
AMVH: Asymmetric Multi-Valued Hashing

Cheng Da1, 2, Shibiao Xu1, Kun Ding1, 2, Gaofeng Meng1, Shiming Xiang1, 2, Chunhong Pan1

1National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
2School of Computer and Control Engineering, University of Chinese Academy of Sciences

Email:{cheng.da,shibiao.xu,kding,gfmeng,smxiang,chpan}@nlpr.ia.ac.cn

Abstract

Most existing hashing methods resort to binary codes

for similarity search, owing to the high efficiency of com-

putation and storage. However, binary codes lack enough

capability in similarity preservation, resulting in less de-

sirable performance. To address this issue, we propose an

asymmetric multi-valued hashing method supported by two

different non-binary embeddings. (1) A real-valued embed-

ding is used for representing the newly-coming query. (2) A

multi-integer-embedding is employed for compressing the

whole database, which is modeled by binary sparse rep-

resentation with fixed sparsity. With these two non-binary

embeddings, the similarities between data points can be p-

reserved precisely. To perform meaningful asymmetric sim-

ilarity computation for efficient semantic search, these em-

beddings are jointly learnt by preserving the label-based

similarity. Technically, this results in a mixed integer pro-

gramming problem, which is efficiently solved by alterna-

tive optimization. Extensive experiments on three multi-

label datasets demonstrate that our approach not only out-

performs the existing binary hashing methods in search ac-

curacy, but also retains their query and storage efficiency.

1. Introduction

Recently, most of the massive data is represented in high-

dimensional space for use [16, 32]. Measuring the similari-

ty of these data points with high computational efficiency is

a fundamental task in real-world applications. Technically,

several recent works [3, 17, 29, 39] have shown that hash-

ing methods can compress high-dimensional data points in-

to compact binary codes and can simultaneously preserve

the similarity and structural information of the original data.

Thus, hashing yields a mechanism for high computational

efficiency and acceptable accuracy.

In the literature, many hashing methods have been pro-

posed [2, 7, 8, 13, 19, 22, 33, 34, 36], which can be rough-

ly divided into two categories: data-independent and data-

dependent hashing methods. Locality Sensitive Hashing

(LSH) [7] is a representative of the first class that uses ran-

dom projection as hash function. However, the major draw-

back of LSH and its variants [18, 31] is that many hash bits

are required to guarantee good performance. In parallel, re-

cent efforts mainly focus on designing data-dependent hash-

ing methods that learn compact binary codes by exploiting

the data distribution [9, 23, 24]. These methods are catego-

rized into unsupervised [9, 15, 22, 40], semi-supervised [38,

41] and supervised methods [14, 21, 24, 27, 34].

According to the different encoding strategies of query

and database, hashing methods can also be grouped in-

to symmetric and asymmetric ones. Most of the existing

hashing methods are symmetric, in which the binary codes

are derived from the same hash function, and the Ham-

ming distances between them are computed for retrieval. In

comparison to symmetric hashing, some pioneering work-

s [6, 11, 26] have theoretically proven that asymmetric hash-

ing can attain superior accuracy with shorter codes by using

two different hash functions for query and database. For ex-

ample, Gordo et al. [11] claimed that compressing the query

into the binary codes is not a strict requirement and present-

ed two general asymmetric distances, which are applicable

to many hashing methods. The key insight is that query is

real-valued and database is still binary, so that the more pre-

cise information of the query is capable of facilitating better

similarity search. Since the hash functions for both query

and database are derived from the same real-valued embed-

ding function, this method does not fully take the advantage

of the asymmetry. Neyshabur et al. [26] went a step further

by proposing an asymmetric binary hashing method using t-

wo distinct binary hash functions, but the binary constraints

still limit the effectiveness.

In addition, two-step hashing [20, 21] has attracted broad

research interests due to its simplicity, flexibility and effec-

tiveness. It decomposes the hashing learning problem into

two steps: a binary code inference step and a hash func-

tion learning step based on the learned codes. As men-

tioned in [5], different encoding strategies can be adopted

for database and query in two-step hashing, thereby it is es-

sentially an asymmetric hashing method. Subsequently, dis-

736



crete hashing methods, such as SDH [34], FastHash [21],

COSDISH [14], generalize the idea of two-step hashing

by introducing some coupling between the two steps men-

tioned above. Clearly, they also belong to the class of asym-

metric hashing. Although great success has been acquired

by two-step hashing and discrete hashing, they are still sub-

optimal due to the binary limitation.

