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Abstract

Multi-view stereo relies on feature correspondences for

3D reconstruction, and thus is fundamentally flawed in deal-

ing with featureless scenes. In this paper, we propose po-

larimetric multi-view stereo, which combines per-pixel pho-

tometric information from polarization with epipolar con-

straints from multiple views for 3D reconstruction. Polar-

ization reveals surface normal information, and is thus help-

ful to propagate depth to featureless regions. Polarimetric

multi-view stereo is completely passive and can be applied

outdoors in uncontrolled illumination, since the data capture

can be done simply with either a polarizer or a polarization

camera. Unlike previous work on shape-from-polarization

which is limited to either diffuse polarization or specular

polarization only, we propose a novel polarization imaging

model that can handle real-world objects with mixed polar-

ization. We prove there are exactly two types of ambiguities

on estimating surface azimuth angles from polarization, and

we resolve them with graph optimization and iso-depth con-

tour tracing. This step significantly improves the initial depth

map estimate, which are later fused together for complete 3D

reconstruction. Extensive experimental results demonstrate

high-quality 3D reconstruction and better performance than

state-of-the-art multi-view stereo methods, especially on fea-

tureless 3D objects, such as ceramic tiles, office room with

white walls, and highly reflective cars in the outdoors.

1. Introduction

Multi-view stereo reconstructs dense 3D models from

multiple images. It has been intensively studied in com-

puter vision [34, 35, 10, 11], with wide applications in com-

puter graphics, robotics, computer-aided design, and human-

computer interactions. Multi-view stereo relies on finding

feature correspondences with epipolar constraints, and thus

it is fundamentally flawed in dealing with featureless objects,

since correspondence cannot be reliably found.

To deal with featureless regions, one approach is to com-

bine multi-view and photometric cues, either from photo-

metric stereo [41, 12, 29] or structured light [26]. These

methods, however, require active/controlled illumination

Polarizer

Estimated azimuth angle

Multi-view stereo [11] Ours

Figure 1: Polarimetric multi-view stereo exploits per-pixel

photometric information from polarized images to signifi-

cantly improve 3D reconstruction quality for challenging

scenes such as highlight and featureless regions. Please refer

to Figure 4 and Figure 9 for more details and results.

and cannot operate in the outdoors. Another approach is to

refine 3D geometry with shape-from-shading [40, 18, 28],

which requires the knowledge of illumination (captured or

estimated), and is generally limited to Lambertian surfaces

or surfaces with uniform reflectance.

In this paper, we propose a novel method called polari-

metric multi-view stereo that exploits per-pixel polariza-

tion information for dense 3D reconstruction. Polarized im-

ages provide information about surface normals for a wide

range of materials (e.g., specular, diffuse, glass, metal, di-

electrics) [22, 14, 3, 25], which are additional constraints

for 3D depth recovery for featureless regions. Polarimetric

multi-view stereo is a completely passive approach, and can

be applied to a wide variety of objects in the outdoors with

uncontrolled illumination. Polarized images can be captured

in a single shot with a polarization camera [1, 9, 31, 33] or a

rotating polarizer [38], which makes this approach as simple

and practical as using ordinary cameras.

Polarization has been studied previously for 3D recon-

struction. Two recent work includes Polarized3D [16] which

requires RGB-D sensors and thus is limited to indoors, and

[36] which assumes uniform albedo and requires lighting
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estimation (which itself is a challenging problem). In ad-

dition, almost all prior work assumes either pure diffuse

polarization reflection (e.g., [3]) or pure specular polariza-

tion reflection (e.g., [23]) – this assumption is impractical for

many real-world objects with mixed polarization reflection.

To our knowledge, the proposed polarimetric multi-view

stereo approach is the first passive method that can deal with

mixed polarization for non-uniform albedo, without the need

for lighting estimation.

Specifically, in this paper, we prove that polarized images

can determine the azimuth angles of surface normals with

exactly two types of ambiguities — the π-ambiguity and

the π/2-ambiguity. Since azimuth angles provide strong

geometry constraint on surface shapes, our key idea is to

simultaneously resolve these ambiguities in azimuth angle

estimation, and to use the azimuth angles to propagate depth

estimated from sparse points with sufficient features to fea-

tureless regions for dense 3D reconstruction. We resolve

the π/2-ambiguity with graph optimization and bypass the

π-ambiguity with iso-depth contour tracing. This step sig-

nificantly improves the initial depth maps estimated from

classical multi-view stereo, which are later fused together

for a complete 3D reconstruction.

