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Abstract

We present a method for synthesizing a frontal, neutral-

expression image of a person’s face given an input face

photograph. This is achieved by learning to generate fa-

cial landmarks and textures from features extracted from a

facial-recognition network. Unlike previous generative ap-

proaches, our encoding feature vector is largely invariant

to lighting, pose, and facial expression. Exploiting this in-

variance, we train our decoder network using only frontal,

neutral-expression photographs. Since these photographs

are well aligned, we can decompose them into a sparse

set of landmark points and aligned texture maps. The de-

coder then predicts landmarks and textures independently

and combines them using a differentiable image warping

operation. The resulting images can be used for a number of

applications, such as analyzing facial attributes, exposure

and white balance adjustment, or creating a 3-D avatar.

1. Introduction

Recent work in computer vision has produced deep neu-

ral networks that are extremely effective at face recogni-

tion, achieving high accuracy over millions of identities [3].

These networks embed an input photograph in a high-

dimensional feature space, where photos of the same per-

son map to nearby points. The feature vectors produced

by a network such as FaceNet [1] are remarkably consistent

across changes in pose, lighting, and expression. As is com-

mon with neural networks, however, the features are opaque

to human interpretation. There is no obvious way to reverse

the embedding and produce an image of a face from a given

feature vector.

We present a method for mapping from facial identity

features back to images of faces. This problem is hugely

underconstrained: the output image has 150× more dimen-

sions than a FaceNet feature vector. Our key idea is to ex-

ploit the invariance of the facial identity features to pose,

lighting, and expression by posing the problem as mapping

from a feature vector to an evenly-lit, front-facing, neutral-

expression face, which we call a normalized face image.

⇓ ⇓ ⇓
1024-D features 1024-D features 1024-D features

⇓ ⇓ ⇓

Figure 1. Input photos (top) are encoded using a face recogni-

tion network [1] into 1024-D feature vectors, then decoded into

an image of the face using our decoder network (middle). The in-

variance of the encoder network to pose, lighting, and expression

allows the decoder to produce a normalized face image. The re-

sulting images can be easily fit to a 3-D model [2] (bottom). Our

method can even produce plausible reconstructions from black-

and-white photographs and paintings of faces.

Intuitively, the mapping from identity to normalized face

image is nearly one-to-one, so we can train a decoder net-

work to learn it (Fig. 1). We train the decoder network

on carefully-constructed pairs of features and normalized

face images. Our best results use FaceNet features, but the

method produces similar results from features generated by

the publicly-available VGG-Face network [4].

Because the facial identity features are so reliable, the

trained decoder network is robust to a broad range of nui-

sance factors such as occlusion, lighting, and pose variation,
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and can even successfully operate on monochrome pho-

tographs or paintings. The robustness of the network sets it

apart from related methods that directly frontalize the face

by warping the input image to a frontal pose [5, 6], which

cannot compensate for occlusion or lighting variation.

The consistency of the resulting normalized face allows

a range of applications. For example, the neutral expression

of the synthesized face and the facial landmark locations

make it easy to fit a 3-D morphable model [2] to create a

virtual reality avatar (Sec. 7.3). Automatic color correction

and white balancing can also be achieved by transforming

the color of the input photograph to match the color of the

predicted face (Sec. 7.4). Finally, our method can be used as

an exploratory tool for visualizing what features are reliably

captured by a facial recognition system.

Similar to the active shape model of Lanitis et al. [7],

our decoder network explicitly decouples the face’s geome-

try from its texture. In our case, the decoder produces both

a registered texture image and the positions of facial land-

marks as intermediate activations. Based on the landmarks,

the texture is warped to obtain the final image.

In developing our model, we tackle a few technical chal-

lenges. First, end-to-end learning requires that the warping

operation is differentiable. We employ an efficient, easy-

to-implement method based on spline interpolation. This

allows us to compute FaceNet similarity between the input

and output images as a training objective, which helps to

retain perceptually-relevant details.

