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Abstract

Structure-from-Motion (SfM) methods can be broadly

categorized as incremental or global according to their

ways to estimate initial camera poses. While incremental

system has advanced in robustness and accuracy, the ef-

ficiency remains its key challenge. To solve this problem,

global reconstruction system simultaneously estimates al-

l camera poses from the epipolar geometry graph, but it

is usually sensitive to outliers. In this work, we propose

a new hybrid SfM method to tackle the issues of efficien-

cy, accuracy and robustness in a unified framework. More

specifically, we propose an adaptive community-based ro-

tation averaging method first to estimate camera rotations

in a global manner. Then, based on these estimated camera

rotations, camera centers are computed in an incremental

way. Extensive experiments show that our hybrid method

performs similarly or better than many of the state-of-the-

art global SfM approaches, in terms of computational effi-

ciency, while achieves similar reconstruction accuracy and

robustness with two other state-of-the-art incremental SfM

approaches.

1. Introduction

Structure-from-Motion (SfM) technique is to estimate

the 3D scene structure and camera poses from a collection

of images [2, 38]. It usually consists of three modules: fea-

tures extraction and matching, initial camera poses estima-

tion, and bundle adjustment. According to the difference of

initial camera poses estimation manner, SfM can be broadly

divided into two classes: incremental and global.

For incremental SfM approaches, one way [34, 38] is

to start from selecting a few seed images for initial re-

construction, then repeatedly add new images. Another

way [21, 41] is to cluster the images into atomic models

first, then reconstruct each atomic model and incrementally

merge them after. Arguably, incremental manner is the most

popular strategy for 3D reconstruction [22, 39]. However,

it is sensitive to the initial seed model reconstruction and

the manner of model growing. In addition, the reconstruc-

tion error is accumulated with the iterations going on. For

large-scale scene reconstruction, the reconstructed structure

may suffer from scene drift [24]. Furthermore, the time-

consuming bundle adjustment (BA) [42] is repeatedly per-

formed, which dramatically decreases the system scalabili-

ty and efficiency. To tackle these weaknesses, global SfM

approaches become popular in the past few years.

For global SfM approaches [31, 13], initial camera pos-

es are estimated simultaneously from the epipolar geometry

graph (EG), whose vertices correspond to images and edges

link matched image pairs, and the bundle adjustment is per-

formed only once, which brings a better potential in system

efficiency and scalability. The generic pipeline for global

camera poses estimation consists of two steps: rotation av-

eraging and translation averaging. For the rotation averag-

ing, its accuracy mainly depends on two factors: the struc-

ture of EG and the accuracy of pairwise epipolar geome-

tries [43]. Currently many literatures [5, 17] only minimize

the residuals on the epipolar edges. As a result, when the

cameras are not well distributed, for example the Internet

data [44], those methods sometimes perform poorly. For the

translation averaging, since epipolar geometry only encodes

the direction of pairwise translation, it is difficult to deter-

mine camera positions. Moreover, the translation estima-

tion is more sensitive to feature match outliers. In compar-

ison, incremental SfM approaches benefit from RANSAC

technique to discard bad epipolar geometries. Thus, it is

desirable to take the advantages of both incremental and

global manners.

Contribution: (1) we propose a new hybrid SfM approach

to tackle the issues of efficiency, robustness and accuracy in

a unified framework; (2) a community-based rotation aver-
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Figure 1. Result of Quad [7] with 5061 images registered out of

5520 images, where the calibration time-cost of our hybrid method

is about 55 mins and the median calibration accuracy is 1.03m.

aging method is proposed in a global manner, which con-

siders both the structure of EG and the accuracy of pairwise

geometries; (3) based on the estimated camera rotations,

camera centers are estimated in an incremental way. For

each camera addition, both camera rotations and intrinsic

parameters are kept as constant, while the camera centers

and scene structure are refined by a modified bundle adjust-

ment.

In our hybrid SfM, global rotation averaging decreases

the risk of scene drift, and incremental centers estimation

increases robustness to the noisy data. With known camera

rotations, camera centers registration only needs two scene

points, thus the RANSAC technique makes our method be-

come more robust to outliers and more cameras could be

calibrated at each camera adding step. Additionally, since

only the scene structure and camera centers are refined in

each camera addition, the bundle adjustment in our hybrid

work is much faster than the conventional one [38, 39].

