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Abstract

Machine learning techniques, namely convolutional neu-

ral networks (CNN) and regression forests, have recently

shown great promise in performing 6-DoF localization

of monocular images. However, in most cases image-

sequences, rather only single images, are readily avail-

able. To this extent, none of the proposed learning-based

approaches exploit the valuable constraint of temporal

smoothness, often leading to situations where the per-frame

error is larger than the camera motion. In this paper we

propose a recurrent model for performing 6-DoF local-

ization of video-clips. We find that, even by considering

only short sequences (20 frames), the pose estimates are

smoothed and the localization error can be drastically re-

duced. Finally, we consider means of obtaining probabilis-

tic pose estimates from our model. We evaluate our method

on openly-available real-world autonomous driving and in-

door localization datasets.

1. Introduction

Localization of monocular images is a fundamental

problem in computer vision and robotics. Camera localiza-

tion forms the basis of many functions in computer vision

where it is an important component of the Simultaneous

Localization and Mapping (SLAM) process and has direct

application, for example, in the navigation of autonomous

robots and drones in first-response scenarios or the localiza-

tion of wearable devices in assistive living applications.

The most common means of performing 6-DOF pose es-

timation using visual data is to make use of specially-built

models, which are constructed from a vast number of local

features that have been extracted from the images captured

during mapping. The 3D locations of these features are then

found using a Structure-from-Motion (SfM) process, creat-

ing a many-to-one mapping from feature descriptors to 3D

points. Traditionally, localizing a new query image against

these models involves finding a large set of putative corre-

spondences. The pose is then found using RANSAC to re-

ject outlier correspondences and optimize the camera pose

on inliers. Although this traditional approach has proven to

be incredibly accurate in many situations, it faces numerous

and significant challenges. These methods rely on local and

unintuitive hand-crafted features, such as SIFT keypoints.

Because of their local nature, establishing a sufficient num-

ber of reliable correspondences between the image pixels

and the map is very challenging. Spurious correspondences

arise due to both “well-behaved” phenomena such as sen-

sor noise and quantization effects as well as pure outliers

which arise due to the local correspondence assumptions

not being satisfied [6]. These include inevitable environ-

mental appearance changes due to, for example, changing

light levels or dynamic elements such as clutter or people

in the frame or the opening and closing of doors. These as-

pects conspire to give rise to a vast number of suprious cor-

respondences, making it difficult to use for any purpose but

the localization of crisp and high-resolution images. Sec-

ondly, the maps often consists of millions of elements which

need to be searched, making it very computationally inten-

sive and difficult to establish correspondences in real-time.

Figure 1: An extreme example of perceptual aliasing in the

Stairs scene of the Microsoft 7-Scenes dataset. One of the

frames is taken at the bottom of the staircase and the other

near the top. Using only single frames, as in the compet-

ing approaches, it would be impossible to correctly localize

these images.
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Recently, however, it has been shown that machine learn-

ing methods such as random forests [20] and convolutional

neural networks (CNNs) [10] have the ability to act as a

regression model which directly estimates pose from an in-

put image with no expensive feature extraction or feature

matching processes required. These methods consider the

input images as being entirely uncorrelated and produce in-

dependent pose estimates that are incredibly noisy when ap-

plied to image sequences. On most platforms, including

smart-phones, mobile robots and drones, image-sequences

are readily obtained and have the potential to greatly en-

hance the accuracy of these approaches and promising re-

sults have been obtained for sequence-based learning for

relative pose estimation [4]. Therefore, in this paper we

consider ways in which we can leverage the temporal de-

pendencies in image-sequences to improve the accuracy of

6-DoF camera re-localization. Furthermore, we show how

we can in essence unify map-matching, model-based local-

ization, and temporal filtering all in one, extremely compact

model.

