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Abstract

In this paper, we propose to incorporate convolutional

neural networks with a multi-context attention mechanism

into an end-to-end framework for human pose estimation.

We adopt stacked hourglass networks to generate atten-

tion maps from features at multiple resolutions with vari-

ous semantics. The Conditional Random Field (CRF) is uti-

lized to model the correlations among neighboring regions

in the attention map. We further combine the holistic at-

tention model, which focuses on the global consistency of

the full human body, and the body part attention model,

which focuses on detailed descriptions for different body

parts. Hence our model has the ability to focus on different

granularity from local salient regions to global semantic-

consistent spaces. Additionally, we design novel Hourglass

Residual Units (HRUs) to increase the receptive field of the

network. These units are extensions of residual units with a

side branch incorporating filters with larger receptive field,

hence features with various scales are learned and com-

bined within the HRUs. The effectiveness of the proposed

multi-context attention mechanism and the hourglass resid-

ual units is evaluated on two widely used human pose esti-

mation benchmarks. Our approach outperforms all existing

methods on both benchmarks over all the body parts. Code

has been made publicly available.

1. Introduction

Human pose estimation is a challenging task in com-

puter vision due to the articulation of body limbs, self oc-

clusion, various clothing, and foreshortening. Significant

improvements have been achieved by Convolutional Neu-

ral Networks (ConvNets) [37, 38, 9, 39, 36, 28]. However,

for cluttered background with objects which are similar to

body parts or limbs, or body parts with heavy occlusion,

∗The first two authors contribute equally to this work.
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Figure 1. Motivation. The 1st row shows the input image, the

holistic attention maps, and the part attention maps. The 2nd row

shows the predicted heatmaps for part locations, where different

colors correspond to different body parts. The 3rd row visual-

izes the predicted poses. We observe that (a) ConvNets may pro-

duce erroneous estimations due to cluttered background and self-

occlusion. (b) Visual attention provides an explicit way to model

spatial relationships among human body parts, which is more ro-

bust. (c) Part attention maps can help further refine the part loca-

tions by addressing the double counting problem.

ConvNets may have difficulty to locate each body part cor-

rectly, as demonstrated in Fig. 1 (a). In the literature, the

combination of multiple contextual information has been

proved essential for vision tasks such as image classifica-

tion [25], object detection [15, 14, 49] and human pose es-

timation [33, 36]. Intuitively, larger context region captures

global spatial configurations of object, while smaller con-

text region focuses on local part appearance. However, pre-

vious works usually use manually designed multi-context

representations, e.g., multiple bounding boxes [33] or mul-

tiple image crops [25], and hence lack of flexibility and di-
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versity for modeling the multi-context representations.

Visual attention is an essential mechanism of the human

brain for understanding scenes effectively. In this work, we

propose to generate contextual representations with an at-

tention scheme. Instead of defining regions of interest man-

ually by a set of rectangle bounding boxes, the attention

maps are generated by an attention model, which depend

on image features, and provide a principled way to focus on

target regions with variable shapes. For example, an atten-

tion map focusing on the human body is shown in Fig. 1(b).

It helps recover the missing body parts (e.g., legs), and dis-

tinguishes the ambiguous background. This allows the di-

versity of context to be increased, and so contextual region

could be better adapted to each image. Furthermore, instead

of adopting the spatial Softmax normalization widely used

in conventional attention schemes[47, 41, 46, 26], we de-

sign a novel attention model based on Conditional Random

Fields, which is better in modeling the spatial correlations

among neighboring regions.

The combination of multiple contextual information has

been proved effective for various vision tasks [48, 15, 33,

13, 34]. To use the attention mechanism to guide multi-

contextual representation learning, we adopt the stacked

hourglass network structure [28], which provides an ideal

architecture to build a multi-context attention model. In

each hourglass stack, features are pooled down to a very

low resolution, then are upsampled and combined with

high-resolution features. This structure is repeated for sev-

eral times to gradually capture more global representa-

tions. Within each hourglass stack, we first generate multi-

resolution attention maps from features of different resolu-

tions. Secondly, we generate attention maps for multiple

hourglass stacks, which results in multi-semantics attention

maps with various levels of semantic meaning. Since these

attention maps capture the configuration of the full human

body, they are referred to as holistic attention models.