In the experiments, we evaluate our hybrid SfM system

on both sequential and unordered image data. Our method

outperforms many recent state-of-the-art global SfM meth-

ods [11, 31, 40, 44], in terms of the number of reconstruct-

ed cameras, indicating that our method is more robust to

outliers. In terms of reconstruction efficiency, our method

performs similarly or better than the global SfM methods,

while it is up to 13 times faster than a parallelized version

of Bundler [38], and 5 times faster than the parallelized ver-

sion of Theia [39]. Fig. 1 illustrates a reconstruction result

on the public dataset Quad [7], where more than 5K images

are calibrated by our hybrid SfM system. With a compara-

ble calibration accuracy, the speed of our hybrid method is

50 times faster than Bundler [38], and 7 times faster than

DISCO [7].

2. Related Work

Incremental SfM methods One way to reconstruct the

scene starts from two or three “seed” views, then incre-

mentally add new views into system to initialize the final

BA [2, 16, 28, 34, 35, 38, 45, 48]. Such approaches are

sensitive to the seed selection criteria, and accumulated er-

ror may cause scene drift. To decrease the accumulated

errors, both VSFM [45] and COLMAP [34] proposed to

re-triangulate tracks in the image adding process. Anoth-

er way [20, 21, 41] is to create atomic 3D models first, and

then merge different models. Such hierarchical methods are

sensitive to the atomic model selection and model grow-

ing scheme. For large image collections, all the incremental

methods suffer from scene drift and heavy computation load

due to the repeated activation of bundle adjustment.

Global SfM methods Global SfM approaches [3, 7, 10, 11,

23, 29, 31, 33, 40, 44] simultaneously estimate all the cam-

era poses and perform bundle adjustment only once. The

camera poses estimation process mainly contains two parts:

rotation averaging and translation averaging.

Rotation Averaging Rotation averaging estimates all the

camera rotations from pairwise relative rotations simul-

taneously, which has been well studied in many litera-

tures [5, 14, 17, 27, 43]. Martinec et al. [27] proposed to

solve this problem under Frobenius norm, and Govindu [14]

proposed to transform the rotation averaging problem in-

to a Lie-algebraic averaging. Based on [14], better result

is achieved by combining with robust L1 optimization [5].

Recently, Wilson et al. [43] found two factors impacting the

rotation estimation accuracy, one is the EG structure and the

other is the epipolar geometry accuracy, and recommend-

ed to cluster cameras first when they distributed unevenly.

However, they did not describe how to group and merge im-

ages effectively based on this theory. Inspired by this theo-

retical analysis, we propose a community-based rotation av-

eraging method to automatically determine when and how

to cluster, and followed by a greedy merging step.

Translation Averaging Many linear methods [3, 23, 33]

proposed to solve the camera positions by matrix decom-

position. While efficient, such approaches are sensitive to

epipolar geometry outliers. Hence, many global SfM ap-

proaches [15, 46, 47] carefully filtered the erroneous edges

first. Zach et al. [47] proposed to filter edges by loop con-

sistency check, and Wilson et al. [44] presented a hashing-

like method, called 1DSfM. However, this method [44] re-

quires abundant pairwise associations (O(n2)). Instead of

filtering, some methods refined the epipolar relations by lo-

cal bundle adjustment [11] or multi-view track consisten-

cy [40]. Other methods [7, 11, 37, 25] solved the scene

points and camera centers together. In this way, not only

the collinear motion problem is solved, but all the cameras

are fused into a connected parallel-rigid graph [31]. Be-

sides, methods [4, 8, 9, 32, 37] fused auxiliary imaging in-

formation to obtain the camera centers. While efficient and

scalable, they are heavily relying on the auxiliary informa-

tion.
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Figure 2. Pipeline of our hybrid SfM system.

3. Overview of Hybrid SfM

Considering that incremental approaches are usually

more robust and accurate due to its repeated optimization

by bundle adjustment, but its computational load is pro-

hibitively large if the image dataset is large, while global

approaches are adept for the estimation of all the rotations,

but error-prone to the outliers in the camera centers estima-

tion, here we propose a hybid SfM by taking the advantages

of both the incremental and global schemes.

