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Abstract

Studies in visual perceptual learning investigate the way

human performance improves with practice, in the context

of relatively simple (and therefore more manageable) visual

tasks. Building on the powerful tools currently available for

the training of Convolution Neural Networks (CNN), net-

works whose original architecture was inspired by the vi-

sual system, we revisited some of the open computational

questions in perceptual learning. We first replicated two

representative sets of perceptual learning experiments by

training a shallow CNN to perform the relevant tasks. These

networks qualitatively showed most of the characteristic be-

havior observed in perceptual learning, including the hall-

mark phenomena of specificity and its various manifesta-

tions in the forms of transfer or partial transfer, and learn-

ing enabling. We next analyzed the dynamics of weight

modifications in the networks, identifying patterns which

appeared to be instrumental for the transfer (or generaliza-

tion) of learned skills from one task to another in the simu-

lated networks. These patterns may identify ways by which

the domain of search in the parameter space during net-

work re-training can be significantly reduced, thereby ac-

complishing knowledge transfer.

1. Introduction

Performance in relatively simple perceptual tasks is

known to be affected by practice. The study of this process

revealed some surprising results [16], providing a window

into human learning mechanisms. One of the most strik-

ing results has been the repeated observation that many of

the acquired skills are specific to low level properties of the

stimuli (e.g., orientation), and do not transfer (e.g., do not

generalize to other orientations). These and other results

were used to constrain computational modeling of human

perceptual learning, as briefly reviewed Section 2.1.

In this paper we revisit these computational studies in the

context of recent advances in deep learning, and specifically

model the learner by a Convolution Neural Network (CNN).

This modeling choice is justified by the resemblance be-

tween the CNN architecture and the organization of low

level visual areas in the brain. In Section 3 we describe

the simulations of representative perceptual learning exper-

iments, where the learner is a shallow CNN, and investigate

its emerging properties. These properties are directly com-

pared with the actual perceptual learning results in a quali-

tative manner. In Section 4 we analyze the learning process.

We track the dynamics of weight modifications as learning

proceeds, and identify patterns of change which facilitate

subsequent learning sessions, i.e. enable learning transfer.

This facilitation is likely achieved by reducing the search

space when re-training the network.

The model we investigate here is a relatively shallow

Convolution Neural Network (CNN) with two hidden conv-

pool layers (effectively the learned features), and one out-

put layer that integrates the responses of the features using

modifiable weights. The main difference with respect to

previous modeling attempts, reviewed below, is that this is

a generic model, which resembles the visual system in its

pipeline hierarchical structure (although it is not a physi-

ologically accurate model of the visual processing areas).

It is a general learning machine that learns visual features

from scratch, as well as decision classifiers. Thus it can be

used to investigate the relative contribution of features and

classification weights to the learning process.

2. Background

2.1. Generalization in perceptual learning

Extraordinary cognitive learning abilities, arguably su-

perior to any other living creature, have allowed human be-

ings to achieve incredible things. Here we focus on the less

glamorous but related ability of perceptual learning, where

learners improve their perceptual skills (and specifically vi-

sual skills) as a result of practice and training. Perceptual

learning studies usually measure the effect of practice on

the performance of simple visual tasks, such as motion di-

rection discrimination or line orientation detection. Typi-
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cally the learner is given feedback, but perceptual learning

is known to take place also without direct feedback.

Early studies showed improvement in sensitivity of basic

(low level) visual tasks, as basic as hyper-acuity. It was soon

shown that most of these improvements were rather specific,

selective to stimulus orientation, spatial-frequency, and reti-

nal location [6, 3]. This seemed to imply that learning-

related modulations were taking place in early areas of vi-

sual processing, indicating somewhat unexpected plasticity

in the adult brain. Thus, the issue of learning Specificity

became central to the study of perceptual learning, with ev-

idence accumulating for the lack of Transfer, namely, per-

ceptual learning typically would not lead to improved per-

formance in the same task when slightly modified (e.g., by

shifting the stimulus to a different retinal position). A cen-

tral question emerged [16]: ”does learning involve rewiring

of neurons in early visual areas, or can it all be explained by

improved efficiency in the readout of unchanged early neu-

ronal representations?”. This question provided a central

motivation for the current study.