While the holistic attention model is robust to occlusions

and cluttered background, it lacks of precise description for

different body parts. To overcome this limitation, we design

a hierarchical visual attention scheme, which zooms in from

holistic attention model to each body part, namely the part

attention model. This is helpful for precise localization of

the body parts, as shown in Fig. 1 (c).

Additionally, we introduce a novel “Hourglass Residual

Units” as a replacement for the residual unit [19] in our net-

work. It incorporates the expressive power of multi-scale

features while preserving the benefit of residual learning. It

also enables deep networks to have a faster growth of re-

ceptive field, which is essential for accurately locating body

parts. When using these units within the “macro” hourglass

network, we obtain a nested hourglass architecture.

We show the effectiveness of the proposed end-to-

end differentiable framework on two broadly used hu-

man pose estimation benchmarks, i.e., MPII Human Pose

dataset [1] and the Leeds Sports Dataset [23]. Our ap-

proach outperforms all the previous methods on both bench-

marks for all the body parts. Code has been made pub-

licly available at https://github.com/bearpaw/

pose-attention. The main contributions of this work

are three folds:

• We propose to use visual attention mechanism to auto-

matically learn and infer the contextual representations,

driving the model to focus on region of interest. We tailor

the attention scheme for human pose estimation by in-

troducing CRFs to model the spatial correlations among

neighborhood joints.

• We use multi-context attention to make the model more

robust and more accurate.

• We propose a generic hourglass residual unit (HRU), and

build the nested hourglass networks together with the

stacked hourglass architecture.

2. Related Work

Human Pose Estimation Articulated human poses were

usually modeled by combination of unary term and graph

models, e.g., mixture of body parts [44, 8] or pictorial

structures [29]. Recently, significant progresses have been

achieved by introducing ConvNets for learning better fea-

ture representation [38, 37, 36, 8, 42, 39, 31, 28]. For

example, Chen and Yuille [8] introduced the ConvNet to

learn both the unary and the pairwise term of a tree-

structured graphical model. Tompson et al. [36] used mul-

tiple branches of ConvNets to fuse the features from an

image pyramid, and used a Markov Random Field (MRF)

for post-processing. Convolutional Pose Machine [39] in-

corporated the inference of the spatial correlations among

body parts within the ConvNets. State-of-the-art perfor-

mance is achieved by the stacked hourglass network [28]

and its variant [5], which use repeated pooling down and

upsampling process to learn the spatial distribution. Our

approach is complementary to previous approaches by in-

corporating diverse image dependent multi-context repre-

sentation to guide the human pose estimation.

Multiple Contextual Information The contextual infor-

mation is generally referred to as regions surrounding

the target locations [11, 13, 33], object-scene relation-

ships [20, 18, 12], and object-object interactions [43]. It

has been proved efficient in vision tasks as object classifica-

tion [25] and detection [48, 11, 12]. Recent works mod-

eled contextual information by concatenating multi-scale

features [15, 14], or by gated functions to control the mutual

influence of different contexts [49]. The contextual regions,

however, are manually defined as rectangles without consid-

ering the objects appearance. In this work, we adopt visual

attention mechanism to focus on regions which are image

dependent and adaptiving for multi-context modeling. Our
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Figure 2. Framework. The basic structure is an 8-stack hourglass network. In each stack of hourglass, we generate multi-resolution

attention maps. We also apply multi-semantic attention map to each hourglass as shown in stack 1 to stack 8. Hierarchical Attention

Mechanism for zooming in on local parts is applied in stack 5 to stack 8.

approach increases the diversity of contexts.