As shown in Fig. 2, the input of our system is the epipolar

geometry graph (EG), which includes the pairwise match-

es on each epipolar edge, and corresponding pairwise ge-

ometry estimated from essential matrix decomposition. For

example, the essential matrix on edge (i, j) encodes the rel-

ative rotation Rij and the relative translation direction tij ,

which is constrained by the following equations:

Rij = RjRT
i ,

λijtij = Rj(Ci − Cj),
(1)

where Ci and Ri correspond to the camera center and ro-

tation of image i. The equation between the global camera

rotations and relative rotations could be transformed into

Lie-algebraic space first, then solved using L1 optimiza-

tion [5]. However, as demonstrated in [43], the accuracy

of global rotation averaging is sensitive to both the struc-

ture of EG and the accuracy of pairwise geometries. Thus,

in the first module of our hybrid SfM in Fig. 2, we propose

a community-based rotation averaging method to take ac-

count of these two factors.

For camera centers estimation, since the scale factor λij

is unknown, it is difficult to estimate the camera centers di-

rectly, and [31] proved that the essential matrices only de-

termine camera positions in a parallel rigid graph. In ad-

dition, the translation estimation is sensitive to erroneous

feature matches. Thus, in the second module of our hybrid

SfM in Fig. 2, we use an incremental manner, which ben-

efits from RANSAC method to exclude erroneous feature

matches, to estimate the camera centers.

When no more cameras could be added, a final bundle

adjustment is performed to refine all camera intrinsic pa-

rameters, camera poses and the scene structure.

4. Global Rotation Estimation

For sequential images, the connections are commonly

evenly distributed. However for unordered images, for ex-

ample images from Internet [44], the cameras distribution

are usually uneven, e.g. the place of interest usually get-

s more attention. As a result, if there are many interest-

ed buildings in the scene, the overall connections between

buildings become sparse, while denser for each one. To

tackle the uneven camera distribution problem, we propose

an automatical grouping method inspired by techniques in

complex networks analysis. Then, rotation averaging is per-

formed for each community, and an alignment step is fol-

lowed to fuse them into a united coordinate system.

4.1. Community Detection

Community detection [12, 6] has been widely used in

the complex networks analysis, which aims to divide a

graph into groups with denser connections inside and spars-

er connections outside. Let Aij be an element of the adja-

cent matrix of our epipolar geometry graph (EG). Aij = 1
if an edge exists between camera i and camera j, otherwise

Aij = 0. The degree of node i in the EG is the number

of cameras that connect to it, denoted as di = ΣjAij . Let

m = 1

2

∑

ij Aij be the total number of edges in EG. If EG

is randomized without a community structure, the probabil-

ity of an edge existing between camera i and camera j is
didj

2m
[6]. To measure the difference of the fraction of intra-

community connections between EG and the random graph,

we use the modularity indicator Q proposed in [6]. Sup-

pose that camera i belongs to a community Sp and camera

j belongs to a community Sq , then Q is defined as:

Q = 1

2m

∑

ij(Aij −
didj

2m
)δ(Sp, Sq), (2)

where δ(Sp, Sq) = 1 if Sp = Sq and 0 otherwise. To en-

hance the impact of good edges with more matches inlier,

we use a weighting adjacent matrix and the edge weight Aij

is set to
√

Nij , where Nij is the number of feature match

inliers between camera i and camera j. To partition the EG,

we assume each node belongs to a sole community first,

then iteratively joins separate communities whose amalga-

mations result in the largest increase in Q [36]. As pro-
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posed in [6], the modularity has a single peak Qmax over

the generation of the dendrogram which indicates the most

significant community structure. In practice, we found that

Qmax > 0.4 indicates that EG has a significant community

structure. Thus, we take the partition result when the peak-

ing value is larger than 0.4. Otherwise when Qmax < 0.4,

all the cameras are just considered as one community.