We performed extensive experiments on challenging sce-

narios for classical multi-view stereo, such as ceramic tile,

vase with vanish paints, office room with white walls, and

highly-reflective cars in the outdoors. Our method achieves

high-quality 3D reconstruction and outperforms the state-of-

the-art multi-view stereo methods.

2. Related Work

Multi-view Stereo for Textureless Surfaces Multi-view

stereo (MVS) [34, 35, 10, 11] relies on finding feature cor-

respondences across multiple images for 3D reconstruc-

tion. To deal with featureless objects, one approach is

to enforce priors on 3D shapes (e.g., smoothness) for ro-

bust correspondence matching [4, 11, 13]. Another ap-

proach is to combine multi-view stereo and photometric

cues, i.e., dense surface normals estimated either from

photometric stereo [12, 29, 41, 26] or from shape-from-

shading [40, 18, 28]. The former requires active/controlled

illumination and cannot operate in the outdoors, and the lat-

ter requires the knowledge of illumination (captured [28] or

estimated [40, 18]) and is generally limited to Lambertian

surfaces or surfaces with uniform reflectance.

The proposed polarimetric multi-view stereo uses photo-

metric cues from polarization and is a completely passive

approach. It does not require the estimation of illumination,

and is generally applicable to non-Lambertian surfaces with

spatially-varying reflectance properties.

3D Reconstruction with Polarization Polarimetric prop-

erties of reflected light reveals information about surface

normals (i.e., azimuth angles and zenith angles), and thus

useful for 3D reconstruction. There are three categories of

prior work on shape-from-polarization.

The polarization-only approaches use geometric priors

such as the surface normals on the boundary and convexity

of the objects to constrain the shape estimation [24, 3, 25].

Such heuristic constraints limit the application to smooth

objects without visible occlusion boundaries.

The photo-polarimetric approaches combine photometric

cues from shape-from-shading [20, 36] or photometric stereo

[8, 27] to resolve ambiguities for surface normal estimation.

These methods often make strong assumptions on materials

or illumination (e.g., uniform albedo [36], controlled illumi-

nation, known light direction [20]). In addition to shading,

multi-spectral measurements are shown to be effective for

both shape and refractive index estimation [14, 15].

The geo-polarimetric approaches integrate coarse depth

estimation from multi-view stereo or low-cost depth sensor

with polarization cues. Two-view stereo constraints have

been adopted for specular and transparent surface model-

ing [32, 21], as well as correspondence matching [2]. Space

carving [22, 23] or RGB-D sensors [16] have been employed

to obtain initial 3D shape, from which the ambiguities in

shape-from-polarization are resolved.

Compared to these prior work, our approach has the most

general operating environment in terms of illumination and

applicable objects. Our approach is completely passive, and

can work under uncontrolled illumination in the outdoors,

instead of active illumination [16], diffuse lighting [40, 18]

or distant lighting [26, 12, 29, 41]. The method is applicable

to a wide variety of objects with mixed polarized diffuse and

specular reflections as well as non-uniform albedo, instead

of being limited to either diffuse reflection only [3, 40, 18,

26, 12, 29] or specular reflection only [23], or only objects

with uniform albedo [36].

3. A Model for Mixed Polarization Reflection

The polarization of the reflected light from a surface is

determined by the polarization BRDF of the surface mate-

rial [19, 5, 7]. For most surfaces, as shown in Figure 2, the

reflected light includes three components: (1) the polarized

specular reflection (i.e., highlight), (2) the polarized diffuse

reflection (due to subsurface scattering and refraction), and

(3) the unpolarized diffuse reflection (due to micro-facet

rough surface reflection). As we show in the appendix with

Muller calculus [6, 30], the polarized specular reflection and

the polarized diffuse reflection have a π/2 difference in their

phase angles (defined in Equation (3)), because there is an

additional refraction between the air-surface interface.

When imaging a surface under unpolarized illumination

through a polarizer, the image intensity (i.e., scene radiance)

varies with the angle φpol of the polarizer sinusoidally. More

specifically, for polarized diffuse reflection [16, 36, 37],
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Figure 2: A diagram of surface reflection with mixed po-

larization. The circles with arrows show the polarization

status: round circles – unpolarized, elliptic circles – partially

polarized.