Second, it is difficult to obtain large amounts of front-

facing, neutral-expression training data. In response,

we employ a data-augmentation scheme that exploits the

texture-shape decomposition, where we randomly morph

the training images by interpolating with nearest neighbors.

The augmented training set allows for fitting a high-quality

neural network model using only 1K unique input images.

The techniques introduced in this work, such as decom-

position into geometry and texture, data augmentation, and

differentiable warping, are applicable to domains other than

face normalization.

2. Background and Related Work

2.1. Inverting Deep Neural Network Features

The interest in understanding deep networks’ predictions

has led to several approaches for creating an image from a

particular feature vector. One approach directly optimizes

the image pixels by gradient descent [8, 9, 10, 11], pro-

ducing images similar to “DeepDream” [12]. Because the

pixel space is so large relative to the feature space, opti-

mization requires heavy regularization terms, such as total

variation [10] or Gaussian blur [11]. The resulting images

are intriguing, but not realistic.

A second, more closely-related approach trains a feed-

Figure 2. From left to right: Input training image, detected facial

landmark points, and the result of warping the input image to the

mean face geometry.

forward network to reverse a given embedding [13, 14].

Dosovitskiy and Brox [14] pose this problem as construct-

ing the most likely image given a feature vector. Our

method, in contrast, uses the more restrictive criterion that

the image must be a normalized face.

Perhaps the most relevant prior work is Zhmoginov and

Sandler [15], which employs both iterative and and feed-

forward methods for inverting Facenet embeddings to re-

cover an image of a face. While they require no training

data, our method produces better fine-grained details.

2.2. Active Appearance Model for Faces

The active appearance model of Cootes et al. [16] and its

extension to 3-D by Blanz and Vetter [2] provide parametric

models for manipulating and generating face images. The

model is fit to limited data by decoupling faces into two

components: texture T and the facial landmark geometry

L. In Fig. 2 (middle), a set L of landmark points (e.g.,

tip of nose) are detected. In Fig. 2 (right), the image is

warped such that its landmarks are located at the training

dataset’s mean landmark locations L̄. The warping opera-

tion aligns the textures so that, for example, the left pupil in

every training image lies at the same pixel coordinates.

In [16, 2], the authors fit separate principal components

analysis (PCA) models to the textures and geometry. These

can be fit reliably using substantially less data than a PCA

model on the raw images. An individual face is described

by the coefficients of the principal components of the land-

marks and textures. To reconstruct the face, the coefficients

are un-projected to obtain reconstructed landmarks and tex-

ture, then the texture is warped to the landmarks.

There are various techniques for warping. For example,

Blanz and Vetter [2] define triangulations for both L and

L̄ and apply an affine transformation for each triangle in L
to map it to the corresponding triangle in L̄. In Sec. 4 we

employ an alternative based on spline interpolation.

2.3. FaceNet

FaceNet [1] maps from face images taken in the wild

to 128-dimensional features. Its architecture is similar to

the popular Inception model [17]. FaceNet is trained with

a triplet loss: the embeddings of two pictures of person A

should be more similar than the embedding of a picture of
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person A and a picture of person B. This loss encourages the

model to capture aspects of a face pertaining to its identity,

such geometry, and ignore factors of variation specific to the

instant the image was captured, such as lighting, expres-

sion, pose, etc. FaceNet is trained on a very large dataset

that encodes information about a wide variety of human

faces. Recently, models trained on publicly available data

have approached or exceeded FaceNet’s performance [4].

Our method is agnostic to the source of the input features

and produces similar results from features of the VGG-Face

network as from FaceNet (Fig. 8).

We employ FaceNet both as a source of pretrained input

features and as a source of a training loss: the input image

and the generated image should have similar FaceNet em-

beddings. Loss functions defined via pretrained networks

may be more correlated with perceptual, rather than pixel-

level, differences [18, 19].