4.2. Rotation Averaging

For each community, the global rotation averaging

method proposed in [5] is used for rotation averaging. As

a result, the estimated rotations for each community is un-

der a different coordinate system. When we have two or

more communities, an alignment should be performed to

put them into a unified coordinate system. The transforma-

tion between any pair of communities is a rotation matrix in

SO(3), but there are usually many edges between two com-

munities in the original epipolar geometry graph. Thus, we

propose a voting scheme to find the best transformation for

each pair of communities. For each edge between two com-

munities, we get one possible rotation transformation can-

didate. Then, based on this candidate rotation, the residual

of other edges between this pair of communities are cal-

culated. The best transformation is the one which has the

most inliers, where the inlier is defined as the edge whose

residual angle is less than 15 degrees.

After all the transformations between connected com-

munities are obtained, the original epipolar graph is sim-

plified as a weighted community-graph with nodes corre-

sponding to communities and edges linking communities

with connections, the weight on each edge is defined as

the ratio of inliers of the best transformation correspond-

ing to. We set the reference coordinate system as the node

with the largest degrees, and construct the maximal span-

ning tree (MST) of this community-graph for the alignmen-

t. Based on the MST, the rotations of other communities

are aligned to the reference community. Fig. 3 shows our

community-based rotation averaging result on the Gendar-

menmarkt [44] dataset, where each curve denotes the cumu-

lative distribution function (CDF) of global camera rotation

errors. From the result of L1RA [5], which corresponds to

the case that all cameras are considered as a sole communi-

ty, we can see that its rotation estimation is erroneous. How-

ever, after it is divided into four communities, the estimated

rotation for each community becomes more accurate. Our

final result is shown in red, which significantly improves the

camera rotation accuracy.

5. Incremental Centers Estimation

Once the rotation of each camera is achieved, for the ro-

bustness concern, we estimate the camera centers in an in-

cremental way. With the estimation process going on, the

scene structure is also reconstructed. In the next, we in-

Figure 3. The cumulative distribution function (CDF) of global

camera rotation errors for the Gendarmenmarkt [44] data, whose

epipolar edges contain significant rotation errors.

troduce three constraints to select a pair of good cameras

for initial reconstruction first. Then, based on the corre-

spondence between the estimated scene structure and tracks

across images, camera centers are iteratively estimated and

refined by the modified bundle adjustment.

5.1. Initial Camera Selection and Reconstruction

To obtain a good initial reconstruction, a pair of cameras

should satisfy three constraints: more feature matches, wide

baseline and accurate camera poses. All edges in the EG

could be considered as the candidates for our initial camera

pair selection. Thus, we augment EG by tagging each edge

with these three constraints.

First, the inlier number of feature matchings at each edge

in EG, which is verified by the 5-point algorithm [30], is

recorded. Then, with known rotations, the angle of a pair-

wise normalized feature match (pi, pj) between camera i

and camera j is computed by: acos(RT
i pi,RT

j pj). For each

edge in EG, we compute all the angles corresponding to its

feature matches and record the median value to indicate the

length of baseline.

Since the ground-truth camera poses are not known, we

cannot find an image pair with the real best camera pos-

es. However, the rotation averaging in each community [5]

could be regarded as finding the best camera rotation for

each camera that minimizes the median residual of its con-

nected edges, which means that the more edges the camera

connect, the more accurate the estimated rotation possibly

would be. Let ni be the number of neighbors of the camera

i in the EG, the camera poses accuracy of an edge between

camera i and camera j is indicated by
√

(n2

i + n2

j )/2.

Based on these three indicators on each edge, we pro-

pose a cascaded scheme to select an initial camera pair. We

consider the camera poses accuracy first to get an accurate

initial reconstruction. However, even with accurate camera

poses, if the baseline is small, the reconstruction still suffer.

Thus, we choose the baseline factor with the second priori-

ty for the scene structure concern. At last, we consider the
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number of match inliers. In practice, the pose accuracy in-

dicators are sorted in a descending order first, and we only

select the first α1 edges (in our work, α1 is set to 60%).

Then, the edges with a median angle less than 10 degree is

discarded in the initial camera selection to avoid the pure

rotation problem. Finally, for all the remaining edges, we

choose an edge with the largest number of image matches.