Idp(φpol) =
Idpmax + Idpmin

2
+
Idpmax − Idpmin

2
cos(2(φpol−ϕ)),

(1)

where ϕ is the azimuth angle of surface normal, Idpmax and

Idpmin are the maximum and minimum values of the observed

intensity. For the polarized specular reflection, we have a

similar equation with a π/2 difference in the phase [22]:

Isp(φpol) =
Ispmax + Ispmin

2
+
Ispmax − Ispmin

2
cos(2(φpol−ϕ+

π

2
)).

(2)

The unpolarized diffuse reflection contributes only to the DC

component, and thus can be subsumed in both equations.

Equations (1) and (2) provide the foundation for many

shape-from-polarization methods, since by capturing images

with multiple polarization angles φpol, one can potentially

estimate the azimuth angle ϕ of the surface normal. How-

ever, as shown, there are two types of ambiguities in solving

for ϕ. The first type is called the π-ambiguity, since both

ϕ and ϕ + π satisfy the equations. The second is called

the π/2-ambiguity, since real world objects have both the

polarized specular reflection and the polarized diffuse reflec-

tion, I = Isp + Idp. The π-ambiguity is relatively easier

to resolve. Prior work used cues such as rough depth from

RGB-D sensor [16] or lighting direction [36] to resolve this

ambiguity. The π/2-ambiguity, due to the mixed polariza-

tion in reflection, is more challenging to resolve.

As mentioned previously, many prior methods simplify

the π/2-ambiguity, by assuming there is either only polar-

ized diffuse reflection (e.g., [3]) or only polarized specular

reflection (e.g., [22]). However, this assumption is impracti-

cal for real-world objects [37]. Figure 3 shows an example of

a vase. A checkerboard is reflected on the vase surface due to

specular reflection from the varnish. If we use Equation (1)

to compute the azimuth angle, we can see the checkerboard

pattern appear. This is because for pixels in the white squares,

the polarized specular reflection dominates, while for pixels

in the black squares, the polarized diffuse reflection domi-

nates. For real-world objects, the mixture of specular and

diffuse reflections, Isp and Idp, varies also with the material

Captured Image (Cropped) Phase Angle from Polarization

Figure 3: A real example of mixed polarization. Left: A

checkerboard is reflected on the vase surface in the captured

image (specular reflection). Right: The estimated phase

angle (defined in Eq. 3) from polarization shows the checker-

board pattern due to the mix polarization, i.e., the polarized

diffuse reflection dominates in the black squares and the

polarized specular reflection dominates in the white squares.

properties and surface geometry, which further complicates

the problem.

One of our key findings in this paper, is that under un-

polarized illumination, for any point on an object surface,

no matter what the relative proportion of the polarized spec-

ular reflection and the polarized diffuse reflection is, the

measured radiance at this point always varies sinusoidally,

and there can only be the two types of ambiguities – the

π-ambiguity and π/2-ambiguity – for the azimuth angle esti-

mated from polarized images. Proposition 1 gives a detailed

description. Please refer to the appendix for the proof.

Proposition 1. Under unpolarized illumination, the mea-

sured scene radiance from a reflective surface through a

linear polarizer at a polarization angle φpol is

I(φpol) =
Imax + Imin

2
+
Imax − Imin

2
cos(2(φpol−φ)),

(3)

where Imax and Imin is the maximum and minimum mea-

sured radiance. φ is defined as the phase angle, which relates

to the azimuth angle ϕ as follows:

φ =

{

ϕ if polarized diffuse reflection dominates

ϕ− π
2 otherwise

.

(4)

Proposition 1 shows that resolving the π/2-ambiguity

becomes a binary labeling problem for each pixel for any

given view, depending on whether the reflection at that pixel

is dominated by the specular reflection or diffuse reflection.

This conclusion inspires our solution for polarimetric multi-

view stereo in the next section.

4. Polarimetric Multi-View Stereo

Figure 4 summarizes the proposed polarimetric multi-

view stereo algorithm. The input is the polarized images

captured at multiple viewpoints, either with polarization

cameras [1, 9, 31, 33] or with a linear polarizer rotated at
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Figure 4: Flowchart of the proposed polarimetric multi-view stereo algorithm. Please refer to Section 4 for details.

multiple angles (≥ 3). In all our experiments, we capture

seven images per view. Classical structure-from-motion [39]

and multi-view stereo [11] methods are used to first recover

the camera positions as well as an initial 3D shape for well-

textured regions. On the other hand, we compute the phase

angle maps φ for each view from the corresponding polarized

images, from which we resolve the ambiguities to estimate

azimuth angles ϕ to recover depth for featureless regions.