2.4. Face Frontalization

Prior work in face frontalization adopts a non-parametric

approach to registering and normalizing face images taken

in the wild [20, 21, 22, 23, 6, 5]. Landmarks are detected

on the input image and these are aligned to points on a ref-

erence 3-D or 2-D model. Then, the image is pasted on the

reference model using non-linear warping. Finally, the ren-

dered front-facing image can be fed to downstream models

that were trained on front-facing images. The approach is

largely parameter-free and does not require labeled training

data, but does not normalize variation due to lighting, ex-

pression, or occlusion (Fig. 8).

2.5. Face Generation using Neural Networks

Unsupervised learning of generative image models is

an active research area, and many papers evaluate on the

celebA dataset [24] of face images [24, 25, 26, 27]. In

these, the generated images are smaller and generally lower-

quality than ours. Contrasting these approaches vs. our sys-

tem is also challenging because they draw independent sam-

ples, whereas we generate images conditional on an input

image. Therefore, we can not achieve high quality simply

by memorizing certain prototypes.

3. Autoencoder Model

We assume a training set of front-facing, neutral-

expression training images. As preprocessing, we decom-

pose each image into a texture T and a set of landmarks L
using off-the-shelf landmark detection tools and the warp-

ing technique of Sec. 4.

At test time, we consider images taken in the wild, with

substantially more variation in lighting, pose, etc. For these,

applying our training preprocessing pipeline to obtain L and

T is inappropriate. Instead, we use a deep architecture to

map directly from the image to estimates of L and T . The

overall architecture of our network is shown in Fig. 3.

3.1. Encoder

Our encoder takes an input image I and returns an f -

dimensional feature vector F . We need to choose the en-

coder carefully so that is robust to shifts in the domains

of images. In response, we employ a pretrained FaceNet

model [1] and do not update its parameters. Our assumption

is that FaceNet normalizes away variation in face images

that is not indicative of the identity of the subject. There-

fore, the embeddings of the controlled training images get

mapped to the same space as those taken in the wild. This

allows us to only train on the controlled images.

Instead of the final FaceNet output, we use the lowest

layer that is not spatially varying: the 1024-D “avgpool”

layer of the “NN2” architecture. We train a fully-connected

layer from 1024 to f dimensions on top of this layer. When

using VGG-Face features, we use the 4096-D “fc7” layer.

3.2. Decoder

We could have mapped from F to an output image di-

rectly using a deep network. This would need to simul-

taneously model variation in the geometry and textures of

faces. As with Lanitis et al. [7], we have found it substan-

tially more effective to separately generate landmarks L and

textures T and render the final result using warping.

We generate L using a shallow multi-layer perceptron

with ReLU non-linearities applied to F . To generate the

texture images, we use a deep CNN. We first use a fully-

connected layer to map from F to 56× 56× 256 localized

features. Then, we use a set of stacked transposed convo-

lutions [28], separated by ReLUs, with a kernel width of 5
and stride of 2 to upsample to 224 × 224 × 32 localized

features. The number of channels after the ith transposed

convolution is 256/2i. Finally, we apply a 1 × 1 convolu-

tion to yield 224× 224× 3 RGB values.

Because we are generating registered texture images, it

is not unreasonable to use a fully-connected network, rather

than a deep CNN. This maps from F to 224 × 224 × 3
pixel values directly using a linear transformation. Despite

the spatial tiling of the CNN, these models have roughly

the same number of parameters. We contrast the outputs of

these approaches in Sec. 7.2.

The decoder combines the textures and landmarks us-

ing the differentiable warping technique described in Sec. 4.

With this, the entire mapping from input image to generated

image can be trained end-to-end.

3.3. Training Loss

Our loss function is a sum of the terms depicted in Fig. 4.

First, we separately penalize the error of our predicted land-

marks and textures, using mean squared error and mean ab-
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Figure 3. Model Architecture: We first encode an image as a small

feature vector using FaceNet [1] (with fixed weights) plus an ad-

ditional multi-layer perceptron (MLP) layer, i.e. a fully connected

layer with ReLu non-linearities. Then, we separately generate a

texture map, using a deep convolutional network (CNN), and vec-

tor of the landmarks’ locations, using an MLP. These are combined

using differentiable warping to yield the final rendered image.

solute error, respectively. This is a more effective loss than

penalizing the reconstruction error of the final rendered im-

age. Suppose, for example, that the model predicts the eye

color correctly, but the location of the eyes incorrectly. Pe-

nalizing reconstruction error of the output image may en-

courage the eye color to resemble the color of the cheeks.