For the selected initial pair camera i and camera j, we

recalculate its relative rotations Rij = RjRT
i where Ri

and Rj are the results from rotation averaging. Then, by

fixing this new relative rotation, the corresponding rela-

tive translation tij are refined by solving the linear system

pT
j [tij ]×Rijpi = 0, which only needs two points to solve.

Based on the RANSAC technique, tij is refined and the fea-

ture matches between this image pair are re-evaluated by the

distance from image point to its new epipolar line. After the

verification, the feature matches inlier are triangulated and

refined by a modified bundle adjustment which only refines

camera centers and currently reconstructed scene structure,

as shown in Sec. 5.4.

5.2. Camera Registration

Based on the known camera rotations, camera centers

could be estimated by only two scene points. The reason is

that for a camera, with the known rotation and its two scene

points, two projection rays from the scene points both go

through the camera center. For example, for the camera i
with a visible scene point Xj = {Xjx,Xjy,Xjz} and its

corresponding image coordinates xij , the projection equa-

tion could be transformed into:

Xj − Ci = λRT
i K−1

i xij . (3)

Let hi = {hix, hiy, hiz} = RT
i K−1

i xij and the camera cen-

ter Ci = {Cix,Ciy,Ciz} , then we get the following two

independent equations

(Xjx − Cix)hiz = (Xjz − Ciz)hix,
(Xjy − Ciy)hiz = (Xjz − Ciz)hiy.

(4)

Since the DOF (degrees of freedom) of camera center is 3,

we need two points at least. For each camera observing

more than two scene points, we use RANSAC technique to

find the best camera center which has the largest number of

visible scene points inliers, whose projection errors are less

than γ1 pixels. Then, two constraints are further checked:

the number of inliers should be larger than β1, and the cor-

responding inlier ratio should be larger than β2. If both the

constraints are satisfied, we consider the camera center is

estimated successfully (in our work, β1 = 16, β2 = 60%).

Sometimes though the number of visible points is large

(e.g. larger than 30), the estimated camera center is still

wrong because some estimated camera rotations may be not

accurate enough. In this case, we use a P3P [26] method

to find a possible camera pose. Similarly, if both the in-

liers number and ratio satisfy the above two constraints,

we update the corresponding camera rotation and center.

Note that since the camera rotation is estimated by the scene

points, it is still in the original rotation coordinate system.

5.3. Triangulation

After some new cameras are added into the SfM system,

all the tracks with equal or more than 2 calibrated cameras

are triangulated. Here we use a RANSAC-based triangu-

lation method. For each iteration, we randomly choose two

visible views, and then check the angle between two projec-

tion rays. If the angle is larger than 3 degrees, we consider it

is currently well-conditioned and use the DLT [18] method

to triangulate. Then, after we get a scene point triangula-

tion, both the number of its consistent measurements and

the corresponding view cheirality are checked. Note that all

the cheirality [19] of calibrated cameras in the track should

be positive, and the measurement in a track is considered as

consistent to the current scene point estimation if the corre-

sponding re-projection error is less than γ1 pixels. For each

track, we find the best scene point which has the largest

number of consistent measurements.

5.4. Refine Camera Centers and Scene Structure

To mitigate the impact of accumulated errors, we per-

form bundle adjustment (BA) after each camera adding and

triangulation process. To account for the potential outliers,

Huber function is employed as the loss function in our BA.

Formulation To guarantee the camera rotation coordinate

system fixed in the camera adding process, we only re-

fine the camera centers and reconstructed scene structure

by keeping intrinsic parameters and camera rotations un-

changed. Thus, the modified bundle adjustment is formu-

lated as:

minimize
Ci,Xj

N
∑

i=1

M
∑

j=1

δij∥xij − γ(Ki,Ri,Ci,Xj)∥huber,

(5)

where δij = 1 if camera i observes scene point j, otherwise

δij = 0 . Ki,Ri,Ci corresponds to the intrinsic camer-

a matrix, rotation and center of the camera i, respectively.

γ(Ki,Ri,Ci,Xj) is the projection function, and xij denotes

the measured 2D image point positions.

Re-Triangulation Similar to VSFM [45] and

COLMAP [34], we perform a re-triangulation step for

tracks to decrease the accumulated error because the cam-

era centers become more accurate after bundle adjustment.