The question of learning Specificity continued to inspire

additional studies, further complicating the picture. Thus

learning Specificity was shown to be correlated with diffi-

cult perceptual tasks. In easier tasks, e.g., in discrimination

tasks involving stimuli with high SNR, generalization was

sometimes seen by way of immediate improvement in the

novel task, or a shorter learning period [9, 12]. Moreover, a

new phenomenon called learning Enabling, or Eureka, was

reported. This time, when the difficulty of the perceptual

task was manipulated, a new form of transfer was observed

[2]: after training with an easy perceptual task (e.g., us-

ing high SNR stimulus), observers were suddenly able to

learn the corresponding difficult condition (low SNR) they

had previously been unable to learn. This is reminiscent

of similar phenomena in cognitive learning, and the related

concept of curriculum learning [4].

Two prominent computational models of perceptual

learning were developed to explain this pattern of results.

The reverse hierarchy theory [1] postulates a hierarchical

architecture, where learning is governed by a top-down

(rather than the customary bottom-up) information flow.

Specifically, learning is first achieved at some rather ab-

stract high level layer, which is task specific; only later, if

and when necessary, further learning is achieved at lower

level layers which correspond more directly to stimuli pro-

cessing and the computation of feature maps. The reweight-

ing model [9] assumes a shallow network, and seeks to

explain all observed perceptual learning phenomena based

on the reweighting of an unchanged set of features. Thus,

while not postulating a reverse learning order, this model

also looks for the primary loci of modulations (or learning)

at some integration level - where the the task-relevant de-

cision (or classification) is taking place, rather than at the

feature level. However, since there seems to be neurophys-

iological evidence that perceptual learning corresponds to

changes in low-level visual processing areas as well [16],

this theory is not fully satisfying.

2.2. Convolution Neural Networks

Convolution Neural Network (CNN) is a model whose

architecture is based on the neocognitron model [7, 8],

whose architecture in turn was inspired to a large extent

by our understanding of the early visual system as it took

shape in the 1960’s and 70’s. Each layer in the network

computes a number of feature maps (or channels), where

each channel corresponds to a certain filter which convolves

with patches in the image, in a manner similar to passing a

sliding window. In addition to a convolution sub-layer, each

layer includes additional operations (sub-layers). Some cor-

respond with known operations in the visual system, like

max-pooling which computes the maximal response over

a small window defined over the convolution sub-layer, or

Rectified Linear Units (ReLU) which correspond to a non-

linear operation on the responses, nulling out all negative

responses. Additional operations which are not necessarily

biologically motivated have been added along the way to

artificial CNNs to increase their power.

Current CNN models are based on models developed in

the 1980’s [15]. Unlike the neocognitron model, these were

learning machines which modified the weights of the net-

work based on propagating the error signal from the output

layer all the way to the input layer. The back-propagation

model was not biologically motivated, in itself being equiv-

alent to gradient descent of a natural loss function in order

to update the network’s weights. However, the error signal

derived from the loss function approximates the Hebbian

rule to some extent, and therefore this model was used to

investigate biological learning mechanisms (e.g., [14, 13]).

In recent years we have seen an ever increasing use of

CNN models for practical applications, which now domi-

nate the state of the art in many computer vision sub-fields

like object recognition (e.g., [11, 17, 18, 10]). This was

made possible by the availability of big data - a large num-

ber of images collected into publicly available databases,

which were used to train deep CNN models more effec-

tively than ever before. In this paper we take advantage

of this opportunity - the widespread and the availability of

very effective tools to train CNNs, in order to revisit ques-

tions in perceptual learning, and investigate the learning of

CNN models in the context of perceptual learning tasks.