However, by penalizing the landmarks and textures sepa-

rately, the model will incur no cost for the color prediction,

and will only penalize the predicted eye location.

Next, we reward perceptual similarity between generated

images and input images by penalizing the dissimilarity of

the FaceNet embeddings of the input and output images.

We use a FaceNet network with fixed parameters to com-

pute 128-dimensional embeddings of the two images and

penalize their negative cosine similarity. Training with the

FaceNet loss adds considerable computational cost: without

it, we do not need to perform differentiable warping during

training. Furthermore, evaluating FaceNet on the generated

image is expensive. See Sec. 7.2 for a discussion of the

impact of the FaceNet loss on training.

Figure 4. Training Computation Graph: Each dashed line con-

nects two terms that are compared in the loss function. Textures

are compared using mean absolute error, landmarks using mean

squared error, and FaceNet embedding using negative cosine sim-

ilarity.

4. Differentiable Image Warping

Let I0 be a 2-D image. Let L = {(x1, y1), . . . , (xn, yn)}
be a set of 2-D landmark points and let D =
{(dx1, dy1), . . . , (dxn, dyn)} be a set of displacement vec-

tors for each control point. In the morphable model, I0 is

the texture image T and D = L− L̄ is the displacement of

the landmarks from the mean geometry.

We seek to warp I0 into a new image I1 such that it sat-

isfies two properties: (a) The landmark points have been

shifted by their displacements, i.e. I1[xi, yi] = I0[xi +
dxi, yi + dyi], and (b) the warping is continuous and re-

sulting flow-field derivatives of any order are controllable.

In addition, we require that I1 is a differentiable function

of I0, D, and L. We describe our method in terms of 2-D

images, but it generalizes naturally to higher dimensions.

Figure 5. Image warping: Left: starting landmark locations,

Middle-left: desired final locations, including zero-displacement

boundary conditions, Middle-right: dense flow field obtained by

spline interpolation, Right: application of flow to image.

Fig. 5 describes our warping. First, we construct a dense

flow field from the sparse displacements defined at the con-

trol points using spline interpolation. Then, we apply the

flow field to I0 in order to obtain I1. The second step uses

simple bilinear interpolation, which is differentiable. The

next section describes the first step.

4.1. Differentiable Spline Interpolation

The interpolation is done independently for horizontal

and vertical displacements. For each dimension, we have a

scalar gp defined at each 2-D control point p in L and seek to

produce a dense 2-D grid of scalar values. Besides the facial

landmark points, we include extra points at the boundary of

the image, where we enforce zero displacement.

We employ polyharmonic interpolation [29], where the

interpolant has the functional form

s(x, y) =
n∑

i=1

wiφk(‖(x, y)− (xi, yi)‖) + v1x+ v2y+ v3.

(1)

Here, φk are a set of radial basis functions. Common

choices are φ1(r) = r, and φ2(r) = r2 log(r) (the popular

thin-plate spline). For our experiments we choose k = 1,

since the linear interpolant is more robust to overshooting

than the thin-plate spline, and the linearization artifacts are

difficult to detect in the final texture.

Polyharmonic interpolation chooses the parameters

wi, a, b, c such that s interpolates the signal exactly at the
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control points, and such that it minimizes a certain def-

inition of curvature [29]. Algorithm 1 shows the com-

bined process of estimating the interpolation parameters

on training data and evaluating the interpolant at a set of

query points. The optimal parameters can be obtained in

closed form via operations that are either linear algebra or

coordinate-wise non-linearities, all of which are differen-

tiable. Therefore, since (1) is a differentiable function of

x, y, the entire interpolation process is differentiable.