In this work, we aim to alleviate the binary limitation,

and therefore propose a novel asymmetric hashing method,

named Asymmetric Multi-Valued Hashing (AMVH). The

idea of our approach is quite intuitive — using real values

and multiple integer values instead of binary ones should

permit the better preservation of the similarity between da-

ta points. Based on this idea, we present two different

non-binary embeddings: the real-valued embedding and the

multi-integer-valued embedding. The former is used to map

the query into a real-valued low-dimensional space. The

latter is used to compress the database points. However,

multiple integer values are not conducive for building the

lookup table that is commonly used for efficient search, due

to a large number of combinations of these integer values.

Hence, binary sparse representation is proposed to circum-

vent this problem, namely, a multi-integer-valued vector is

represented by a product of a binary dictionary and an indi-

cator vector. In this way, the lookup table about dictionary

can be built efficiently. Meanwhile, the efficiency of com-

putation and storage can be guaranteed.

To make the two different embeddings to be useful rep-

resentations for asymmetric similarity computation in the

query stage, these embeddings should be optimized to allow

the meaningful comparison between them. For this reason,

we propose to minimize the difference between the predic-

tive similarity and the ground-truth one provided by the se-

mantic labels. However, the discrete constraints of the base

atoms and the sparse coefficients bring us a mixed integer

programming problem, which is NP-hard [14, 33, 34]. In

order to solve this problem, a well-designed alternative op-

timization algorithm is exploited, where each subproblem

can be solved efficiently, yielding satisfactory solutions.

To sum up, the main contributions of this work are:

• A novel asymmetric hashing method supported by two

different non-binary embeddings is proposed, which

can alleviate the binary limitation and can remarkably

improve the capability of similarity preservation.

• We introduce binary sparse representation to model

the multi-integer-valued embedding, which permits the

construction of the lookup table for efficient similari-

ty search. To the best of our knowledge, the multi-

integer-valued embedding is first proposed in hashing.

• A well-designed alternative optimization algorithm is

proposed to efficiently solve our problem, which is s-

calable to deal with large-scale datasets.

2. Asymmetric Multi-Valued Hashing

2.1. Basic Formulation

This work mainly focuses on supervised hashing method

which enables the attractive performance in semantic sim-

ilarity search [14, 34]. Suppose that database points are

represented by a set of N D-dimensional vectors, denot-

ed by X = [x1, . . . ,xN ] ∈ R
D×N . Their associated la-

bels are Y = [y1, . . . ,yN ] ∈ {0, 1}C×N , where C is the

number of classes. When the c-th entry yci equals to 1,

it means xi belongs to the c-th class. Traditional hashing

methods learn a binary embedding vector bi ∈ {−1, 1}K
for each data point, which results in a binary matrix B =
[b1, . . . ,bN ] ∈ {−1, 1}K×N . A commonly-used objec-

tive to learn these binary codes is to preserve the Hamming

affinity [14, 21, 24]. Concretely, it minimizes the difference

between the predictive and ground-truth affinities, that is,

min
B

‖ 1

K
BTB− S‖2F

s.t. B ∈ {−1, 1}K×N ,
(1)

where S is a pairwise similarity matrix derived by the la-

bels, and ‖ · ‖F is the Frobenius norm. This model is first

introduced in kernel-based supervised hashing (KSH) [24],

and becomes a standard optimization problem for hashing

learning [14, 21]. However, one major deficiency of this for-

mulation is the symmetric binary inner product form, which

is limited in approximating the real-valued similarity.

Therefore, we propose Asymmetric Multi-Valued Hash-

ing method (AMVH) to alleviate the binary limitation, in

which the traditional binary values are extended to real

values and multiple integer values. In the following sec-

tions, we firstly introduce the real-valued embedding, by

which the real-valued query is utilized to search. Then, the

multi-integer-valued embedding is elaborated, by which the

database points are represented by multiple integer values,

improving the capability of similarity preservation.