3. The emergence of Specificity and Enabling in

Network Training

We focused our investigation on two hallmark character-

istics of perceptual learning (see discussion in the previous

section): Specificity and Enabling.
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3.1. Methods

CNN network We trained a two layer CNN using vanilla

SGD, with a fixed learning rate and batch size (50). The

network was initialized using a weights vector out of a fixed

randomly generated set. The first layer included 6 channels,

each with 5x5 conv, stride 1, ReLU and pooling. The sec-

ond layer included 16 channels, each with 5x5 conv, stride

1 ReLU and pooing. This layer was connected to the output

of the network, 2 output neurons. Overall, the network had

8846 parameters including weights and biases. Each exper-

iment was repeated 32 times, training a new network each

time. The plots in this section show average results across

all repetitions, with the appropriate standard deviation (std).

In all conditions the network was trained long enough with

the initial learning task to achieve convergence.

a) b)

Figure 1. a) Pop-out discrimination task with differently oriented

line segments in two locations. b) Orientation discrimination task.

Visual stimuli All images were grayscale of size 108 ×

108, with added Gaussian noise. For each experimental

setup (e.g., pop-out task with θ = 8o), a dataset comprising

of 3000 train and 1500 test images was created. In the pop-

out experiment (Section 3.2), each image showed a 7 × 7

array of parallel oriented line segments. The experiment in-

volved 4 conditions illustrated in Fig. 1a: no pop-out (a1),

pop-out in either the right or left location (a2 and a3 respec-

tively), and the same two conditions with swapped orienta-

tions (a4). Each image was randomly translated by up to 4

pixels in each direction along the x and y axes. In the orien-

tation discrimination experiment (Section 3.3), images were

grayscale of size 68 × 68. A tilted Gabor patch was shown

near one of the 4 corners of the image (see Fig. 1b), after

which it was rotated by a fixed angle in either clockwise or

counter clockwise direction.

3.2. Specificity and Enabling in pop­out tasks

We first replicated the task described in [2], training

the Convolution Neural Network described above to per-

form the discrimination task described next. We specifi-

cally looked for the emerging properties of learning as they

are related to the results reported in [2].

Experimental setup: The relevant perceptual task was

similar to the task described in Fig. 1a. The task required

to determine whether the displayed array contained an odd

line segment (as in Fig. 1-a2) or not (as in Fig. 1-a1). The

angular difference between the odd segment and the remain-

ing segments θ controlled the level of difficulty (or SNR) of

the task. In [2] there was an additional parameter which

controlled task difficulty - the SOA (Stimulus Onset Asyn-

chrony); this physiological parameter was not replicated in

our simulations, as it required physiological modeling be-

yond the scope of this work.

Learning as a function of task difficulty: Our CNN

model was trained to perform the discrimination of an odd

element as illustrated in Fig. 1a. The results (percent cor-

rect) are shown in Fig. 2. We note that it took about 300

epochs to achieve 0.3% test error with the easy task (30o),

and about 1500 epochs for 3.1% test error with the hard task

(8o).

a) b)

Figure 2. Results of training to perform the relevant discrimination

task with a few levels of difficulty. a) CNN network: the difficulty

level is controlled by the angle difference between the odd line seg-

ment and the background segments: 8
o, 16o, 30o. b) [2] Fig. 1b.

The two plots show qualitatively similar behavior - longer training

time for more difficult discrimination tasks. We note, however,

that both difficulty level and improvement were measured quite

differently in a) and b).

We repeated the manipulation of task difficulty as re-

ported in [2] by changing the angle difference between the

odd line segment and the background segments. We used 3

conditions: 8o (hardest), 16o (intermediate), and 30o (easi-

est). As described in Section 2.1, perceptual learning exper-

iments revealed different characteristics when the task dif-

ficulty was manipulated. In the extreme cases, no learning

was seen with very difficult tasks, while learning was fast

or even immediate with easy tasks. This pattern emerged in

our experiments as well, as can be seen in Fig. 2a.