Visual Attention Mechanism Since the visual attention

model is computationally efficient and is effective in un-

derstanding images, it has achieved great success in vari-

ous tasks such as machine translation [3], object recogni-

tion [2, 17, 6, 40], image captioning [47, 41], image ques-

tion answering [46], and saliency detection [26]. Exist-

ing approaches usually adopted recurrent neural networks

to generate the attention map for an image region at each

step, and combined information from different steps over-

time to make the final decision [3, 2, 26]. To the best of

our knowledge, our work is the first to use attention models

for human pose estimation. In addition, our design of the

holistic attention map and the part attention map in learning

attention in hierarchical order and the modeling of attention

from different context and resolution are not investigated in

these works.

3. Framework

An overview of our framework is illustrated in Fig. 2. In

this section, we briefly introduce the nested hourglass archi-

tecture, and the implementation of the multi-context atten-

tion model, including the multi-semantics, multi-resolution,

and hierarchical holistic-part attention model. The gener-

ated attention maps are then used to reweight the features

for automatically inferring the regions of interest.

Baseline Network We adopt an 8-stack hourglass net-

work [28] as the baseline network. It allows for repeated

bottom-up, top-down inference across scales with interme-

diate supervision at the end of each stack. In experiments,

the input images are 256 × 256, and the output heatmaps

are P × 64× 64, where P is the number of body parts. We

follow previous work [36, 39, 28] to use the Mean Squared

Error as the loss function.

Nested Hourglass Networks We replace the residual units,

which are along the side branches for combining features

across multiple resolutions, by the proposed micro hour-

glass residual units (HRUs), and obtain a nested hourglass

network , as illustrated in Fig. 3. With this architecture, we

enrich the information received by the output of each build-

ing block, which makes the whole framework more robust

to scale change. Details of HRUs are described in Section 4.

Multi-Resolution Attention Within each hourglass, the

multi-resolution attention maps Φr are generated from fea-

tures of different scales, where r is the size of the features,

as shown in Fig. 5. Attention maps are then combined to

generate the refined features, which are further used to gen-

erate refined attention maps and further refined features, as

shown in Fig. 4.

Multi-Semantics Attention Different stacks are with dif-

ferent semantics: lower stacks focus on local appearance,

while higher stacks encode global representations. Hence

attention maps generated from different stacks also encode

various semantic meanings. As shown in Fig. 2, compare

the left knee in Stack 1 with 8, we can see that deeper stacks

with global representations are able to recover occlusions.

Hierarchical Attention Mechanism In the lower stacks,

i.e., stack 1 to stack 4, we use two holistic attention maps

hatt
1 and hatt

2 to encode configurations of the whole human

body. In the higher stacks, i.e., the 5th to the 8th stack,

we design a hierarchical coarse-to-fine attention scheme to

zoom into local parts.

4. Nested Hourglass Networks

In this section, we provide a detailed description of the

proposed hourglass residual units (HRUs). We also provide

comprehensive analysis of the receptive field.
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4.1. Hourglass Residual Units

Let us first briefly recall Residual networks [19]. Deep

residual networks achieve compelling accuracy by an ex-

tremely deep stacks of “Residual Units”, which can be ex-

pressed as follows,

xn+1 = h(xn) + F(xn,W
F
n ), (1)

where xn and xn+1 are the input and output of the n-th

unit, and F is the stacked convolution, batch normalization,

and ReLU nonlinearity. In [19], h(xn) = xn is the identity

mapping.

In this paper, we focus on human pose estimation, in

which larger contextual regions are proved to be important

for locating local body parts [39, 28]. The contextual re-

gion of a neuron is its corresponding receptive field. In this

work, we propose to extend the original residual units by

a micro hourglass branch. The resulted hourglass residual

units (HRUs) have larger receptive field while preserve lo-

cal details, as shown in Fig. 3. We use this module in the

stacked hourglass networks. This architecture is referred to

as “nested hourglass networks” because the hourglass struc-

ture is used at both the macro and micro levels.

The mathematical formulation of our proposed HRUs is

as follows:

xn+1 = xn + F(xn,W
F
n ) + P(xn,W

P
n ). (2)

Each HRU consists of three branches. Branch (A), i.e. xn in

(2), is the identity mapping. Hence, the property of ResNet

in handling vanishing gradient is preserved in the HRUs.