Finally depth maps from multiple views are fused together

to recover the complete 3D shape similar to [11].

4.1. Initialization and Pre­processing

We take one image per view to compute the camera poses

with VisualSFM [39], and reconstruct the initial 3D shape

with a recent GPU-enabled multi-view stereo method [11].

We also compute the phase angle maps φ for each view from

Equation (3) with least square methods.

In order to use the phase angles φ estimated from polariza-

tion for 3D reconstruction, we need to solve the π-ambiguity

and the π/2-ambiguity for each view. In Section 4.3, we

explain that we can actually bypass the π-ambiguity by iso-

depth contour tracing. In the next section, we present our

method to resolve the π/2-ambiguity.

4.2. Resolving the π/2­ambiguity

As mentioned previously, based on Proposition 1, resolv-

ing the π/2-ambiguity can be formulated as a binary labeling

problem in a graph optimization:

E({fp}) =
∑

p∈P

D(fp) + λ
∑

p,q∈N

V (fp, fq), (5)

where fp is a binary label at pixel p indicating whether

the polarized diffuse reflection dominates (fp = 1) or the

polarized specular reflection dominates (fp = 0) at this

pixel, λ = 1, P is the set of all pixels, and N is the set of all

neighboring pixel pairs.

The data term, D(fp), is defined as follows. For pixels in

well-textured regions (i.e., with consistent depth reconstruc-

tion at initialization), its azimuth angle from polarization

should be close to the azimuth angle computed from the

initial 3D shape recovered from initialization. Suppose P+

is the set of pixels with reliable depth recovered from initial-

ization, we use these pixels to guide the disambiguation. For

a pixel p ∈ P+, we have

D(fp) =

{

g(φp +
π
2 , ϕ̂p)/A if fp = 0

g(φp, ϕ̂p)/A if fp = 1
, (6)

where φp is the phase angle at pixel p computed from the po-

larized images, ϕ̂p is its azimuthal angle estimated from the

initial 3D shape, and g(φp, φq) is a function that computes

the distance between the two angles φp and φq , considering

the cycle of π,

g(φp, φq) = min(|φp − φq + π|, |φp − φq|, |φp − φq − π|),
(7)

and A = g(φp + π
2 , ϕ̂p) + g(φp, ϕ̂p) is for normalization.

The set P+ is determined by depth consistency check [11].

For pixels in texture-less regions (i.e., with no consistent

depth recovered from the initial multi-view stereo step), we

can only rely on statistical priors for the data term. Suppose

P− = P/P+ is the set of pixels with no reliable depth, for

a pixel p ∈ P−, we have

D(fp) =

{

ρp if fp = 0

1− ρp if fp = 1
, (8)

where 0 < ρp < 1 is the prior probability that at pixel

p it is polarized diffuse reflection dominates. ρp can be

set according to prior knowledge of target scenes or view-

ing/illumination conditions. For all the experiments in this

paper, we simply set ρp = 0.4 if Ip < 0.1, and ρp = 0.55
otherwise, where Ip is the intensity at pixel p (maximum

1.0). This setting assumes the black objects in the scene are

slightly more likely to be specular reflection dominated.

The smoothness term V (fp, fq) is designed to encourage

neighboring pixels to have similar azimuth angles,

V (fp, fq) =

{

g(φp, φq)/B if fp = fq

g(φp + π

2
, φq)/B if fp 6= fq

, (9)

where B = g(φp, φq) + g(φp +
π
2 , φp) is for normalization.

We solve this binary labeling problem with tree-

reweighted belief propagation [17]. Figure 5 shows results

for five examples. As shown, our algorithm can effectively

resolve the π/2-ambiguity from the estimated phase angles

and correct the estimated azimuth angles in the regions where

the polarized specular reflection dominates (e.g., the middle

of a ceramic tile, the top-left of a plastic balloon, the body

of a vase, the black wall and the carpet in the corner of an

office, and the side windows of a car).
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TILE VASE BALLOON CORNER CAR

Figure 5: Results for resolving the π/2-ambiguity for az-

imuthal angles. Top: captured images. Middle: phase angle

maps φ computed from polarization. Bottom: azimuth an-

gles ϕ after resolving the π/2-ambiguity.