Learning generalization (Transfer): To check the Speci-

ficity of learning, the trained network was tested on the

same discrimination task as described above. As in [2], we

first tested for transfer in the same image position. With-

out changing the difficulty of the task, this was originally

accomplished by using the swapped task (see Fig. 1-a4).
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Results are shown in Fig. 3, showing similar qualitative be-

havior of larger transfer for easier task, and vice versa.

Figure 3. Transfer in the same image position between two similar

tasks of the same difficulty level. Top: CNN network, transfer in

the easier task with θ = 30
o (left), and the more difficult task with

θ = 8
o (right). Bottom: a qualitatively similar phenomenon was

reported in [2] Fig. 2a.

Next, we investigated the transfer of learning to similar

stimuli shown in different image locations. Now the odd

line segment was shown in a different image location, in the

adjacent grid position to the left or right of the trained loca-

tion. The results (percent correct) are shown in Fig. 4. Once

again, we see similar qualitative behavior in the simulated

and biological learning outcomes, namely, training with the

easy task (30o angle difference) transferred (or generalized)

quite significantly to new locations in the visual field, while

training with the more difficult task (16o angle difference)

hardly affected performance in the new locations. We see

one minor difference: humans transferred more readily to

the position between the two trained locations, while our

network did not display this preference.

a) b)

Figure 4. Results of testing the trained network with the same dis-

crimination task, but where the odd element was shifted to a dif-

ferent location from the trained one. a) CNN network. b) A quali-

tatively similar phenomenon was reported in [2] Fig. 2c.

Learning enabling (Eureka): Finally, we investigated

the enabling of learning. In very difficult tasks, it may

be the case that participants do not improve with practice,

either because they cannot learn the task, or because they

learn it too slowly for the outcome to be measurable. In [2]

it was shown that after a short training session with the easy

task (or a single long exposure), there was a sudden change

and observers began to improve very fast while learning the

difficult task. This phenomenon was termed in [2] the En-

abling of learning; when the change was instantaneous, it

was called Eureka.

In our simulations a similar phenomenon emerged,

where training with the hard task took significantly longer

than training with the easy task. If, however, the network

was first trained with the easy task, subsequent training with

the hard task became very fast with some instantaneous im-

provement. Improvement was evident in both accuracy and

the speed of convergence, achieving a test error smaller by

1.5% in less than half the number of accumulated iterations,

in agreement with the results reported in [4]. These results

are shown in Fig. 5.

a) b)

Figure 5. a) CNN: training to detect an odd segment with θ = 8
o

(a difficult task) takes a very long time (bottom line). However,

when the network has been first trained with a similar easy task

using θ = 30
o, instantaneous improvement is seen, followed by

speedy learning. The same happens even if the orientations of the

background and odd elements are swapped between the odd ele-

ment and the background. b) A qualitatively similar phenomenon

was reported in [2] Fig. 5b.

3.3. Specificity in orientation discrimination

Our second representative perceptual learning task is in-

spired by the one used in [9].

Experimental setup: The relevant perceptual task was

similar to the task described in Fig. 1b. The task required

to determine whether the stimulus rotated clockwise or

counter-clockwise. The rotation angle θ controlled the level

of difficulty (or SNR) of the task. In each experimental ses-

sion, only two corners along one image diagonal were used

for training, while the other two corners were used to probe

for location transfer. In order to test for orientation transfer,

another oriented stimulus was presented, corresponding to

a rotation by 90o of the stimulus presented during training.
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Learning precision: In this task, as in the previous task

described in Section 3.2, learning characteristics strongly

depended on task difficulty. Like before, learning was fast

for easier tasks (with relatively large orientation difference

θ), and much slower for difficult tasks (small θ). However,

[9] observed that what mattered was the difficulty of the tar-

get (test) task, a characteristic which they called task preci-

sion, and not the difficulty of the initial training task, see

Fig. 6-bottom1.