1.1. Related Work

Map-matching Map matching methods make use of a map

of a space either in the form of roads and traversable paths

or a floor-plan of navigable and non-navigable areas to

localize a robot as it traverses the environment. Map-

matching techniques are typified by their non-reliance on

strict data-association and can use both exteroceptive (eg.

laser scans) or interoceptive (odometry, the trajectory or the

motion of the platform) sensors to obtain a global pose esti-

mate. The global pose estimate is obtained through proba-

bilistic methods such as sequential Monte Carlo (sMC) fil-

tering [7] or hidden Markov models (HMMs) [15]. These

methods inherently incorporate sequential observations, but

accuracy is inferior to localizing against specialised maps,

such as a 3D map of sparse features.

Sparse feature based localization When a 3D model of

discriminative feature points is available (eg. obtained us-

ing SfM) then the poses of query images can be found using

camera re-sectioning. Matching against large 3D models

is generally very computationally expensive and requires

lots of memory space to store the map. A number of ap-

proaches have been proposed to improve the efficiency of

standard 3D-to-2D feature matching between the image and

the 3D model [24]. For example, [16] propose a quantized

feature vocabulary for direct 2D-to-3D matching with the

camera pose being found using RANSAC in combination

with a PnP algorithm and in [17] an active search method is

proposed to efficiently find more reliable correspondences.

[13] propose a client-server architecture where the client ex-

ploits sequential images to perform high-rate local 6-DoF

tracking which is then combined with lower-rate global lo-

calization updates from the server, entirely eliminating the

need for loop-closure. The authors propose various meth-

ods to integrate the smooth local poses with the global up-

dates. In [11] the authors consider means of improving the

global accuracy by introducing temporal constraints into the

image registration process by regularizing the poses trough

smoothing.

Scene coordinate regression forests of Shotton et al. [20]

use a regression forest to learn the mapping between the

pixels of an RGB-D input image and the scene co-ordinates

of a previously established model. In essence the regression

forest learns the function f : (r, g, b, d, u, v) → (U, V,W ).
To perform localization, a number of RGB-D pixels from

the query image are fed through the forest and a RANSAC-

based pose computation is used to determine a consistent

and accurate final camera pose. To account for the tem-

poral regularity of image sequences, the authors consider a

frame-to-frame extension of their method. To accomplish

this, they initialize one of the pose hypotheses with that ob-

tained from the previous frame, which results in a signif-

icant improvement in localization accuracy. Although ex-

tremely accurate, the main disadvantage of this approach is

that it requires depth images to function and does not elim-

inate the expensive RANSAC procedure.

CNN features Deep learning is quickly becoming the dom-

inant approach in computer vision. The many layers of a

pre-trained CNN form a hierarchical model with increas-

ingly higher level representations of the input data as one

moves up the layers. It has been shown that many com-

puter vision related tasks benefit from using the output from

these upper layers as feature representations of the input

images. These features have the advantage of being low-

level enough to provide representations for a large number

of concepts, yet are abstract enough to allow these concepts

to be recognized using simple linear classifiers [19]. They

have shown great success applied to a wide range of tasks

including logo classification [1], and more closes related to

our goals, scene recognition [25] and place recognition [22].

Posenet [10] demonstrated the feasibility of estimating the

pose of a single RGB image by using a deep CNN model

to regress directly on the pose. For practical camera relo-

calization, Posenet is far from ideal. For example, on the

Microsoft 7-Scenes dataset it achieves a 0.48m error where

the model space is only 2.5m × 1m × 1m. Our approach

enhances the localization accuracy by incorporating a tem-

poral aspect in the model, producing smoother and more

accurate estimates.

1.2. Contributions

In this paper, we propose a recurrent model for reducing

the pose estimation error by using multiple frames for the

pose prediction. Our specific contributions are as follows:

1. We present a deep spatio-temporal model for efficent

global localization from a monocular image sequence.
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Figure 2: The CNN-RNN network for video-clip localiza-

tion.

2. We integrate into our network a method for obtaining

the instantaneous covariances of pose estimates.

3. We evaluate our approach to two large open datasets

and show that the proposed spatio-temporal model per-

forms significantly outperforms a smoothing baseline.

2. Proposed Model

In this section we outline our proposed model for video-

clip localization, VidLoc, a high-level overview of which

is shown in Figure 2. Our model processes the video im-

age frames using CNN and integrates temporal information

through a bidirectional LSTM.