4.3. Depth Propagation: Bypassing the π­ambiguity

After the π/2-ambiguity is resolved, there is only the π-

ambiguity between the azimuth angles estimated from polar-

ization and the true azimuth angles of 3D objects. To resolve

the π-ambiguity, prior work requires either depth [16] or

lighting direction [36]. In this section, we show that without

resolving the π-ambiguity, the estimated azimuth angles can

still be used to improve depth estimation.

Note that even with the π-ambiguity, azimuth angles deter-

mine iso-depth contours, i.e., points with the same distance

to the image plane. As shown in the middle of Figure 6(a),

on the camera image plane, the azimuth angle of the surface

normal points in the direction (shown as the red arrow) per-

pendicular to the iso-depth contour (shown as the orange

dash circle). Even with the π-ambiguity unresolved (shown

at the top-right in Figure 6(a)), we can still trace the iso-depth

contour perpendicular to the azimuth angle direction.

Therefore, in order to use the azimuth angles (with the π-

ambiguity) for depth estimation, we trace the iso-depth con-

tours from a set of sparse points with reliable depth estimated

from initialization (i.e., p ∈ P+). This will propagate depth

from sparse points to featureless regions. Prior work [41]

also exploited the idea of tracing iso-depth contours for 3D

reconstruction in the context of photometric stereo.

More specifically, as shown in Figure 6 (b), to trace

iso-depth contours, we select N = 2000 pixels from P+

(i.e., with reliable depth) as seed points and trace them

along the two directions perpendicular to the azimuth an-

gle ϕp: ~d+ = [ cos(ϕp + π
2 ), sin(ϕp + π

2 ) ] and ~d− =
[ cos(ϕp − π

2 ), sin(ϕp − π
2 ) ]. We used a step size of 0.5

pixel for tracing. Since the tracing is imprecise at depth

discontinuities, we stop the tracing once the change in the

azimuth angles between two neighboring pixels is greater

than a threshold (π/6 for all the experiments).

The tracing can propagate depth for most pixels in P−

in many cases. However, for scenes with large featureless

regions or complex geometry, there may still be pixels left

� ��
� �� �+

 �−

�� + �

�� + �2
�-ambiguity

�/2-ambiguity

(a) Iso-depth contour tracing with azimuth angles

(b) An example of tracing iso-depth contours

Figure 6: (a) The π-ambiguity in azimuth angles does not

affect iso-depth contour tracing. (b) An example of tracing

iso-depth contours for BALLOON.

with unreliable depth after tracing. To further optimize the

depth for all pixels, we employ a similar approach as [26] to

solve the depth map d(x, y) by minimizing
∑

(x,y)∈P

Ep(d(x, y)) + γEd(d(x, y)) + |∆d(x, y)|, (10)

where Ep(d) is the constraint derived from the azimuth an-

gles, Ed(d) is to discourage depth update for (x, y) ∈ P+,

∆d is the Laplacian of the depth map, and γ = 0.1 in our

experiments. Specifically, based on the definition of azimuth

angles, we have tan(ϕ) = ∂d
∂y

/ ∂d
∂x

, i.e.,

sinϕ(x, y)

cosϕ(x, y)
=

d(x, y + 1)− d(x, y)

d(x+ 1, y)− d(x, y)
, (11)

and thus

Ep(d(x, y)) = | sinϕ(x, y) (d(x+ 1, y)− d(x, y))

− cosϕ(x, y) (d(x, y + 1)− d(x, y)) |. (12)

For point (x, y) ∈ P+, it has reliable initial depth estimate

d̂(x, y), and Ed(d(x, y)) is to discourage depth update

Ed(d(x, y)) =

{

|d(x, y)− d̂(x, y)| if (x, y) ∈ P+

0 otherwise
.

(13)

∆d(x, y) is computed as a 2D convolution with the 3 × 3

Lapacian filter 1
12

(

1 2 1
2 −12 2
1 2 1

)

. All these are linear constraints,

and thus the optimization problem can be solved efficiently

with linear programming.