Figure 6. The dependence of transfer on the difficulty of the train-

ing task vs. the difficulty of the target (test) task. Transfer results

are shown separately depending on the difficulty of the transfer

(test) task. Left: easy test task; right: difficult test task. Top: CNN

simulations (see explanation in text). Bottom: a qualitatively sim-

ilar phenomenon was reported in [9] Fig. 2.

In accordance, we repeated this experiments and simu-

lated the 4 relevant conditions. In the first 2 conditions

shown in Fig. 6-left, we trained the network with either a

difficult training task (θ = 16o) or a relatively easy task

(θ = 30o), and tested transfer to the easy condition of

θ = 30o. In the last 2 conditions shown in Fig. 6-right, we

used the same training but tested instead transfer to the diffi-

cult condition of θ = 16o. The simulation results show sim-

ilar qualitative behavior an in the perceptual learning task,

although in our simulations the difficulty of the training task

also played a role in the efficacy of transfer, and transfer was

not instantaneous even with the easy task.

Learning generalization (Transfer): [5] investigated the

question of learning interference. Specifically, they com-

pared the transfer to a new task in 3 conditions: when

changing only stimulus absolute orientation, changing only

1The difference between the initial learning curves (denoted ’Training’)

in the two conditions, shown on the left side of each panel of Fig. 6-bottom,

are due to random differences between subjects, since different subjects

participated in the two experiments. The learning task, however, was iden-

tical.

the image location where the stimulus was present, or

changing both. Based on the results described above, we

expect that if the task is not too difficult there should be

some transfer in all 3 conditions. Interestingly, [5] observed

that when the stimulus absolute orientation was changed,

transfer was stronger when it was presented in a new loca-

tion, as compared to presenting the modified stimulus in the

same location. This may indicate the existence of some de-

structive interference between the learning of different basic

features in the same image location.

We investigated whether the same can be seen in our

model. Like before, we trained the CNN using the original

stimulus, and then tested performance using the same 3 ma-

nipulations: change of stimuli absolute orientations while

keeping the orientation difference fixed, change of location,

and change of both. The results are shown in Fig. 7 for

θ = 30o, the easy task, in qualitative agreement with the

perceptual learning results. (The relevant results reported in

[5] only mention the easy task of θ = 30o. In our simu-

lations this phenomenon was also evident with θ = 16o, a

harder task.)

a) b)

Figure 7. Transfer to a new location and new stimulus orientation.

a) CNN, using θ = 30
o. b) A qualitatively similar phenomenon

was reported in [5] Fig. 2.

3.4. Discussion

Simulating the task described in [2], the learning out-

come showed qualitatively similar characteristics to the re-

sults described in human perceptual learning. Specifically,

as the difficulty of the perceptual task decreased, learning

time decreased. Learning transferred (or generalized) to

similar tasks much more readily when the task was easy.

Finally, training with an easy task enabled subsequent train-

ing with difficult tasks by significantly shortening the time

needed for learning. These qualitative results capture the

essence of almost all the observations reported in [2].

Simulating the tasks described in [5, 9], we saw paral-

lels to additional effects: transfer depended more strongly

on the difficulty of the target task rather than the train-

ing task; transfer was more effective when image location

was changed as compared to when stimulus orientation was

changed; and finally, we observed some learning interfer-

ence when teaching similar tasks with different stimuli in

the same image location. The latter observation did not de-
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a) b)

Figure 8. Representative feature maps. a) Pop-out detection tasks

(Section 3.2). The first 3 columns from left to right correspond

to a different angle difference: 8o, 16o and 30
o. The 4

th column

corresponds to a task with swapped orientations. In each column, 4

arbitrary channels are shown. b) Orientation discrimination tasks

(Section 3.3). Each column corresponds to a different channel.