2.1. Image Features: CNN

The goal of the CNN part of our model is to extract rel-

evant features from the input images that can be used to

predict the global pose of an image. A CNN consists of

stacked layers performing convolution and pooling opera-

tions on the input image. There are a large number of CNN

architectures that have been proposed, most for classify-

ing objects in images and trained on the Imagenet database.

These models, however, generalize well to other tasks, in-

cluding pose estimation. As in the Posenet [10] paper, VG-

GNet [21] is able to produce more accurate pose estimates,

but incurs a high-computational cost due to its very deep

architecture. As we are interested in processing multiple

images in a temporal sequence we adopt the GoogleNet In-

ception [23] architecture for the VidLoc CNN. We use only

the convolutional and pooling layers of GoogleNet and drop

all the fully-connected layers. In our experiments, we ex-

plore the impact on computational efficiency incurred vs.

the increase in accuracy obtained using multiple frames.

2.2. Temporal Modelling: Bidirectional RNN

In Posenet and many other traditional image based lo-

calization approaches, the pose estimates are produced en-

tirely independently for each frame. However, when us-

ing image-streams with temporal continuity, a great deal of

pose information can be gained by exploiting the temporal

dependencies. For example, adjacent images often contain

views of the same object which can boost the confidence in

a particular location, and there are also tight constraints on

the motion that can be undergone in-between frames - a set

of frames estimated to be at a particular location are very

unlikely to contain one or two located far away.

To capture these dynamic dependencies, we make use

of the LSTM model in our network. The LSTM [8] ex-

tends standard RNNs to enable them to learn long-term time

dependencies. This is accomplished by including a forget

gate, input and output reset gates and a memory cell. The

flow of information into and out-of the memory cell is regu-

lated by the forget and input gates. This allows the network

to overcome the vanishing gradient problem during training

and thereby allow it to learn long-term dependencies. The

input to the LSTM is the output of the CNN consisting of

a sequence of feature vectors, xt. The LSTM maps the in-

put sequence to the output sequence consisting of the global

pose parameterised as a 7-dimensional vector, yt consisting

of a translation vector and orientation quaternion. The acti-

vations of the LSTM are computed by interatively applying

the following operations on each timestep

ft = σg(Wfxt + Ufht−1 + bf )

it = σg(Wixt + Uiht−1 + bi)

ot = σg(Woxt + Uoht−1 + bo)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc)

ht = ot ◦ σh(ct)

yt = σo(Wyht + by)

(1)

where W,U and b are the parameters of the LSTM, ft, it, ot
are the gate vectors, σg is the non-linear activation function

and ht is the hidden activation of the LSTM. For the inner

activations, we use a hyperbolic tangent function and for

the output σo we use a linear activation. A limitation of
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the standard LSTM model is that it is only able to make

use previous context in predicting the current output. For

our monocular image-sequence pose prediction application

we have a sliding window of frames available at any one

instance in time and thus we can exploit both future and past

contextual information predicting the poses for each frame

in the sequence. For this reason, we adopt a Bidirectional

architecture [18] for our LSTM model. The bidirectional

model assumes the same state equations as in 1, but uses

both future and past information for each frame by using

two hidden states,
←−
h t and

−→
h t, one for processing the data

forwards and and the other for processing backwards, as

shown in Figure 3. The hidden states are then combined

to form a single hidden state ht through a concatenation

operation

ht =
[←−
ht,

−→
ht

]

(2)

The output pose is computed from this hidden layer as in 1.

Figure 3: The structure of a bidirectional RNN [18].

2.3. Network Loss

In order to train the network we use the sum of the Eu-

clidean error magnitude of both the translation and orien-

tation. To compute the loss, we separate the output of the

LSTM into the translation xt and orientation qt

yt = [xt,qt] (3)

and use a weighted sum of the error magnitudes of the two

component vectors

L =

T
∑

t=1

α1||xt − x̂t||+ α2||qt − q̂t|| (4)

We propagate the loss through the temporal frames in

each training sequence by unrolling the network and per-

forming back-propagation through time. To update the

weights of the layers, we make use of the Adam optimizer.