5. Experimental Results

5.1. Evaluation on Simulated Data

Three synthetic shapes, SPHERE, ROOF (with two planes)

and BUNNY, are used for quantitative evaluation and com-

parison with [36]. Both the azimuth angles and the zenith
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Ground Truth Smith et al. [36] Ours

(a) 3D view

(b) 2D cross section view for SPHERE (left) and ROOF (right)

(c) Depth error (in mm) of [36] (left) and ours (right) for BUNNY

Figure 7: Quantitative evaluation and comparison with [36]

on the synthetic examples.

angles are calculated from the ground truth shapes, with

additive Gaussian noise (σazimuth = 6◦, σzenith = 3◦). For

[36] we further provide the ground truth lighting direction

and unpolarized intensities. For SPHERE and ROOF , we

randomly select 50 pixels from a 400× 400 image (less than

0.04%) with noisy depth (i.e., ground truth depth plus 1%
Gaussian noise) as seed points for tracing, and for BUNNY,

we randomly select 1000 pixels from a 800 × 800 image

because of its geometric details.

The estimation results by [36] and our method are shown

in Figure 7. Figure 7(a) visualizes the recovered shape in

a novel view. Figure 7(b)(c) show the depth errors of [36]

and our method. For all the three examples, our method

reconstructs more accurate depth than [36]. We also con-

ducted noise analysis (please refer to the supplementary).

We found that the linear constraints for integration in [36]

seems sensitive to noise, while our method is more robust

thanks to the iso-depth contour tracing.

5.2. Results on Real Data

We captured five scenes under both natural indoor and

outdoor illumination — VASE (36 views), TILE (10 views),

Image Polarized3D [16] Smith et al. [36] Ours

Figure 8: Comparison of depth estimation with Polar-

ized3D [16] and Smith et al. [36].

BALLOON (24 views), CORNER (6 views), and CAR (36

views). All images were captured using a Cannon EOS

7D camera with a 50mm lens. We mounted a Hoya linear

polarizer in the front of the camera lens. For each view,

seven images were captured with the polarizer angle spaced

30◦ degrees apart. Except for CORNER, we segmented the

foreground objects from the background. Exemplar images

and the camera poses recovered from VisualSFM are shown

in the leftmost column of Figure 9.

Comparison for Depth Map Estimation We compare

with two recent methods — Polarized3D [16], which re-

quires rough depth from a RGB-D sensor, and Smith et

al. [36], which requires lighting estimation. In addition, nei-

ther of two methods can handle mixed polarization. In order

to make fair comparisons, we manually mask out the spec-

ular regions in the images. For Polarized3D [16], we used

the initial depth map from MVS as the rough depth input.

Results on the TILE and BALLOON datasets are shown in

Figure 8.

As shown, Polarized3D [16] shows some artifacts in the

estimated depth mainly due to the initial MVS depth is noisy

in textureless regions. With a reliable depth input (e.g.,

from a RGBD sensor as shown in [16]), it can achieve high

accuracy. Moreover, the mixed polarization of the object

still affects its performance even though we have masked

out the specular highlight regions. Smith et al. [36] has high

quality for the TILE as the azimuth and zenith angles can

be accurately estimated for this data. However, their result

for BALLOON is worse, as the estimated azimuth and zenith

angles are noisy given the complicated texture. Our method

shows superior performance on both two examples.

Comparison for Multi-View Stereo Finally, we show our

final reconstructed 3D models with two state-of-the-art MVS

methods — MVE [10] and Gipuma [11]. For fair compari-

son, we show the results after depth fusion for all the meth-

ods. The complete results are shown in Figure 9.

For the VASE and BALLOON, MVE [10] succeeds in

reconstructing the whole shape, but the reconstructed point
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clouds are quite noisy, due to inconsistent intensities across

different views caused by specular highlights. Gipuma [11]

cannot reconstruct the textureless areas near the neck of the

vase or around the white part of the balloon. Similar artifacts

can be observed for the middle part of TILE, and the white

and black walls of CORNER, where both MVE [10] and

Gipuma [11] show large holes. Our method generates more

complete and smoother result for all these examples.

The outdoor data CAR is more challenging, since the car

body is almost pure white with strong specularity. MVE [10]

produces a reasonable reconstruction, but with many outliers.

Gipuma [11] can only reconstruct a skeleton of the car. Our

proposed method achieves the most complete and accurate

3D reconstruction of the car, thanks to the estimated phase

angle from polarization and depth propagation. Nevertheless,

none of the three methods can recover the car windows,

because these parts are transparent — this is an interesting

direction for further investigation.