The first row shows 4 feature maps from 4 channels when using

orientation o1 during both train and test. The last row shows the

same channels when using o2, the angle obtained when rotating

o1 by 90
o, during both train and test. The 2

nd row shows the

same channels when o1 is used for training the network, and o2 is

used for the computation of the feature map. The 3
rd row shows

the same channels when o1 is used for training the network, after

which the biases are copied from the network of the last row, and

finally o2 is used for the computation of the feature map.

pend on the number of channels in each layer.

4. Dynamics of Weight Modifications

In the previous section we showed how our simulations,

when training a shallow CNN to perform visual discrimi-

nation tasks, were able to replicate many of the phenomena

observed repeatedly in perceptual learning experiments. In

this section we go a step further, and investigate the net-

work’s weights modification patterns which underlie these

phenomena.

4.1. Feature maps and filters

We first note that, in both experiments, the CNN learned

simple edge-like features matching the displayed stimuli,

as can be readily seen in Fig. 8. More specifically, Fig. 8a

shows typical patterns of activation in the channels of the

second CNN layer in a pop-out experiment. In many of

these channels, the location of the odd element appears as a

highlighted region or a gap in the background pattern.

In Fig. 8b we see detectors of line segments matching

the locations and orientations of the training segments (first

and last row). Interestingly, features learned for one task

with orientation o1 were able to partially detect the target

segment in another task with orientation o2 (second row).

Slight weight modifications, limited to the bias elements

only, improved the detection somewhat (compare the third

row with the fourth row). This may explain the orientation

transfer we see in this condition, where re-training with a

new orientation is much faster than training from scratch in

the new orientation.

4.2. Generalization to new locations

Learning Transfer (i.e., generalization) is the term used

in the perceptual learning literature to describe the phe-

nomenon where some initial training with a visual task in a

certain image location improves performance in a different

image location. We replicated two such results, as shown in

Fig. 4a and Fig. 7a.

To investigate Transfer, we analyzed the network modifi-

cations in the experiment described in Fig. 7. Recall that in

this setup, a network was first trained with the discrimina-

tion of oriented edges in one part of the image (intermediate

weight values), and subsequently the network was trained

with the same discrimination task in a different image loca-

tion (final weight values). We Analyzed the changes in the

network weights between the intermediate and final states.

First, we noticed that all the significant (normalized)

changes occurred in the connections between the last conv-

pool layer and the output neurons. These modifications are

shown2 in Fig. 9. We see a range of changes in Fig. 9a,

including inhibition and excitation. However, many of the

channels exhibited a specific pattern of changes, as shown

for one typical channel in Fig. 9b. Here, the pattern of

learned weights displays alternating peaks corresponding to

the location of the stimuli in the image. This pattern is an

artifact of the vectorization procedure.

a) b)

Figure 9. a) The weights of the connections between the last conv-

pool layer and the output neurons. Faint vertical line separate the

weights into 16 groups, each corresponding to weights originating

from one channel in the last conv-pool layer. The intermediate

weights (yellow) are super-imposed on the final weights (blue).

Since the intermediate weights hardly changed in the second phase

of training, the final weights are in fact described by the union

of the yellow and blue bars. b) Close-up on a typical channel,

showing only weights originating from one of the channels in the

last conv-pool layer.

Fig. 9b should be interpreted as follows: The left pattern

corresponds to the left half of the image; here, blue bars

correspond to pixels in the top of each column, while yellow

bars correspond to pixels in the bottom. The intermediate

weights were trained when the edge appeared at the bottom-

left part of the image, thus the connections to these locations

were amplified (yellow bars). In the second learning phase

(the transfer task), the edge appeared at the top-left corner

2In order to visualize the changes in weights, we reshaped the network

weights into a 1D vector. Thus, for each 2-dimensional filter, the vector-

ization procedure transformed the matrix of weights to a vector by con-

catenating the columns of the matrix scanned from left to right.
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of the image, leading to the amplification of the connections

to these pixels (blue bars).3

Thus, what we see is that the network maintained the fea-

tures it had learned in the intermediate phase of training, as

seen by the stability of the weights from the first conv-pool

layer to the second one. When the same stimulus appeared

in a new location, all the network had to do was to modify

the weights of the connections between the last conv-pool

layer and the output neurons, corresponding to the new im-

age locations. This restriction of the search space, during

the second training phase, allowed the network to converge

much faster to a good solution for stimuli presented in new

locations. In other words, in our network location transfer

was the result of re-using features learned previously, hav-

ing to re-learn only the weights between features and output

layer (the readout weights).