Algorithm 1: Differentiable Spline Interpolation

Inputs: points P = {(x1, y1), . . . , (xn, yn)},

function values G = {g1, . . . , gn},

radial basis function φk,

query points Q = {(x1, y1), . . . , (xm, ym)}
Outputs: Evaluation of (1) using parameters fit on P, F .

distsij = ‖Pi − Pj‖
A = φk(dists)

B =





1 . . . 1
x1 . . . xn

y1 . . . yn





[

w

v

]

=

[

A B⊤

B 0

]

\

[

G

0

]

% solve linear system

Return
∑n

i=1
wiφk(‖(x, y)− (xi, yi)‖) + v1x+ v2y + v3

evaluated at each (x, y) point in Q.

5. Data Augmentation using Random Morphs

Training our model requires a large, varied database of

evenly-lit, front-facing, neutral-expression photos. Col-

lecting photographs of this type is difficult, and publicly-

available databases are too small to train the decoder net-

work (see Fig. 9). In response, we construct a small set of

high-quality photos and then use a data augmentation ap-

proach based on morphing.

5.1. Producing random face morphs

Since the faces are front facing and have similar expres-

sions, we can generate plausible novel faces by morphing.

Given a seed face A, we first pick a target face by selecting

one of the k = 200 nearest neighbors of A at random. We

measure the distance between faces A and B as:

d(A,B) = λ‖LA − LB‖+ ‖TA − TB‖, (2)

where L are matrices of landmarks and T are texture maps,

and λ = 10.0 in our experiments. Given A and the ran-

dom neighbor B, we linearly interpolate their landmarks

and textures independently, where the interpolation weights

are drawn uniformly from [0, 1].

Figure 6. Data augmentation using face morphing and gradient-

domain compositing. The left column contains average images of

individuals. The remaining columns contain random morphs with

other individuals in the training set.

5.2. Gradient-domain Compositing

Morphing tends to preserve details inside the face, where

the landmarks are accurate, but cannot capture hair and

background detail. To make the augmented images more

realistic, we paste the morphed face onto an original back-

ground using a gradient-domain editing technique [30].

Given the texture for a morphed face image Tf and a

target background image Tb, we construct constraints on the

gradient and colors of the output texture To as:

∂

∂x
To =

∂

∂x
Tf ◦M +

∂

∂x
Tb ◦ (1−M)

∂

∂y
To =

∂

∂y
Tf ◦M +

∂

∂y
Tb ◦ (1−M)

To ◦M = Tf ◦M,

(3)

where ◦ is the element-wise product and the blending mask

M is defined by the convex hull of the global average land-

marks, softened by a Gaussian blur. Equations 3 form an

over-constrained linear system that we solve in the least-

squares sense. The final result is formed by warping To to

the morphed landmarks (Fig. 6).

6. Training Data

6.1. Collecting photographs

There are a variety of large, publicly-available databases

of photographs available online. We choose the dataset used

to train the VGG-Face network [4] for its size and its em-

phasis on facial recognition. It contains 2.6M photographs,

but very few of these fit our requirements of front-facing,

neutral-pose, and sufficient quality. We use the Google

Cloud Vision API 1 to remove monochrome and blurry im-

ages, faces with high emotion score or eyeglasses, and tilt or

1cloud.google.com/vision
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Inputs Averaged

Figure 7. Averaging images of the same individual to produce con-

sistent lighting. Example input photographs (left three columns)

have large variation in lighting and color. Averaging tends to pro-

duce an evenly lit, but still detailed, result (right column).

pan angles beyond 5◦. The remaining images are aligned to

undo any roll transformation, scaled to maintain an interoc-

ular distance of 55 pixels, and cropped to 224× 224. After

filtering, we have approximately 12K images (< 0.5% of

the original set).