We show additional comparison with a scanned ground

truth shape and analyze the running time in the supplemen-

tary.

6. Conclusions and Discussions

We presented polarimetric multi-view stereo, a com-

pletely passive, novel approach for dense 3D reconstruc-

tion. Polarimetric multi-view stereo shows its strength espe-

cially for featureless regions and non-Lambertian surfaces,

where it propagates depth estimated from well-textured re-

gions to featureless regions guided by the azimuth angles

estimated from polarized images. Extensive experimental re-

sults demonstrate high-quality 3D reconstruction and better

performance than state-of-the-art multi-view stereo methods.

In addition, we also proposed a novel polarization imag-

ing model that can handle real-world objects with mixed

polarization. We proved that there are exactly two types of

ambiguities for azimuth angle estimation from polarized im-

ages. These theoretical results are useful for further studies

on shape-from-polarization.

The proposed polarimetric multi-view stereo has its lim-

itations. First, it still requires a few points with reliable

depth as seeds for depth propagation. Second, our current

algorithm cannot recover transparent objects, despite some

information being recovered from polarized images. We

plan to investigate these directions in the future.
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Appendix: Proof of Proposition 1

We briefly show the proof for Equations (1)(2) and Propo-

sition 1 based on Muller calculus [6]. Due to page limit,

please refer to the supplementary for a complete proof.

The polarization state of light can be represented by a 4×1
Stokes vector S = [S0, S1, S2, S3]

⊤ where S0 is the energy

of the light [6]. The effect of light-matter intersections (e.g.,

reflection, transmission, polarizer) to the polarization state

is represented with a 4× 4 Muller matrix M, which updates

the Stokes vector from S to MS.

As shown in Figure 2, there are two polarized compo-

nents in the reflected light. The polarized specular reflection

is from the air-object surface, denoted by Ssp. The polarized

diffuse reflection is from the refraction from the depolarized

subsurface scattered light to air, denoted by Sdp. Both com-

ponents will be measured by the camera via a linear polarizer

Let Si be the Stokes vector for the illumination, Mpol(θ) be

the Muller matrix for the linear polarizer at angle θ, MR and

MT denote the Muller matrices for Fresnel reflection and

transmission, respectively. We have

Ssp = Mpol(θ)MRSi, Sdp = Mpol(θ)MTSd, (14)

where Sd is the Stokes vector for the depolarized scat-

tered light under surface. For unpolarized illumination,

Si = Li[1, 0, 0, 0]. Sd is also unpolarized due to random

subsurface scattering, Sd = Ld[1, 0, 0, 0]. MR and MT are

the Muller-Stokes matrices for Fresnel equations [6]. For

Mpol(θ), we note θ is related to the polarization angle φpol

of the linear polarizer and the azimuth angle ϕ of the surface

normal by θ = φpol +
π
2 − ϕ. By definition, the measured

radiance for both polarized specular reflection and polarized

diffuse reflection are

Isp(φpol) = Ssp(0), Idp(φpol) = Sdp(0). (15)

From the above two equations, together with the Muller

matrices (MR, MT , Mpol(θ)) defined in [6], we can derive

Equations (1)(2). The π/2 phase difference between Isp
and Idp is caused by the +/− sign for the sinusoid term

cos(2(φpol − ϕ)) in Equation (15).

Many real-world objects, as shown in Figure 2, have both

polarized specular reflection and polarized diffuse reflection,

as well as unpolarized diffuse reflection.

I(φpol) = Id + Idp(φpol) + Isp(φpol), (16)

where Id is the unpolarized diffuse reflection that does not

vary with the polarization angle φpol. By inserting Equa-

tion (1) and Equation (2) in Equation (16), we can derive the

equations in Proposition 1.

The π-ambiguity is easy to see, since the period of I(φpol

is π because of cos(2(φpol − ϕ)). The π/2-ambiguity ap-

pears, because the relative amount of Idp and Isp is un-

known which can flip the +/− sign of the sinusoid term

cos(2(φpol − ϕ)) in Equation (16).
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(a) Sample images (b) MVE [10] (c) Gipuma [11] (d) Ours

Figure 9: Comparison with state-of-the-art MVS methods [10, 11] for complete reconstruction. From top to bottom rows:

VASE (36 views), TILE (10 views), BALLOON (24 views), CORNER (6 views), and CAR (36 views).
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