Branch (B), i.e. F(xn,W
F
n ) in (2), is the residual block

like the ResNet in (1). Branch (C), i.e. P(xn,W
P
n ) in (2),

is our new design, which is a stack of a 2× 2 max-pooling,

two 3×3 convolutions followed by ReLU nonlinearity, and

an upsampling operation.

4.2. Analysis of Receptive Field of HRU

The identity mapping in branch (A) has receptive size of

one. The residual block in branch (B) is a stack of convolu-

tions (Conv1×1 +Conv3×3 +Conv1×1). Hence, the neuron

in the output feature corresponds to a 3 × 3 region of the

input in this HRU. Branch (C) is our added branch. The

structure of this branch is Pool2×2+Conv3×3+Conv3×3+
Deconv2×2. Due to max-pooling, the resolution for convo-

lution in this branch is half of that in branches (A) and (B),

and each neuron in the output feature map corresponds to a

10 × 10 region of the input, which is about 3 times the re-

ceptive field size of the residual block in branch (B). These

three branches, with different receptive fields and resolu-

tions, are added together as the output of the HRU. There-

fore, the HRU unit increases the receptive field size by in-

cluding the branch (C) while preserves the high-resolution

information by using branches (A) and (B).

2 × 2

pool

3 × 3

conv

3 × 3

conv

upsample

A. Identity mapping branch

1 × 1

conv

1 × 1

conv

3 × 3

conv

C. Hourglass residual branch

1

B. Residual branch

1

3
5

35

10

10

1

1

1

1

3

3

3

3

Figure 3. An illustration of the hourglass residual unit. It consists

of three branches: (A) identity mapping, (B) residual branch, and

(C) hourglass residual branch. The receptive fields with respect to

the input are 3×3 and 10×10 for the conventional residual branch

and the hourglass residual branch, respectively.

5. Attention Mechanism

We shall first briefly introduce the conventional soft at-

tention mechanism, and then describe our proposed multi-

context framework.

5.1. Conventional Attention
Denote convolutional features by f . The first step in ob-

taining soft attention is to generate the summarized feature
map as follows:

s = g(Wa ∗ f + b), (3)

where ∗ denotes convolution, Wa denotes the convolu-

tion filters, and g is the nonlinear activation function. s ∈
R

H×W summarizes information of all channels in f .
Denote s(l) as the feature at location l in the feature map

s, where l = (x, y), x is the horizontal location and y is
the vertical location. The Softmax operation is applied to s
spatially as follows:

Φ(l) =
es(l)

∑

l′∈L
es(l

′)
, (4)

where L = {(x, y)|x = 1, . . . ,W, y = 1, . . . , H}. Φ is the
attention map, where

∑
l∈L

Φ(l) = 1. Then the attention
map is applied to the feature f ,

h
att = Φ ⋆ f , where h

att(c) = f(c) ◦ Φ, (5)

where c is the index for feature channel. We use ⋆ to rep-

resent the channel-wise Hadamard matrix product opera-

tion. hatt is the refined feature map, which is the feature

reweighted by the attention map, and has the same size as f .

5.2. Our MultiContext Attention Model

Our framework makes the following three modifications

to the attention model. First, we replace the global Soft-

max in 4 with a CRF to taking local pattern correlations

into consideration. Global spatial Softmax normalizes the

whole image based on a constant factor, which ignores the

local neighboring spatial correlations. But we want atten-

tion maps to drive the network to concentrate on the com-

plex human body configurations. More details are in Sec-

tion 5.2.1. Second, we generate attention maps based on
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att att

Figure 4. An illustration of the attention scheme.

features of different resolutions to make the model more ro-

bust, as illustrated in Section 5.2.2. Then multi-semantics

attention is obtained by generating attention maps for each

stack of the hourglass, as described in Section 5.2.3. Fi-

nally, a hierarchical coarse to fine(i.e. fully body to parts)

attention scheme is used, to zoom into local part regions for

more precise localization, which is introduced in Section

5.2.4. The whole framework is differentiable and trained

end-to-end with random initialization. An illustration of our

attention scheme is shown in Fig. 4.