2.4. Probabilistic Pose Estimates

Pose estimation methods, no matter how accurate, will

always be subject to a degree of uncertainty. Being able to

correctly model and predict uncertainty is thus a key com-

ponent of any useful visual localization method. The eu-

clidean sum-of-squares error which we defined in Sec. 2.3

results in a network which approximates only the uni-modal

conditional mean of the pose as defined by the training data.

In essence the output of the network can be regarded as pre-

dicting µx, the mean of the conditional pose distribution

p ([x,q]|I) = N
(

µ[x,q], σ
)

where the Guassian assump-

tion is induced by the use of the square error loss. For the

unlikely case where the actual posterior pose distribution

is Gaussian, this mean represents the optimal distribution

in a maximum-likelihood sense. However, for global cam-

era re-localization as we are concerned with in this paper,

this assumption is unlikely. In many instances the appear-

ance of a space is similar at multiple locations, for example,

two corridors in a building may appear very similar (known

as the “perceptual aliasing” problem and in most instances

cannot be addressed using visual data alone).

In [9], one possible means of representing multi-modal

uncertainty in the global pose estimation was considered.

In this work, the authors create a Bayesian convolutional

neural network by using dropout as a means of sampling

the model weights. The posterior distribution of the model

weights p (W|X,Y) is intractable and they use variational

inference to approximate it as proposed in [5]. To produce

probabilistic pose estimates, Monte Carlo pose samples are

drawn and the mean and variance determined from these.

Although this models the uncertainty in the model weights

correctly (i.e. the distribution of the model weights accord-

ing to the training data), it does not fully capture the uncer-

tainty of the pose estimates.

To model the pose uncertainty, we adopt the mixture den-

sity networks method [2]. This approach replaces the Gaus-

sian with a mixture model, allowing a multi-modal posterior

output distribution to be modelled. Using this approach, the

pose estimates now take the form

p ([x,q]|I) =
M
∑

i=1

αi(I)Ni

(

µ[x,q](I), σ(I)
)

(5)

where Ni

(

µ[x,q], σ|I
)

is a mixture component and αi are

the coefficients of the mixture distribution which satisfy the

constraint
∑

i αi = 1. The mixing components are a func-

tion of the input image which is modelled by the network.

As in the single Gaussian case, the network is trained to

maximize the likelihood of the training data.
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3. Experiments

In this section, the proposed approach is evaluated on

outdoor and indoor datasets by comparing with the state-of-

the-art methods.

3.1. Datasets

Two well-known public datasets are employed in our ex-

periments. They demonstrate indoor human motion and

outdoor autonomous car driving scenarios, respectively.

The first is the Microsoft 7-Scenes Dataset which con-

tains RGB-D image sequences of 7 different indoor envi-

ronments [20], created by using a Kinect sensor. It has

been widely used for camera tracking and relocalization

[10]. The images were captured at 640 × 480 resolution

with ground truth from KinectFusion system. Since there

are several image sequences of one scene and each sequence

is composed of about 500-1000 image frames, it is ideal for

our experiments. Ground truth camera poses for the dataset

are obtained using the KinectFusion algorithm [14] to pro-

duce smooth camera tracks and a dense 3D model of each

scene. In our experiments, all the 7 scenes are adopted to

evaluate the proposed method. We use the same Train and

Test split of the sequences as used in the original paper. This

dataset consists of both RGB and depth images. Although

we focus mainly on RGB-only localization, our method ex-

tends naturally to the RGB-D case.

In order to further test the performance in large-scale

outdoor environments, the recently released Oxford Robot-

Car dataset [12] is used. It was recorded by using an au-

tonomous Nissan LEAF car traversing in the central Oxford

for a year period. The dataset contains high-resolution im-

ages from a Bumblebee stereo camera, LiDAR scanning,

and GPS/INS. Since different weather conditions, such as

sunny and snowy days, are exhibited in the dataset, it is very

challenging for some tasks based on vision, e.g., global lo-

calization and loop closure detection across long terms and

seasons. Because global re-localization does not need to

have high-frequency images, the frame rate is about 1Hz in

our robotcar experiments.