2.2. Real­valued Embedding for Query

Linear binary hash function, denoted by h(x) =
sign(WTX), is commonly used in traditional binary hash-

ing methods [4, 24]. Here W ∈ R
D×K is a transforma-

tion matrix that projects data X onto a K-dimensional real-

valued space (K < D), and sign(·) is the element-wise

sign function. As mentioned above, directly using the real-

valued information should permit more accurate approxi-

mation of similarity [11]. For this reason, the real-valued

embedding is directly imposed on AMVH. Thus, replacing

one of the Bs in (1) by WTX, we obtain the following

model with an asymmetric objective function:

min
W,B

‖(WTX)TB− S‖2F

s.t. B ∈ {−1, 1}K×N .
(2)

737



Here the similarity between the real-valued embeddings

WTX and the binary codes B can be measured by inner

product. Meanwhile, the two kinds of embeddings are joint-

ly learnt by preserving the pairwise semantic similarities.

Once problem (2) is solved, the binary codes B of database

points can be obtained, and the unseen query x can be en-

coded by the learned linear hash function h(x) = WTx.

2.3. Multi­integer­valued Embedding for Database

Although problem (2) is modeled in the asymmetric

viewpoint, the database points are still represented by bi-

nary codes, which have limited capability in approximat-

ing diverse similarities. To this end, we propose the multi-

integer-valued embedding, by which database points are

compressed into multiple integer vectors. Consequently, the

capability of similarity preservation is further improved.

However, multiple integer values are not conducive for

fast search, because the lookup table can not be build ef-

ficiently for so many integer values. Therefore, binary s-

parse representation is proposed to model the multi-integer-

valued embeddings with fixed sparsity. Technically, a multi-

integer-valued vector b̂i is denoted by a product of a binary

dictionary C and an indicator vector ai, i.e., b̂i = Cai.

Here C = [c1, . . . , cM ] ∈ {−1, 1}K×M is the binary dic-

tionary with M (M ≪ N) atoms and ai ∈ {0, 1}M is the

sparse indicator vector, which strictly contains l 1s and indi-

cates that only l atoms can be selected from the dictionary.

l (0 < l < M) is an important hyper-parameter, reflecting

the diversity of multi-integer-valued embeddings indirect-

ly. Based on this representation, B̂ includes at most 2 l + 1
kinds of integer values, denoted by B̂ = [b̂1, . . . , b̂N ] ∈
{−l,−l+1, . . . , l−1, l}K×N . Consequently, we can build

the lookup table about the dictionary C and apply ai for

table lookup operation, as will be detailed in Section 2.5.

Accordingly, B in (2) can be replaced by B̂ = CA, and the

problem (2) is reformulated as follows:

min
W,C,A

‖(WTX)TCA− S‖2F

s.t. 1TA = l 1T , A ∈ {0, 1}M×N ,

C ∈ {−1, 1}K×M ,

(3)

where these two embeddings can also be jointly learnt as

in (2). Note that when C is a complete dictionary and l = 1,

problem (3) reduces to problem (2). Theoretically, prob-

lem (2) can be regarded as a special case of problem (3).

Notably, the compositional form of CA is analogous to

Cartesian k-means [28]. However, there exist intrinsical-

ly distinguishable differences. Cartesian k-means employs

CA to construct more real-valued cluster centers so as to

reconstruct the original features with smaller quantization

errors and storage, and it only pays attention to the number

of cluster centers. By contrast, AMVH intents to alleviate

the binary limitation so that it utilizes this form to construct

integer values based on binary atoms in a concise format,

which lays emphasis on the value of compact codes.

Problem (3) mainly focuses on the pairwise relations. As

demonstrated in [34], pointwise supervised information can

be formulated as a classification term for guiding the hash

function learning. Therefore, we additionally introduce a

classification error term to the objective function in (3) as a

regularization term and obtain the final formulation:

min
W,V,C,A

‖(WTX)TCA− S‖2F

+ λ‖VTCA−Y‖2F
s.t. 1TA = l 1T , A ∈ {0, 1}M×N ,

C ∈ {−1, 1}K×M ,

(4)

where λ is a penalty parameter that determines the strength

of the classification term and V ∈ R
K×C is the weight

of a linear classifier, which guarantees that the good multi-

integer-valued embeddings are beneficial for classification.