Further BA With a new scene structure computed by re-

triangulation, we perform another BA to obtain more accu-

rate camera poses. After this BA, re-triangulation step is

performed again, and the tracks with large reprojection er-

rors are filtered.
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Figure 4. Reconstruction results on sequential image data: Building [47] and Campus [11].

6. Experiment

All of our experiments are performed on a PC with an

Intel Xeon E5-2603 2.50GHz CPU(4 cores) and 32G RAM.

We use Ceres Solver [1] for bundle adjustment, and the error

threshold γ1 for inlier judgement is set to 16 pixels.

6.1. Evaluation on Sequential Image Data

Many global SfM methods simultaneously estimate the

initial camera poses using triplet constraints, thus they are

robust to drift error but usually some images are left uncali-

brated. Incremental SfM methods are robust to outliers and

do not depend on the image triplet, but the accumulated er-

ror cannot be avoided. We demonstrate our hybrid SfM sys-

tem on two public sequential image datasets: the Building

dataset with 128 images from [47], the Campus dataset with

1040 images from [11], and compare our method with two

state-of-the-art incremental SfM methods: COLMAP [34]

and Theia [39], and a state-of-the-art global SfM method

LUD [31]. Fig. 4 shows the reconstruction results on these

two image datasets.

From the results of Building which has more clean

epipolar geometries, we can see that all the methods in com-

parison could successfully reconstruct the scene. However,

for the dataset Campus, there are many trees and the cam-

era trajectory is a loop. The pairwise geometries estima-

tion for this dataset are contaminated and many track out-

liers are easily appeared due to the matched trees. From

the results in the second row of Fig. 4, we can see that

both COLMAP [34]1 and Theia [39] suffer from significant

drifting error, which cannot get a loop closure. In addition,

since the camera trajectory is approximately a linear mo-

tion and the pairwise geometries are sparse, the translation

based method LUD [31] fails on this dataset. In compari-

son, our result achieves the loop closure and is effective on

the collinear camera motion. Besides, we also evaluate our

1The feature matching method is set to preemptive matching.

hybrid SfM method on a large-scale streetview dataset with

2048 images from [9], and the corresponding reconstruction

result is shown in Fig 6(a).

6.2. Evaluation on Unordered Image Data

To demonstrate our hybrid SfM, we evaluate it on the

Internet datasets published in [44], which contain twelve

groups of medium-scale data, two large-scale data: Pic-

cadilly and Trafalgar, and a challenging dataset Gendar-

menmarkt with symmetric architectures. We also test on a

dataset Temple, which has many symmetric structures and

trees in scene.

We compare our method with four state-of-the-art global

SfM approaches, including [44, 31, 11, 40], and two state-

of-the-art incremental SfM approach Theia [38, 39]. S-

ince these methods with the same input which is published

in [44], the reconstruction accuracy and time-cost compar-

ison are fair. However, as the result published in the lit-

erature [34] is obtained by using its own epipolar geome-

try graph and tracks, which is different from the data pub-

lished in [44], thus for the fairness concern, we don’t com-

pare with COLMAP [34] quantitatively and just show some

qualitative comparison results in Fig. 5. We use the calibra-

tion results of the state-of-the-art incremental SfM system

Bundler [38] as the reference ground-truth, and the corre-

sponding mean and median camera position errors for each

method in comparison are computed, as well as the number

of calibrated cameras.

The quantitative comparison results are shown in Ta-

ble 1. From Table 1, we can see that our hybrid SfM method

reconstructs the most number of cameras in most cases, in-

dicating that our method is more robust to outliers. For the

calibration accuracy, our method achieves similar or bet-

ter accuracy than these state-of-the-art methods. Table 2

shows the corresponding reconstruction time-cost compari-

son, from which we can see that our method is much faster

than the state-of-the-art incremental method, and performs
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Figure 5. Reconstruction results on unordered image data: Gendarmenmarkt [44] and Temple.