5.2.1 Spatial CRF Model

In this work, we use Conditional Random Fields (CRFs)

to model the spatial correlation. To make them differen-

tiable, we use the mean-field approximation approach to re-

cursively learn the spatial correlation kernel [50, 24].

The attention map is modeled as a two-class problem.

Denote yl = {0, 1} as the attention label at the i-th location.

In the CRF model, the energy of a label assignment y =
{yl|l ∈ L} is as follows:

E(z) =
∑

l

ylψu(l) +
∑

l,k

ylwl,kyk, (6)

where ψ(yl) = g(h, l) is the unary term that measures the

inverse likelihood (and therefore, the cost) of the position

l taking the attention label yl = 1. wl,k is the weight

for compatibility between yl and yk. Given the image

I, the probability of the label assignment y is P (y|I) =
1

Z
exp(−E(y|I)), where Z is the partition function. The

probability for yl = 1 is obtained iteratively using the

mean-field approximation as follows:

Φ(yl = 1)t = σ

(

ψu(l) +
∑

k

wl,kΦ(yk = 1)t−1

)

, (7)

where σ(a) = 1/(1 + exp(−a)) is the sigmoid func-

tion. ψu(l) is obtained by convolution from features h.∑
k wl,kΦ(yj = 1) is implemented by convolving the esti-

mated attention map Φt−1 at the stage t− 1 with the filters.

Initially, Φ(yi = 1)1 = σ(ψu(i)).
In summary, the attention map Φt at the stage t can be

formulated as follows:

Φt = M(s,Wk) =

{

σ(Wk ∗ s) t = 0,

σ(Wk ∗ Φt−1) t = 1, 2, 3,
(8)

where M denotes a sequence of weights-sharing convolu-

tions for the mean field approximation, Wk denotes the

PredictionAttention Feat.UpsamplingConv. LossHRUs

Hourglass 

+ 1

Hourglass 

Multi-Resolution Attention

Attention map

Figure 5. The multi-resolution attention scheme within an hour-

glass. In each stack of hourglass, we generate multi-resolution at-

tention maps from features with different resolutions. These maps

are summed into a single attention map, which applies to features

f to generate the refined feature hatt
1 .

spatial correlation kernel. The Wk is shared across dif-

ferent time steps. In our network, we use three steps of

recursive convolution.

5.2.2 Multi-Resolution Attention

As shown in Fig. 5, the upsampling process generates fea-

tures of different size r, i.e. fr for r = 8, 16, 32 and 64. sr is

used to generate the attention map Φr using the procedure

in (8). The attention map Φr is upsampled to size 64, which

is denoted by Φ{r→64}. These attention maps correspond

to different resolutions. As shown in Fig. 5 (I), Φ{8→64},

which has lower resolution, and highlights the whole con-

figure of human body. Φ64, which is generated with higher

resolution, focusing on local body parts.

All up-sampled attention maps are summed up and then

applied to the feature f ,

h
att
1 = f ⋆

(

∑

r=8,16,32,64

Φ{r→64}

)

, (9)

where the feature f is the output of the last layer in an hour-

glass stack as shown in Fig. 5. The operation ⋆ is illustrated

in Eq. (5).

The conventional way of using an attention map is to di-

rectly apply it to the feature which generates it. However,

the features refined by attention map usually have large

amount of values close to zero, and so a stack of many

refined features makes the back-propagation difficult. To

utilize information from multi-resolution features without

sacrificing training efficiency, we generate attention maps

from features with various resolutions, and apply them to

the later features.

In addition to the multi-resolution attention, a refined at-

tention map Φ′ and its corresponding refined feature hatt
2 are

generated from hatt
1 ,

hatt
2 = hatt

1 ⋆ Φ′ = hatt
1 ⋆M(hatt

1 ,w). (10)
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L.Hip L.Knee L.Ankle L.Shoulder

Figure 6. Coarse-to-fine part attention model and the visualiza-

tion of examplar part attention maps.