3.2. Competing algorithms

In this section we describe the experiments that we per-

formed on the Microsoft 7-Scenes dataset. We compare our

approach to the current state-of-the-art monocular camera

localization methods.

Smoothing baseline The traditional means of integrating

temporal information is to perform a filtering or smooth-

ing operation on the independent pose predictions for each

frame. We thus compare our method to a smoothing opera-

tion in order to investigate the advantage of using an RNN to

capture the temporal information and whether global pose

accuracies obtained for each frame are indeed more accu-

rate than independent pose predictions. For our smoothing

baseline, we use the spline fitting approach as per [11].

Posenet Posenet uses a CNN to predict the pose of an input

RGB image. The Posenet network is the GoogleNet archi-

tecture with the top-most fully connected layer removed and

replaced by one with a 7-dimensional output and trained to

predict the pose of the image.

Score-Forest The Score-Forest [20] approach trains a ran-

dom regression forest to predict the scene coordinates of

pixels in the images. A set of predicted scene coordinates is

then used to determine the camera pose using a RANSAC-

loop. We use the open source implementation for our ex-

periments1.

Additional comparisons Comparison to [16]. For Robot-

Car (Fig ??) we extract SURF features and assign 3D loca-

tions using LiDAR data. We also provide a comparison on

7 Scenes to [3] from the results as presented in [3].

3.3. Experiments on Microsoft 7-Scenes Dataset

The results of our experiments testing the accuracy of our

method are shown in Table 1. The proposed method signif-

icantly outperforms the Posenet approach in all of the test

scenes, resulting in a 23.4% − 55% increase in accuracy.

The SCoRe-forest outperforms the the RGB-only VidLoc.

However, this is strictly not a fair comparison for two rea-

sons: firstly, SCoRe-forest requires depth images as input;

secondly, the SCoRe-forest sometimes produces pose esti-

mates with gross errors although these are rejected by the

RANSAC-loop, which means that pose estimates are not

available for all frames. In contrast, our method produces

reliable estimates for the entire sequence.

We tested our method using both depth and RGB input and

although our method seamlessly utilises the depth images

when available, a disadvantage is that it cannot utilise the

depth information to the extent that the SCoRe-Forest is

able to. This is evidenced in the accuracy results reported

in Table 1 where it can be seen that although our method

consistently achieves centimeter accuracy, it does not out-

perform the SCoRe-Forest. This is surprising but perhaps

indicative of the operation of the network. This suggests

that the network learns to perform pose prediction in a sim-

ilar fashion to an appearance based localization method. In

this manner, it uses both the RGB and the depth information

in the same way. This is in contrast to the SCoRe-forest ap-

proach where the depth information is explicitly used in a

geometric pose computation by means of the PnP algorithm.

We note, however, that our method still has the advantage of

being able to operate on RGB data when no depth informa-

tion is available and is able to produce global pose estimates

for all frames whereas the SCoRe-forest cannot.

1https://github.com/ISUE/relocforests
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Table 1: Comparison to state-of-the-art approaches to monocular camera localization

Scene Frames Spatial

Extent

Score

Forest
Posenet

Bayesian

Posenet

Smoothing

Baseline
VidLoc

VidLoc VidLoc

Train Test RGB-D Depth

Chess 4000 2000 3x2x1m 0.03m 0.32m 0.37m 0.32m 0.18m 0.16m 0.19m

Office 6000 4000 2.5x2x1.5m 0.04m 0.48m 0.48m 0.38m 0.26m 0.24m 0.32m

Fire 2000 2000 2.5x1x1m 0.05m 0.47m 0.43m 0.45m 0.21m 0.19m 0.22m

Pumpkin 4000 2000 2.5x2x1m 0.04m 0.47m 0.61m 0.42m 0.36m 0.33m 0.15m

Red kitchen 7000 5000 4x3x1.5m 0.04m 0.59m 0.58m 0.57m 0.31m 0.28m 0.38m

Stairs 2000 1000 2.5x2x1.5m 0.32m 0.47m 0.48m 0.44m 0.26m 0.24m 0.27m

Heads 1000 1000 2x0.5x1m 0.06m 0.29m 0.31m 0.19m 0.14m 0.13m 0.27m

Average

0 20 40 60

Error (m)

0

1000

2000

3000

F
re
q
u
e
n
c
y

Proposed

[11]

Figure 4: Error histogram of VidLoc compared to a sparse-

feature based method [16] on the RobotCar dataset.