(a) StreetView (b) Trafalgar

Figure 6. (a) Reconstruction result on a streetview dataset from [9]; (b) reconstruction result on the dataset Trafalgar from [44].

similarly or better than the global methods. For the dataset

Piccadilly, our method is 13 times faster than the incremen-

tal system Bundler [38]. Considering both accuracy and

time-cost, we can conclude that while our hybrid SfM in-

herits the robustness of the incremental manner, it also pos-

sesses the speed advantage from the global manner.

Fig. 5 shows the reconstruction results on two unordered

image datasets. For the dataset Gendarmenmarkt, which

is reported as a failure case in [44] due to its repetitive

scene structures. The correct model is shown in the last

column produced by Bundler [38], and with an incremen-

tal manner, Theia [39] also achieves a similar scene struc-

ture. From the other reconstruction results, we can see

that LUD [31] could not get a reasonable scene structure.

Though COLMAP [34] achieves a similar structure, it cal-

ibrates two different models. In comparison, our method

could achieve a similar scene structure with Bundler [38],

which mainly benefits from the community-based rota-

tion averaging method. Most of the global SfM method-

s [44, 31, 10] use the rotation result produced by L1RA [5]

directly, which assumes all the cameras just in a community.

However, the median and mean rotation error for the Gen-

darmenmarkt is 40.6 degrees and 54.9 degrees, respectively,

which is too erroneous for the center estimation. If we use

this rotation result, our incremental center estimation model

would also fail. Since the modularity value Qmax, which is

shown in the Table 2, is larger than 0.4, it means that this

dataset actually has a great community character. Based on

our community-based rotation averaging method, the corre-

sponding median and mean rotation errors decrease to 9.8

degrees and 15.9 degrees respectively, which is accurate e-

nough for our camera center estimation module.

For the dataset Temple, we can see that the scene struc-

tures reconstructed by both COLMAP [34] and Theia [39]

are wrong. The reason is that some feature match outliers

are considered as inliers in their SfM processes, then many

cameras use these points for the pose estimation. With the

iteration going on, the accumulated pose errors transfer to
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Table 1. Accuracy Comparison on Internet image data. x̃ and x̄ respectively denote the median and mean position errors in meters for

different methods by taking the result of [38] as a reference. Ni is the number of cameras in the largest connected component of input EG

graph which is published in [44], and Nc is the number of reconstructed cameras. The bold font highlights the best result in each row.
Dataset 1DSfM [44] LUD [31] Cui [11] Sweeney [40] Theia [39] Our HSfM

Name Ni Nc x̃ x̄ Nc x̃ x̄ Nc x̃ x̄ Nc x̃ Nc x̃ x̄ Nc x̃ x̄

Alamo 627 529 0.3 2e7 547 0.3 2.0 574 0.5 3.1 533 0.4 520 0.4 1.8 566 0.3 1.5

Ellis Island 247 214 0.3 3.0 – – – 223 0.7 4.2 203 0.5 210 1.7 2.8 233 2.0 4.8

Metropolis 394 291 0.5 7e1 288 1.5 4.0 317 3.1 16.6 272 0.4 301 1.0 2.1 344 1.0 3.4

Montreal N.D. 474 427 0.4 1.0 435 0.4 1.0 452 0.3 1.1 416 0.3 422 0.4 0.6 461 0.3 0.6

Notre Dame 553 507 1.9 7.0 536 0.2 0.7 549 0.2 1.0 501 1.2 540 0.2 0.5 550 0.2 0.7

NYC Library 376 295 0.4 1.0 320 1.4 7.0 338 0.3 1.6 294 0.4 291 0.4 1.0 344 0.3 1.5

Piazza del Popolo 354 308 2.2 2e2 305 1.0 4.0 340 1.6 2.5 302 1.8 290 0.8 1.5 344 0.8 2.9

Piccadilly 2508 1956 0.7 7e2 – – – 2276 0.4 2.2 1928 1.0 1824 0.6 1.1 2279 0.7 2.0

Roman Forum 1134 989 0.2 3.0 – – – 1077 2.5 10.1 966 0.7 942 0.6 2.6 1087 0.9 8.4

Tower of London 508 414 1.0 4e1 425 3.3 10.0 465 1.0 12.5 409 0.9 439 1.0 1.9 481 0.9 6.4