5.2.3 Multi-Semantics Attention

The above procedure is repeated over stacks of hourglass to

generate attention maps with multiple semantic meanings.

Samples of Φ′ are shown in Fig. 2 from stack 1 to 8. The

attention maps at shallower hourglass stacks capture more

local information. For deeper hourglass stacks, the global

information about the whole person is captured, which is

more robust to occlusion.

5.2.4 Hierarchical Holistic-Part Attention

In the 4th to 8th stacks of hourglass structure, we use the the

refined feature hatt
1 in Eq. (9) to generate the part attention

maps as follows:

sp = g(Wa
p ∗ hatt

1 + b),

Φp = M(sp,W
k
p),

(11)

where p ∈ {1, · · · , P}, Wa
p denotes the parameters for ob-

taining the summarization map sp of part p, Wk
p denotes

the spatial correlation modeling for part p. The part atten-

tion map Φp is combined with the refined feature map hatt
1

to obtain the refined feature map for part p as follows:

h
att
p = h

att
1 ⋆ Φp. (12)

The heatmap predication for the pth body joint is based on

the refined features hatt
p ,

ŷp = w
cls
p ∗ hatt

p , (13)

where ŷp is the heatmap for the pth part, wcls
p is the clas-

sifier. In this way, we guarantee that the attention map Φp

is specific for the body joint p. Some qualitative results of

part attention maps are shown in Fig. 6.

6. Training the model

Each stack in the hourglass produces the estimated

heatmaps for the body joints. We adopt the loss function

in [28] for learning the model. For each stack, the Mean
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Figure 7. Comparisons of PCKh curves on the MPII Human Pose

test set on the most challenging body joints, i.e., wrist and ankle.

Squared Error (MSE) loss is computed by

L =

P∑

p=1

∑

l∈L

‖ŷp(l)− yp(l)‖
2
2 (14)

where p denotes the pth body part, l denotes the lth loca-

tion. ŷp denotes the predicted heatmap for part p, and yp

the corresponding ground-truth heatmap generated by a 2-D

Gaussian centered on the body part location.

The attention maps help to drive the network to focus on

hard negative samples. After several stages of training, the

attention maps fire on human body region, where the true

positive samples are highlighted by attention maps. The re-

fined features are used for learning classifiers for the regions

with human body, with easy background regions removed at

the feature level by the learned attention maps. Consequen-

tially, for part attention maps, the classifiers focus on clas-

sifying each body joint based on well defined human body

regions, without considering the background.

7. Experiments

Dataset We evaluate the proposed method on two widely

used benchmarks, MPII Human Pose [1] and extended

Leeds Sports Poses (LSP) [23]. The MPII Human Pose

dataset includes about 25k images with 40k annotated

poses. The images were collected from YouTube videos

covering daily human activities with highly articulated hu-

man poses. The LSP dataset consists of 11k training images

and 1k testing images from sports activities.

Data Augmentation During training, we crop the images

with the target human centered at the images with roughly

the same scale, and warp the image patch to the size

256×256. Then we randomly rotate (±30◦) and flip the im-

ages. We also perform random rescaling (0.75 to 1.25) and

color jittering to make the model more robust to scale and

illumination change. During testing, we follow the standard

routine to crop image patches with the given rough posi-

tion and the scale of the test human for MPII dataset. For

the LSP dataset, we simply use the image size as the rough

scale, and the image center as the rough position of the tar-

get human to crop the image patches. All the experimen-

tal results are produced from the original and flipped image

pyramids with 6 scales.
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Method Head Sho. Elb. Wri. Hip Knee Ank. Mean