4.3. Generalization to new orientations

In the experiments described in Fig. 7a, we investigated

transfer to new stimulus orientations (as well as new loca-

tions). When we examined the dynamics of weight modi-

fications in our network, changing the stimulus orientation

while keeping the location constant, we saw a different pic-

ture as compared to the one described above. This time all

the weights in the network changed, and in particular, new

features were being learned, giving rise to weight changes

in the first and second conv-pool layers. In the decision

layer, connecting the last conv-pool layer to the output neu-

rons, weights were adjusted to match the orientation of the

second (transfer) stimulus.

a) b) c)

Figure 10. The 6 convolution filters learned in the first conv-pool

layer of the CNN when: a) the network was trained to discrim-

inate orientation o1 only; b) the network was trained to discrimi-

nate orientation o2 only; c) the network was trained to discriminate

orientation o2 after being trained with orientation o1.

The 6 convolution filters (for each of the 6 channels)

learned in the first conv-pool layer of the CNN in one sim-

ulation are shown in Fig. 10. When training with a single

orientation, either o1 or o2, some of the emerging filters cap-

tured the displayed orientation. Interestingly, when train-

ing with one orientation (o1) and then the other (o2), new

filters appropriate for o2 appeared in the second phase of

learning, but the best filters for the discrimination of o1 had

not been significantly modified. This interesting property,

3The right pattern, corresponding to the right half of the image, should

be interpreted in a similar manner.

where training with a new task modified primarily channels

which had been less significant for the previous task, char-

acterized the emerging filters of our network in all 32 repe-

titions. We note that in a few repetitions, the CNN failed to

learn new appropriate filters, and it also failed to learn the

new discrimination task with orientation o2.

Swapping the line segments: In the pop-out experiment,

transfer to a new orientation was investigated by swapping

the orientations of the odd segment and the background seg-

ments. We inspected the dynamics of weight modifications

in the corresponding simulation, as illustrated in Fig. 11.

In this example, the strong positive weights correspond to

a channel (Fig. 11a) activated by the odd segment in the

initial learning task. After orientation swap this channel is

activated by background segments, and the output neuron

indicates whether an input is ”non-pop-out”. In order for the

output neuron to properly classify an input as such, the net-

work suppressed the negative weights emanating from this

channel and corresponding to background segments (higher

weights in the yellow as compared to the blue curve). Oth-

erwise, their effect, which is summed over all background

segments locations, could multiply and decrease the total

sum, causing the output neuron to misclassify.

a) b)

Figure 11. a) The weights of the connections between one chan-

nel in the last conv-pool layer, and one output neuron. The final

weights at the end of re-training with orientation swap (yellow),

are super-imposed on the intermediate weights before re-training

(blue). b) The feature map of the channel activated by the pop-out

edge during the initial task (left). The same channel feature map,

at the end of the second learning session after orientation swap

(right).

4.4. Enabling

Learning Enabling is the term used to describe the phe-

nomenon where initial training with a certain task in an easy

condition (high SNR) enables subsequent learning of the

same task in a difficult condition (low SNR). We described

two such cases in Fig. 5a and Fig. 6-left. To investigate

learning Enabling, we analyzed the network modifications

in the experiment described in Fig. 6. Note that in Fig. 6 we

used the somewhat confusing terminology introduced in [9]

of low precision and high precision, which in the following

discussion is replaced by the more accurate terminology of

high SNR and low SNR respectively.
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Once again, we checked the modifications which oc-