5cm, 5◦ Avg. Error

1 40.7% -

2 - 46.9cm, 5.4◦

3 - 25.7cm, 3.8◦

4 55.2% 6.1cm, 2.7◦

5 N/A 6cm, 2.89◦

Table 2: Additional comparisons on RobotCar and 7

Scenes. (1) Sparse RGB, (2) PoseNet, (3) Proposed, (4)

Brachmann et al., (5) Sattler et al. [15] .

Effect of sequence length A key result of this paper is

shown in Figure 5 which depicts the localization error as

a function of the sequence length used. We have trained the

models using sequence lengths of 200 frames in order to test

the ability of the model to generalize to longer sequences. In

all cases we ensure that the error is averaged over the same

number and an even distribution across the test sequence.

As expected, increasing the number of frames improves the

localization accuracy. We also see that the model is able to

generalize to longer sequence (i.e we still get an improve-

ment in accuracy for sequence lengths greater than 200). At

very long sequence lengths we experience diminishing re-

turns - however this is not necessarily a product of the mod-

els inability to use this data but rather the actual utility of

very long-term dependencies in predicting the current pose.

2 5 10 50 100 200 300 400

Window size (frames)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
rr

o
r 

(m
)

Pumpkin

Red kitchen

Stairs

Office

Fire

Chess

Heads

Figure 5: The effect of window length on pose accuracy for

the sequences in the Microsoft 7-Scenes dataset.

Timings Our approach improves on the accuracy of

Posenet, yet has very little impact on the computational

time. This is because processing each frame only relies

on the hidden state of the RNN from the previous time in-

stance and image data of the current frame. Predicting a

pose thus only requires a forward pass of the image through

the CNN and propagating the hidden state. On our test ma-

chine with a Titan X Pascal GPU, this takes only 18ms us-

ing GoogleNet and 43ms using a VGG16 CNN. An inter-

esting observation from our experiments is that the train-

ing time to create a usable localization network using the

fine-tuning approach with Imagenet initialization is actually

rather short. Typically convergence time (to around 90%) of

final accuracy on the test data is around 50s.

Uncertainty output The 7-Scenes indoor dataset is ex-

tremely challenging, mainly due to the problem of percep-

tual aliasing as shown in Figure 1. One image was taken

from the bottom of the staircase while the other was taken

near the top. For comparing the uncertainty to [9] we use the

Bayesian PoseNet implementation provided by the authors
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of [9]. Figure 6 shows a visualization of the predicted uncer-

tainty and the actual error in the format of [9]. The percent-

age of pose errors fall within the 3σ bound for the proposed

adopted uncertainty method is 97.2% and [9] is 98.1% (this

value is ideally 99.7%). Both approaches produce high-

quality uncertainty estimates, although the proposed is a bit

less conservative. The proposed requires no approximation

or sampling. From the figure it is evident that the predicted

distribution adaquately. However, in many cases we found

that the predicted variance is rather high and we leave it as

future work to improve the variance prediction.

0.0 0.2 0.4 0.6 0.8 1.0

Error (m)

0.15

0.20

0.25

0.30

0.35

U
n
c
e
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S
D

)

Error vs uncertainty

[7]
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0 100 200 300 400 500

Image no.
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1.5
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0.5

1.0

X
 (

m
)

Uncertainty on 7 Scenes Stairs

Predicted X (m)

True X (m)

1

3

Figure 6: (a)Comparison of uncertainty to [7] and (b) vi-

sualization of proposed uncertainty prediction (1σ) and tra-

jectory.