Once problem (4) is optimized, the multi-integer-valued

embeddings CA can be employed for compressing the

database points. In addition, the linear embedding function

can be utilized for encoding the newly-coming queries.

2.4. Optimization

Generally, problem (4) is a mixed integer programming

problem, which is non-convex with W, V, C and A to-

gether. To address this problem, a well-designed alternative

optimization algorithm is presented. In other words, only

one variable is optimized with the others fixed at each step.

In this section, the details of the optimization algorithm are

elaborated as follows.

Initialization. Several initialization methods have been

tried on C and A. However, we empirically find that

the principled initialization methods (e.g., k-means cluster-

ing [10]) do not have distinct advantages of retrieval preci-

sion over random initialization. Thus, we finally initialize

C randomly to −1 or +1 with the same probability, and

randomly set l entries in each column a of A to 1.

W-Step. By fixing V, C and A, problem (4) is then

simplified as

min
W

‖(WTX)TCA− S‖2F , (5)

which can be easily solved by using matrix manipulations,

resulting in a closed-form solution:

W = (XXT )−1XS(CA)T (CA(CA)T )−1. (6)

C-Step. Ignoring the irrelevant variables of C in (4), we

require to solve the following problem:

min
C

‖X̃TCA‖2F + λ‖VTCA‖2F − 2tr(RTC)

s.t. C ∈ {−1, 1}K×M ,
(7)

738



where X̃ = WTX are the real-valued embeddings of

X, R = X̃SAT + λVYAT , and tr(·) is the trace nor-

m. Here, C is circularly updated row by row via the dis-

crete cyclic coordinate descent method [34]. Suppose that

C = [cT ;C′], X̃ = [x̃T ; X̃′], V = [vT ;V′], R = [rT ;R′],
and U = AAT , where cT is one row of C and C′ is the

matrix of C excluding cT . In addition, x̃T , X̃′, vT , V′, rT

and R′ are denoted in the similar way.

For different l, there are different complexities for solv-

ing C. Thus, we discuss the solving procedure in two cases,

i.e., l = 1 and l > 1. In case of l = 1, U is a diagonal ma-

trix, which makes the quadratic term about c be a constant

and results in a simple binary linear programming problem:

min
c

tr(cTU(C′)T X̃′x̃) + tr(cTU(C′)TV′v)

− tr(cT r)

s.t. c ∈ {−1, 1}M .

(8)

Due to the simplicity of this problem, we can clearly obtain

a closed-form solution:

c = sign(z), (9)

where z = r−U(C′)T X̃′x̃−λU(C′)TV′v. In the case of

l > 1, U is not a diagonal matrix. By some simplifications,

a binary quadratic programming problem is obtained

min
c

cTUc− 2cT f

s.t. c ∈ {−1, 1}M ,
(10)

where f = z/‖x̃‖22. This problem can be solved by gen-

eral integer programming solvers, such as Gurobi1, but it

could be time-consuming. Meanwhile, we empirically find

that an approximate solution can already yield quite satis-

factory results. Thus, we solve a relaxed objective of (10)

by dropping the binary constraints, and obtain the following

approximate solution:

c = sign(U−1f). (11)

A-Step. To update A with W,V and C fixed, we let

G1 = XTWC and G2 = VTC, and the problem (4) is

rewritten as follows:

min
A

‖G1A− S‖2F + λ‖G2A−Y‖2F
s.t. A ∈ {0, 1}M×N .

(12)

Clearly, the sub-problems about the columns of A are sepa-

rable. Thus, A can be optimized column by column. When

solving one column a of A, the corresponding problem is

formulated as follows:

min
a

aTMa− 2aTh

s.t. ‖a‖0 = l, a ∈ {0, 1}M ,
(13)

1http://www.gurobi.com/

Algorithm 1 Asymmetric Multi-Valued Hashing

Input: Training data X ∈ R
D×N ,Y ∈ {0, 1}C×N , and

S ∈ R
N×N ; code length K; dictionary size M ; maxi-

mum iteration number t; hyper-parameters l, λ.