curred in the weights of the trained network during the two

learning phases. In Fig. 12 we show the weights of the net-

work at the end of the first learning phase (end of training

with the high SNR task) superimposed on the weights at

the end of the second learning phase (end of training with

the low SNR task). We first observe that in general, the ab-

solute values of the weights increased substantially, in ac-

cordance with our empirical observation that independent

training with high SNR and low SNR tasks leads in gen-

eral to higher absolute weights in the first case as compared

to the second. Interestingly, we don’t see weights redistri-

bution after the second phase of learning, but what appears

like an amplification of the weights: for the most part the

weights just got stronger in absolute value while keeping

the same sign (see Fig. 12-right). We see weight amplifi-

cation all over the network, including the first and second

convolution layers, and the last decision layer. We note that

had we trained the network from scratch on the low SNR

difficult task, without previously training on the high SNR

task, the overall effect would have been the re-distribution

of weights rather than weight amplification.

Figure 12. Left. Visualization of the weights of the trained net-

work: blue bars show the weights at the end of the process, and

super-imposed yellow bars show the intermediate weights after

training with the initial easy (high SNR) task. Almost all weight

changes correspond to amplification (more positive or more nega-

tive values); very few changes correspond to decrease of absolute

value or change of sign. Right. To demonstrate this point, we show

a close-up on a part of the plot, focusing on the changes in a few

of the final weights going from channels to decision neurons. This

is typical of all the other weight changes in the network.

Interestingly, it appears like learning Enabling in our net-

work was the result of its achieving a certain state, after the

first learning phase, which proved to be a powerful initial

condition for the second learning phase; from this starting

point, weight amplification alone allowed, for the most part,

convergence to a good solution in the second task. This re-

duced the search space significantly, thus leading to much

faster convergence, or the enabling of learning.

Finally, we evaluated the networks trained for tasks with

different SNR, calculating the minimal number of bits re-

quired to store the network’s weights without reducing per-

formance by more than 1%, see Table 1. Clearly, more bits

(or higher precision) were required for harder discrimina-

Table 1. Number of bits needed to maintain original accuracy.

Task Accuracy #bits

2 pos - 30o 99.79% 5.094

2 pos - 16o 99.40% 5.656

2 pos - 8o 96.90% 5.7188

8o enabled 98.43% 5.7188

tion tasks. Moreover, we see that the enabled network (row

4 in the Table) reached higher accuracy while requiring the

same precision (the same number of bits) as compared with

the network trained only with the hard task (row 3).

5. Summary and Discussion

We described in this paper two sets of results and ob-

servations, based on the simulation of perceptual learning

experiments. We first trained a shallow Convolution Neural

Network to perform these tasks, to be compared with human

learners. We were able to show many parallels between the

emerging properties in both learning scenarios, especially

those concerning learning transfer and enabling.

We then analyzed patterns of weight modifications in

the network, identifying characteristic patterns which may

have been instrumental for the observed transfer of learn-

ing. When the new task occurred in a different image loca-

tion, the network typically re-used the features learned for

the first task, changing only the readout weights in the final

classification layer. This agrees with the model proposed in

[9]. However, some transfer tasks (such as change in orien-

tation) required the changing of weights across the board, in

disagreement with the model proposed in [9]. It may, how-

ever, be more consistent with evidence for plasticity in early

visual areas during perceptual learning.

Learning enabling, when learning a difficult task be-

comes possible only after being trained with an easier task,

also emerged in our simulations. Specifically, training the

network with an easy task left the network in a state where

subsequent training with the difficult task converged to ex-

cellent performance. This was accomplished by selectively

amplifying the weights of the network. This significant re-

duction of the search space during training could account

for the increased learning rate observed as part of learn-

ing Enabling as suggested in [12]. This explanation of the

Enabling phenomenon is very different from the explana-

tion proposed in the reverse hierarchy theory [2], which

postulated a top-down order of learning. In our model all

the weights of the network were changed simultaneously

as a result of error propagation, and still learning Enabling

emerged.
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