Pishchulin et al. [30] 74.3 49.0 40.8 34.1 36.5 34.4 35.2 44.1

Tompson et al. [37] 95.8 90.3 80.5 74.3 77.6 69.7 62.8 79.6

Carreira et al. [7] 95.7 91.7 81.7 72.4 82.8 73.2 66.4 81.3

Tompson et al. [36] 96.1 91.9 83.9 77.8 80.9 72.3 64.8 82.0

Hu&Ramanan [21] 95.0 91.6 83.0 76.6 81.9 74.5 69.5 82.4

Pishchulin et al. [31] 94.1 90.2 83.4 77.3 82.6 75.7 68.6 82.4

Lifshitz et al. [27] 97.8 93.3 85.7 80.4 85.3 76.6 70.2 85.0

Gkioxary et al. [16] 96.2 93.1 86.7 82.1 85.2 81.4 74.1 86.1

Rafi et al. [32] 97.2 93.9 86.4 81.3 86.8 80.6 73.4 86.3

Insafutdinov et al. [22] 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5

Wei et al. [39] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5

Bulat&Tzimiropoulos [5] 97.9 95.1 89.9 85.3 89.4 85.7 81.7 89.7

Newell et al. [28] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9

Ours 98.5 96.3 91.9 88.1 90.6 88.0 85.0 91.5

Table 1. Comparisons of PCKh@0.5 score on the MPII test set.

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean

Belagiannis&Zisserman [4]95.2 89.0 81.5 77.0 83.7 87.0 82.8 85.2

Lifshitz et al. [27] 96.8 89.0 82.7 79.1 90.9 86.0 82.5 86.7

Pishchulin et al. [31] 97.0 91.0 83.8 78.1 91.0 86.7 82.0 87.1

Insafutdinov et al. [22] 97.4 92.7 87.5 84.4 91.5 89.9 87.2 90.1

Wei et al. [39] 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5

Bulat&Tzimiropoulos [5] 97.2 92.1 88.1 85.2 92.2 91.4 88.7 90.7

Ours 98.1 93.7 89.3 86.9 93.4 94.0 92.5 92.6

Table 2. Comparisons of PCK@0.2 score on the LSP dataset.

Experiment Settings We train our model with Torch7 [10]

using the initial learning rate of 2.5 × 10−4. The param-

eters are optimized by RMSprop [35] algorithm. We train

the model on the MPII dataset for 130 epochs and the LSP

dataset for 60 epochs. We adopt the validation split for the

MPII dataset used in [36] to monitor the training process.

7.1. Results

We use the Percentage Correct Keypoints (PCK) [45]

metric for comparisons on the LSP dataset, and the PCKh

measure [1], where the error tolerance is normalized with

respect to head size, for comparisons on the MPII Human

Pose dataset.

MPII Human Pose Table 1 reports the comparison of the

PCKh performance of our method and previous state-of-

the-art at a normalized distance of 0.5. Our method achieves

state of the art 91.5% PCKh scores. In particular, for the

most challenging body parts, e.g., wrist and ankle, our

method achieves 1.0% and 1.4% improvement compared

with the closed competitor respectively, as shown in Fig. 7.

Leeds Sports Pose We train our model by adding the MPII

training set to the extended LSP training set with person-

centric annotations, which is a standard routine [39, 22, 31,

27, 4]. Table 2 reports the PCK at threshold of 0.2. Our ap-

proach outperforms the state-of-the-art across all the body

joints, and obtains 1.9% improvement in average.

7.2. Component Analysis

To investigate the efficacy of the proposed multi-context

attention mechanism and the hourglass residual unit, we
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Figure 8. Component analysis. PCKh scores at threshold of 0.5

on the MPII validation set.

conduct ablation experiments on the validation set [36] of

the MPII Human Pose dataset. We use an 8-stack hourglass

network [28] as our baseline model if not specified. The

overall result is shown in Fig. 8. Based on the baseline net-

work (BL), we analyze each proposed component, i.e., the

Multi-Semantics attention model (MS), Hourglass Residual

Units (HRUs), Multi-Resolution attention model (MR), and

the Hierarchical Part attention model (HP), by comparing

the PCKh score.