6.2. Averaging to reduce lighting variation

To further remove variation in lighting, we average all

images for each individual by morphing. After filtering for

quality, we have ≈1K unique identities that have 3 or more

images per identity. Given the set of images of an individual

Ij , we extract facial landmarks Lj for each image using the

method of Kazemi and Sullivan [31] and then average the

landmarks to form Lµ. Each image Ij is warped to the

average landmarks Lµ, then the pixel values are averaged

to form an average image of the individual Iµ. As shown in

Fig. 7, this operation tends to produce images that resemble

photographs with soft, even lighting. These 1K images form

the base training set.

The backgrounds in the training images are widely vari-

able, leading to noisy backgrounds in our results. Cleaner

results could probably be obtained by manual removal of

the backgrounds.

7. Experiments

For our experiments we mainly focus on the Labeled

Faces in the Wild [32] dataset, since its identities are mutu-

ally exclusive with the VGG face dataset. We include a few

example from other sources, such as a painting, to show the

range of the method.

Except where otherwise noted, the results were produced

with the architecture of Section 3, with weights on the land-

mark loss = 1, the FaceNet loss = 10, and texture loss

= 100. Our data augmentation produces 1M images. The

model was implemented in TensorFlow [33] and trained us-

ing the Adam optimizer [34].

7.1. Model Robustness

Fig. 8 shows the robustness of our model to nuisance fac-

tors such as occlusion, pose and illumination. We use two

identities from the LFW dataset [32], and four images for

each identity (top row). Our model’s results when trained

on FaceNet “avgpool-0” and VGG-Face “fc7” features are

shown in middle rows. The results from the FaceNet fea-

tures are especially stable across different poses and illumi-

nation, but the VGG-Face features are comparable. Severe

occlusions such as sunglasses and headwear do not signifi-

cantly impact the output quality. The model even works on

paintings, such as Fig. 1 (right) and Fig. 13 (top right).

For comparison, we include a state-of-the-art frontaliza-

tion method based on image warping (Hassner et al. [5]).

In contrast to our method, image warping does not remove

occlusions, handle extreme poses, neutralize some expres-

sions, or correct for variability in illumination.

7.2. Impact of Design Decisions

In Fig. 9 we contrast the output of our system with two

variations: a model trained without data augmentation and

a model that uses data augmentation, but employs a fully-

connected network for predicting textures. Training without

data augmentation yields more artifacts due to overfitting.

The fully-connected decoder generates images that are very

generic, since though it has separate parameters for every

pixel, its capacity is limited because there is no mechanism

for coordinating outputs at multiple scales.

Fig. 10 shows the benefit of decoupling texture and land-

mark prediction. Compared to a regular CNN with the same

decoder capacity, our method reproduces finer details. The

increased performance results from the main observation of

Lanitis et al. [7]: warping the input images to the global

mean landmarks (Fig. 2) aligns features such as eyes and

lips across the training set, allowing the decoder to fit the

face images with higher fidelity.

Fig. 11 compares outputs of models trained with and

without the FaceNet loss. The difference is subtle but visi-

ble, and has a perceptual effect of improving the likeness of

the recovered image.

The improvement from training with the FaceNet loss

can also be measured by evaluating FaceNet on the test out-

puts. Fig. 12 shows the distributions of L2 distances be-

tween the embeddings of the LFW images and their corre-

sponding synthesized results, for models trained with and

without the FaceNet loss. Schroff et al. [1] consider two

FaceNet embeddings to encode the same person if their L2

distance is less than 1.242. All of the synthesized images

pass this test using FaceNet loss, but without, about 2% of

the images would be mid-identified by FaceNet as a differ-

ent person.

7.3. 3-D Model Fitting

The landmarks and texture of the normalized face can be

used to fit a 3D morphable model (Fig. 13). Fitting a mor-

phable model to an unconstrained image of a face requires

solving a difficult inverse rendering problem [2], but fitting

to a normalized face image is much more straightforward.

3708



Input

FN

VGG

[5]

Figure 8. Face normalization for people in the LFW dataset [32]. Top to bottom: input photographs, result of our method using FaceNet

features, result of our method using VGG-Face features, result of Hassner, et al. [5]. Additional results in supplementary material.