Union Square 930 710 3.4 9e1 – – – 570 3.2 11.7 701 2.1 626 1.9 3.7 827 2.8 3.4

Vienna Cathedral 918 770 0.4 2e4 750 4.4 10.0 842 1.7 4.9 771 0.6 738 1.8 3.6 849 1.4 3.3

Yorkminster 458 401 0.1 5e2 404 1.3 4.0 417 0.6 14.2 409 0.3 370 1.2 1.8 421 1.2 1.7

Trafalgar 5433 4957 – – – – – 4945 3.6 8.6 – – 3873 2.6 4.0 4966 2.6 7.2

Gendarmenmarkt 742 – – – – – – 609 4.2 27.3 – – 597 2.9 28.0 611 2.8 26.3

Table 2. Running times comparison. Qmax denotes the modularity, and TD , TR, TC , TBA denote the time-cost of community detection,

rotation estimation, centers estimation, final bundle adjustment, respectively. TΣ is the total time-cost of corresponding SfM method.
Dataset Our HSfM 1DSfM [44] LUD [31] Cui [11] Sweeney [40] Theia [39] Bundler [38]

Name Qmax TD TR TC TBA TΣ TΣ TΣ TΣ TΣ TΣ TΣ

Alamo 0.12 1 27 332 20 380 910 750 578 198 1271 1654

Ellis Island 0.08 1 6 120 10 137 171 – 208 33 213 1191

Metropolis 0.31 1 12 108 13 134 244 142 60 161 294 1315

Montreal N.D. 0.10 1 11 472 25 509 1249 553 684 266 1110 2710

Notre Dame 0.08 1 25 298 93 417 1599 1047 552 247 2726 6154

NYC Library 0.19 1 6 173 13 193 468 200 213 154 453 3807

Piazza del Popolo 0.08 1 8 73 17 99 249 162 194 101 292 1287

Piccadilly 0.27 23 277 2405 588 3293 3483 – 1480 1246 3698 44369

Roman Forum 0.59 5 4 501 72 582 1457 – 491 1234 2004 4533

Tower of London 0.41 1 2 312 51 366 648 228 563 391 975 1900

Union Square 0.47 2 3 201 27 233 452 – 92 243 698 1244

Vienna Cathedral 0.12 2 110 270 40 422 3139 1467 582 607 3183 10276

Yorkminster 0.32 1 13 242 38 294 899 297 663 102 858 3225

Trafalgar 0.53 49 318 3850 631 4848 12240 – 2901 – 10210 29160

Gendarmenmarkt 0.41 2 3 161 30 196 – – 214 – 799 –

scene points. For our method, based on the RANSAC tech-

nique, it is easier to find two real inliers for the camera cen-

ter estimation. As a result, our method is more robust and

the reconstruction result is more reasonable, which is sim-

ilar to that of Bundler [38]. For the global SfM method

LUD [31], the estimated scene structure is errornous, in-

dicating that it is more sensitive to outliers. The recon-

struction result of Trafalgar produced by our hybrid SfM is

shown in Fig 6(b). We also perform our hybrid SfM method

on the Quad [7] which has 348 ground-truth camera posi-

tions measured by the differential GPS (with an accuracy

about 10cm), and we achieve similar median position accu-

racy with: DISCO [7] 1.16m, Bundler [38] 1.01m and ours

1.03m. Our reconstruction result on this dataset is shown in

Fig. 1.

Based on the results of unordered image datasets, we can

conclude that our method inherits the advantages of both in-

cremental and global manners. More reconstruction results

are shown in the supplementary material2.

2http://vision.ia.ac.cn/Faculty/hncui/index.htm

7. Conclusion

In this paper, a new hybrid SfM method is proposed to

increase the reconstruction efficiency, accuracy and robust-

ness in a united framework. We propose a community-

based rotation averaging method in a global manner first.

Then, based on the estimated camera rotations, camera cen-

ters are estimated in an incremental manner. Our hybrid

SfM method possesses both robustness advantage inheriting

from incremental manner and efficiency advantage inherit-

ing from global manner. Extensive experiments show that

our method produces superior results in both reconstruction

accuracy and computation efficiency compared to many of

the state-of-the-art SfM methods.
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