3.4. Experiments on RobotCar Dataset

The experiments on the Oxford RobotCar Dataset are

given in this section. Since the GPS/INS poses are rela-

tively noisy (zig-zag track), they are fused with stereo visual

odometry by using pose graph SLAM to produce smooth

ground truth for training. In our experiments, three image

sequences are used for training, while the trained models

are tested on another new testing sequence.

(a) Images on a same location at different times.

(b) Images on different locations but close times.

Figure 7: Images of the RobotCar dataset to show limited

appearance distinction with dynamic changes on a same lo-

cation and perceptual aliasing among different locations.

The image sequences selected are very challenging for

global re-localization. As shown in Figure 7, the images are

mostly filled with roads and trees, which do not have dis-

tinct and consistent appearance features. Specifically, three

images of a same location yet captured at different times are

presented in Figure 7a. Although they are taken at a same

position, the cars parking along the road introduce signif-

icant appearance changes. Without viewing the buildings

around, the only consistent objects which can be useful for

global re-localization are the trees and roads. However, they

are subtle in terms of image context. For example, Figure

7b shows sample images of three different locations which

share very similar appearance. Again, this perceptual alias-

ing makes global re-localization more challenging by only

using one single image.

The global re-localization results of the testing image se-

quence with lengths 10, 20, 50 and 100 are shown in Fig-

ure 8 against ground truth. They are also superimposed on

Google Map. It can be seen that the result of the proposed

method improves as the length of the sequence increases,

and the re-localization results of the lengths 50 and 100

match with the roads consistently. It is interesting to see that

its trajectories are also able to track the shape of motion by

end-to-end learning. In contrast, the Posenet which uses

a single image suffers from noisy pose estimates around

the ground truth. This experiment validates the effective-

ness and necessary of using sequential images for global re-

localization, mitigating the problems of perceptual aliasing

and improving localization accuracy.

Localization trajectories and 6-DoF pose estimation of a

sequence with 100 length are given in Figure 9. It further

shows that the localization result is smooth and accurate.

The corresponding estimation of the 6-DoF poses on x, y, z,

roll, pitch and yaw is described in Figure 9b. It can be seen

that the proposed method can track the ground truth accu-

rately in terms of 6-DoF pose estimation. This is of impor-

tance when using the localization result for re-localization

and loop closure detection.

Figure 10 illustrates the distribution and histogram of the

re-localization errors (mean squared errors) of all sequences

with 100 length. Statistically more than half of poses esti-

mated by the proposed method are within 20 meters, while

this is less than 15% percentage for Posenet. Moreover,

there are some big errors, e.g., more than 200 meters, of

Posenet, which indicates that it may have perceptual alias-

ing problems during pose estimation. It tends to be common

in this challenging dataset, as shown in Figure 7. Therefore,

it is verified that the recurrent model encapsulating the rela-

tionship between consecutive image frames is effective for

global re-localisation using a video clip.

4. Conclusion

We have presented an approach for 6-DoF video-clip re-

localization that exploits the temporal dependencies in the

video stream to improve the localization accuracy of the
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(a) Sequence length: 10.
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(b) Sequence length: 20.
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(c) Sequence length: 50.
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(d) Sequence length: 100.

Figure 8: Global localization results on different lengths of sequences superimposed on Google Map.
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(b) Estimates of 6-DoF poses.

Figure 9: Localization result and estimates of 6-DoF poses

of a sequence with 100 length.

global pose estimates. We have studied the impact of win-

dow size and shown that our method outperforms the clos-

est related approaches for monocular RGB localization by

a fair margin.

For future work we intend to investigate means of mak-

ing better use of the depth information, perhaps by forcing

the network to learn to make use of geometrical informa-

tion. One means of doing this would be to try predict the

scene coordinates of the input RGB-D image using the CNN

in an intermediate layer and then derive the pose from this
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(a) Distribution of errors.
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Figure 10: Distribution and histogram of localization errors

of all sequences with 100 length.

and the input image. In essence this would be like unify-

ing appearance-based localization and geometry-based lo-

calization in one model.
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