CNN w/o Data Aug. FC w/ Data Aug. CNN w/ Data Aug.

Figure 9. Output from various configurations of our system: CNN

texture decoder trained with only 1K raw images, fully-connected

decoder and CNN trained on 1M images using the data augmenta-

tion technique of Sec. 5.

Input Plain CNN Our method

Figure 10. Decoder architecture comparison on test data. “Plain

CNN” does not decouple texture and landmarks, while our method

does. Decoder capacities and training regime are identical.

See Sec. 2 of the supplementary material for details.

The process produces a well-aligned, 3D face mesh that

could be directly used as a VR avatar, or could serve as an

initialization for further processing, for example in methods

to track facial geometry in video [35, 36]. The fidelity of the

reconstructed shape is limited by the range of the morphable

model, and could likely be improved with a more diverse

model such as the recent LSFM [37].

w/ FaceNet loss w/o FaceNet loss

Input FN L2 error : 0.42 FN L2 error: 0.8

Figure 11. Results with and without loss term penalizing differ-

ence in the FaceNet embedding. The FaceNet loss encourages

subtle but important improvements in fidelity, especially around

the eyes and eyebrows. The result is a lower error between the

embeddings of the input and synthesized images.

Figure 12. Histograms of FaceNet L2 error between input and

synthesized images on LFW. Blue: with FaceNet loss (Sec. 3.3).

Green: without FaceNet loss. The 1.242 threshold was used by

Schroff et al. [1] to cluster identities. Without the FaceNet loss,

about 2% of the synthesized images would not be considered the

same identity as the input image.

7.4. Automatic Photo Adjustment

Since the normalized face image provides a “ground

truth” image of the face, it can be easily applied to automati-

cally adjust the exposure and white balance of a photograph

(Fig. 14). We apply the following simple algorithm: given

an aligned input photograph P and the corresponding nor-

malized face image N , extract a box from the center of P
and N (in our experiments, the central 100× 100 pixels out
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Figure 13. Mapping of our model’s output onto a 3-D face. Small:

input and fit 3-D model. Large: synthesized 2-D image. Photos by

Wired.com, CC BY-NC 2.0 (images were cropped).

of 224×224) and average the cropped regions to form mean

face colors mP and mN . The adjusted image is computed

using a per-channel, piecewise-linear color shift function.

See Sec. 3 of the supplementary material for details.

For comparison, we apply the general white balancing

algorithm of Barron [38]. This approach does not focus on

the face, and is limited in the adjustment it makes, whereas

our algorithm balances the face regardless of the effect on

the other regions of the image, producing more consistent

results across different photos of the same person.

8. Conclusion and Future Work

We have introduced a neural network that maps from

images of faces taken in the wild to front-facing neutral-

expression images that capture the likeness of the individ-

ual. The network is robust to variation in the inputs, such as

lighting, pose, and expression, that cause problems for prior

face frontalization methods. The method provides a vari-

Input Images

Our Method

Barron [38]

Input Images

Our Method

Barron [38]

Figure 14. Automatic adjustment of exposure and white balance

using the color of the normalized face for some images from the

LFW dataset. In each set of images (2 sets of 3 rows), the first

row are the input images; the second row the outputs from out

method and the third row the outputs of Barron [38], a state-of-the-

art white balancing method. The implicit encoding of skin tone in

our model is crucial to the exposure and white balance recovery.

ety of down-stream opportunities, including automatically

white-balancing images and creating custom 3-D avatars.

Spline interpolation has been used extensively in com-

puter graphics, but we are unaware of work where interpo-

lation has been used as a differentiable module inside a net-

work. We encourage further application of the technique.

We hope to improve our images’ quality. Noise artifacts

likely result from overfitting to the images’ backgrounds

and blurriness likely results from using a pixel-level squared

error. Ideally, we would use a broad selection of training

images and avoid pixel-level losses entirely, by combining

the FaceNet loss of Sec. 3.3 with an adversarial loss [39].
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