorFlow [1] to implement the attention

network. The two networks communicated to each other

via a TCP-IP socket. The tracking module update and the

attention network ran in parallel for faster execution. The

Table 1. Quantitative results on the CVPR2013 dataset [38]

Algorithm Pre. score Mean FPS Scale

P
ro

p
o

se
d ACFN 86.0% 15.0 O

CFN+predNet 82.3% 14.4 O

CFN 81.3% 6.9 O

CFN+simpleSel. 79.4% 15.7 O

CFN- 78.4% 15.5 O

R
ea

l-
ti

m
e

SCT [3] 84.5% 40.0 X

MEEM [42] 81.4% 19.5 X

KCF [16] 74.2% 223.8 X

DSST [5] 74.0% 25.4 O

Struck [15] 65.6% 10.0 O

TLD [19] 60.8% 21.7 O

N
o

n
R

ea
l-

ti
m

e

C-COT [8] 89.9% <1.0 O

MDNet-N [29] 87.7% <1.0 O

MUSTer [18] 86.5% 3.9 O

FCNT [35] 85.6% 3.0 O

D-SRDCF [6] 84.9% <1.0 O

SRDCF [7] 83.8% 5 O

STCT [36] 78.0% 2.5 O

computational speed was 15.0 FPS in the CVPR2013 dataset

[38], and the attention network only took 3ms per frame.

The prediction sub-network and selection sub-network were

each trained for 1000K iterations, which took about 10 hours.

The computational environment had an Intel i7-6900K CPU

@ 3.20GHz, 32GB RAM, and a NVIDIA GTX1070 GPU.

We release the source code for tracking and training along

with the attached experimental results.1

4.2. Dataset

To evaluate the proposed framework, we used the

CVPR2013 [38] (51 targets, 50 videos), TPAMI2015 [39]

(100 targets, 98 videos), and VOT2014 [22] datasets (25

targets, 25 videos), which contain the ground truth of the tar-

get bounding box at every frame. These datasets have been

frequently used [3,8,15,16,18,29,42] as they include a large

variety of environments to evaluate the general performance

of visual trackers.

To train the attention network for evaluating on the

CVPR2013 and TPAMI2015 datasets, the VOT2014 [22] and

VOT2015 [21] datasets were used. After removing scenes

which overlap with the CVPR2013 and TPAMI2015 datasets,

44 sequences remained for training. For the evaluation on

the VOT2014 dataset, we trained the attention network by

39 sequences of the CVPR2013 dataset after eliminating

overlapping scenes. For both cases, we obtained additional

training data by slightly moving the ground truth of the tar-

get position in eight directions (10% of the target size to the

left, right, top, bottom, top-left, top-right, bottom-left, and

bottom-right), as well as by changing the size of the tracking

box (10% enlarging and shrinking). Therefore, we had 11

1https://sites.google.com/site/jwchoivision/
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ACFN [0.860]
CFN+predNet [0.823]
CFN [0.813]

CFN- [0.784]
CFN+simpleSel. [0.794]

ACFN [0.607]
CFN+predNet [0.589]
CFN [0.566]

CFN- [0.539]
CFN+simpleSel. [0.563]

(a) Self-comparison on CVPR2013 dataset

ACFN [0.802]
SCT [0.768]
MEEM [0.773]

DSST [0.687]
Struck [0.640]
TLD [0.597]

KCF [0.699]

ACFN [0.575]
SCT [0.534]
MEEM [0.529]

DSST [0.518]
Struck [0.463]
TLD [0.427]

KCF [0.480]

(b) Evaluation plots on TPAMI2015 dataset

ACFN [0.666]
SCT [0.574]
MEEM [0.604]

DSST [0.546]
KCF [0.534]

ACFN [0.501]
SCT [0.392]
MEEM [0.414]

DSST [0.442]
KCF [0.381]

(c) Evaluation plots on VOT2014 dataset

Figure 5. Evaluation Results. ACFN showed the best performance within the self-comparison, and the state-of-the-art performance amongst

real-time trackers in TPAMI2015 [39] and VOT2014 [22] dataset. The numbers within the legend are the average precisions when the centre

error threshold equals 20 pixels (top row), or the area under the curve of the success plot (bottom row).

Freeman4

Skiing

Couple

Lemming Walking2

Singer1

ACFN SCT MEEM KCF DSST

Figure 6. Qualitative Results. The used sequences are Freeman4, Singer1, Couple, Lemming, Walking2, and Skiing.

times the training data available compared to the original

sequences without augmentations.

4.3. Evaluation

As performance measure, we used the average precision

curve of one-pass evaluation (OPE) as proposed in [38].

The average precision curve was estimated by averaging the

precision curves of all sequences, which was obtained using

two bases: location error threshold and overlap threshold.

The precision curve based on the location error threshold

(precision plot) shows the percentage of correctly tracked

frames on the basis of a distance between the centres of the

tracked box and ground truth. The precision curve based on

the overlap threshold (success plot) indicates the percentage

of correctly tracked frames on the basis of the overlap region

between the tracked box and ground truth. As representative

scores of trackers, the average precisions when the centre

error threshold equals 20 pixels and the area under curve of

the success plot were used.