Multi-Semantics Attention We first evaluate the multi-

semantics attention model. By adding holistic attention

model at the end of each stack of hourglass (“BL+MS”),

we get an 87.2% PCKh score, which is a 1.2% improve-

ment compared to the baseline model.

Hourglass Residual Unit To explore the effect of the resid-

ual pooling unit, we further use the HRUs to replace the

original residual units when combining features from differ-

ent resolutions (“BL+MS+HRU”), as illustrated in Fig. 2.

The addition of hourglass residual unit results in a further

1% improvement. As discussed in [28], improvements can-

not be easily obtained by simply stacking more than eight

hourglass modules. We provide a way to increase the model

capacity effectively.

Multi-Resolution Attention By generating atten-

tion maps from features with multiple resolutions

(“BL+MS+HRU+MR”), our method obtains a further

1% improvement.

Hierarchical Attention We also show the improvement

brought by the hierarchical holistic-local attention model.

We replace the refined holistic attention map by a set of part

attention maps from stack four to eight, and obtain the high-

est mean PCKh score 89.4%. We observe the improvements

are mostly brought by the refined localization of body parts.

In some cases, the part attention model could even correct

the double counting problem, as demonstrated in Fig. 1 (c).

Softmax vs. CRF Finally, we compare the proposed CRF

spatial attention model with the conventional Softmax at-

tention model based on a 2-stack hourglass network. We

compare the accuracy rates, i.e., PCKh at 0.5, on the val-

idation set as training progresses in Fig. 10. The CRF at-

tention model converges much faster and achieves higher
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Figure 9. Qualitative evaluation. (a-b) 1st row to 3rd row: 2 input images, 4 attention maps, 6 heatmaps, and 6 predicted poses. (c)

Examples of estimated poses on the MPII test set and the LSP test set (Best viewed in electronic form with 4× zoom in).
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Figure 10. PCKh@0.5 on the MPII validation set across training.

validation accuracy than the Softmax attention model. We

visualize the attention maps generated by these two mod-

els, and observe that CRF attention model generates much

more cleaner attention maps compared with Softmax atten-

tion model due to its better ability to model spatial correla-

tions among body parts.

7.3. Qualitative Results

To gain insights on how attention works, we compare the

baseline model with the proposed model by visualizing the

attention maps, the score maps, and the estimated poses, as

demonstrated in Fig. 9 (a-b). We observe the baseline model

may have difficulty in distinguishing objects with similar

appearance with limbs (e.g., the horse leg in Fig. 9 (a)), and

the heavy shadow with ambiguous shape (Fig. 9 (b)). So

the holistic attention maps would be great help for remov-

ing cluttered background and reducing ambiguity. For part

attention maps, besides providing more precise localization

for the body parts, they could even help reduce the double

counting problem. For example, the left and right ankle can

be distinguished by incorporating the part attention maps.

Fig. 9 (c) demonstrates the poses predicted by our meth-

ods on the MPII test set and the LSP test set. Our method

is robust to extremely difficult cases, e.g., rare poses, clut-

tered background, and foreshortening. However, as shown

(a) (b) (c) (d)

Figure 11. Failure cases caused by (a) overlapping people, (b)

twisted limbs, (c) illumination, and (d) left/right confusion.

in Fig. 11, our method may fail in some cases which are

also difficult for human eyes, i.e. (a) heavy occlusion and

ambiguity, (b) twisted limbs, (c) significant illumination

change, and (d) left/right body confusion caused by cloth-

ing/lighting.

8. Conclusion

This paper has proposed incorporating multi-context at-

tention and ConvNets into an end-to-end framework. We

use visual attention to guide context modeling. Hence our

framework has large diversity in contextual regions. In-

stead of using global Softmax, we introduce CRF for spa-

tial correlation modeling. We build multi-context attention

model along three components, i.e., multi-resolution, multi-

semantics, and hierarchical holistic-part attention scheme.

Additionally, an hourglass residual unit was proposed to en-

rich the expressive power of conventional residual unit. The

proposed multi-context attention and the HRUs are general,

and would help other vision tasks.
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