To describe the attention on the tracking modules qualita-

tively, we built an attention map which is depicted in Fig. 4.

In the attention map, one area represents one tracking mod-

ule of a specific scale change, and within the global attention

map there are many maps with different feature types, kernel

types, and delayed updates.

4.4. Self­comparison

To analyse the effectiveness of the attention network, we

compared the full framework with four additional trackers.

The correlation filter network (CFN) operated all the associ-

ated tracking modules. CFN is similar to SCT [3], but uses

all 260 filters of ACFN instead of just 4. The limited correla-

tion filter network (CFN-) constantly operated 20% of the

modules which are most frequently selected as the best mod-

ule by ACFN in the CVPR2013 dataset. CFN with simple

selection mechanism (CFN+simpleSel.) utilised the previ-

ous validation scores as the predicted validation scores, and

the top-k modules with high validation scores were selected

as the active modules while the other active modules were

selected randomly. CFN with the prediction sub-network

(CFN+predNet) used the score prediction network to predict

the current validation scores, but selected the modules with

high prediction errors randomly. The prediction network of

CFN+predNet was extracted from the trained ACFN.
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The results of the comparison with these four trackers are

shown in Fig. 5(a) and Table 1. As CFN performs worse than

SCT, it shows that it is not sufficient to simply increase the

number of filters to obtain a high performance. Therefore,

ACFN provides a meaningful solution to the problem of

integrating correlation filters with various characteristics.

The attentional mechanisms result both in higher accuracy

and higher efficiency.

In addition, ACFN outperformed the trackers which only

contain a subset of the full framework. Interestingly, CFN-

showed worse performance than CFN, which confirmed

that a large variety of tracking modules was essential to

track the target. By comparing the performance of CFN and

CFN+simpleSel., one can see that the performance of the

tracker was reduced when the active modules were chosen

without considering the dynamic changes of the target. From

the performance of CFN+predNet and ACFN, it can be con-

firmed that the selection sub-network has an important role

for the performance of the tracker.

4.5. Experiments on the benchmark datasets

The results of the state-of-the-art methods, including

FCNT [35], STCT [36], SRDCF-Deep [6], SRDCF [7],

DSST [5], and C-COT [8] were obtained from the authors.

In addition, the results of MDNet-N [29], MUSTer [18],

MEEM [42], KCF [16], SCT [3], Struck [15], and TLD [19]

were estimated using the authors’ implementations. MDNet-

N is a version of MDNet [29], which is trained by the images

of Image-Net [31] as described in VOT2016 [23].

In Table 1, the precision scores on the CVPR2013 dataset

are presented along with the computational speed of the al-

gorithms and their ability to recognise scale changes. The

proposed algorithm ran sufficiently fast to be used in real

time. Among real-time trackers, ACFN showed the state-of-

the-art performance for both benchmark datasets. Especially,

among the real-time trackers considering scale changes,

ACFN improved the relative performance by 12% compared

to DSST [5] which was the previous state-of-the-art algo-

rithm in the CVPR2013 dataset. Fig. 5 shows the perfor-

mances of the real-time trackers, where ACFN demonstrates

state-of-the-art performance in both the TPAMI2015 and the

VOT2014 datasets. Some qualitative results of ACFN are

shown in Fig. 6.

4.6. Analysis on Attention Network

To analyse the results of the attention network, the fre-

quency map was obtained by normalising the frequency that

each module was selected as the active module or the best

module in the CVPR2013 dataset [38]. Fig. 7 shows the

frequency maps for different tracking situations. In the fre-

quency map obtained across all sequences, the module track-

ers with HOG and Gaussian kernel were most frequently

selected as the best module, while diverse modules were
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Figure 7. Frequency map for different tracking situations. The

distribution of the attention is determined by the dynamic changes

of the target.

selected as active modules in various situations. The track-

ing modules which detect increasing scale were selected

more often than others in scenes containing enlarging tar-

gets, while the modules detecting scale-down changes were

chosen most often in scenes with shrinking targets. Inter-

estingly, when we estimated the frequency map from the

tracking failure scenes of the CVPR2013 dataset (Matrix,

MotorRolling, IronMan), the distribution of the active mod-

ules was relatively identical, which meant that the attention

became scattered as the target was missed.

5. Conclusion

In this paper, a new visual tracking framework using an

attentional mechanism was proposed. The proposed frame-

work consists of two major networks: the correlation filter

network and the attention network. Due to the attentional

mechanism which reduces the computational load, the corre-

lation filter network can consider significantly more status

and dynamic changes of the target, including novel proper-

ties such as flexible aspect ratios and delayed updates. The

attention network was trained by the general expectation of

dynamic changes to adaptively select the attentional subset

of all tracking modules. The effectiveness of the attentional

mechanism for visual tracking was validated by its high ro-

bustness even with rapid computation. In the experiments

based on several tracking benchmark datasets, the proposed

framework performed comparable to deep learning-based

trackers which cannot be operated in real-time, and showed

state-of-the-art performance amongst the real-time trackers.

As a future work, we will extend the attentional mechanism

to correlation filters employing deep convolution features.
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