1: Initialize C and A by random initialization.

2: for iter i = 1 → t do

3: W-Step: Update W using Eqn. (6)

4: C-Step: Circularly update C row by row using

Eqn. (9) for l = 1 and using Eqn. (11) for l > 1.

5: A-Step: Update A column by column using

Eqn. (14) for l = 1 and using the proposed forward

greedy algorithm, i.e., Eqn. (15) for l > 1.

6: V-Step: Update V using Eqn. (16).

7: end for

Output: Transformation matrix W; dictionary C; indica-

tor matrix A; classification matrix V.

where ‖ · ‖0 is the ℓ0 norm, M = GT
1 G1 + λGT

2 G2, and

h = GT
1 s+λGT

2 y. Besides, s and y are the corresponding

columns to a in S and Y, respectively.

Moreover, problem (13) is a constrained binary quadratic

programming problem, which is generally difficult to solve.

Most of the existing hashing methods solve the approximate

objectives by dropping the discrete constraints [25, 35]. Al-

ternatively, some recent works [14, 34] handle the discrete

optimization problems directly, demonstrating the prefer-

able performance. Here we also investigate how to discrete-

ly solve a in two cases, i.e., l = 1 and l > 1. In the case of

l = 1, the optimal solution of a can be easily obtained

ai =

{

1, if i = j;

0, otherwise,
(14)

where j = arg min
j=1,...,M

mjj − 2hj . In the case of l >

1, a forward greedy algorithm is proposed to address this

problem. The main procedure of this algorithm is detailed

as follows. First, we define two index sets of a, that is,

S = ∅ and S̄ = {1, . . . ,M}. Second, an index p in S̄
is identified if the objective function in (13) is minimized

with ap = 1. Then, the index p is moved from S̄ to S .

Third, we successively find one index in S̄ at a time that

minimizes (13) combined with the indices in S , and move

this index to S . Once the size of S equals to l, the algorithm

stops. Finally, the approximate solution of (13) is obtained

ai =

{

1, if i ∈ S;

0, otherwise.
(15)

V-Step. With the other variables fixed, V is updated

by solving a least squares regression problem. The closed-

form solution is

V = (CA(CA)T )−1(CA)YT . (16)

For clarity, the whole alternative optimization algorithm

of AMVH is summarized in Algorithm 1.

739



2.5. Query

In the query stage, the goal is to find some items from the

database that are similar to the query. By the above train-

ing procedure, the transformation matrix W, the binary dic-

tionary C, and the indicator matrix A have been obtained.

Given a D-dimensional query vector q, we first project it

onto K-dimensional subspace by q̂ = WTq. Then, the

similarities between q̂ and the multi-integer-valued embed-

dings CA of the database points are calculated, that is,

Ŝ = (q̂)TCA. Once Ŝ is obtained, the nearest neighbors

are returned by sorting these similarities.

To improve the computational efficiency, a lookup ta-

ble is built for the query, denoted by Tc = (q̂)TC . As

for computing Ŝ = TcA, only the table lookup and addi-

tion operations are required, according to the binary indica-

tor matrix A ∈ {0, 1}M×N . Specifically, we still discuss

how to calculate Ŝ in two cases, i.e., l = 1 and l > 1. In

the case of l = 1, the multi-integer-valued embeddings de-

grade into binary codes so that only the table lookup opera-

tions on Tc are required. This query strategy is denoted by

AMVHreal. In the case of l > 1, besides the table lookup

operations, l selected atoms have to be summed, thus lead-

ing to the multi-integer-embeddings, which is denoted by

AMVHmul. Notably, if we construct the binary codes of

the query by sign(q̂) for l = 1, AMVH can also perform

similarity search based on Hamming distance. This query

strategy is denoted by AMVHbin. The differences of these

query strategies are clearly shown in Table 1.

Table 1. Three different query strategies of AMVH.

Method
l = 1 l > 1

AMVHbin AMVHreal AMVHmul

Query Binary Real-valued Real-valued

Database Binary Binary Multi-integer-valued

2.6. Analysis

Query complexity. Here we analyze the query complex-

ity of AMVHreal and AMVHmul. As mentioned before,

for a single query, we only need the computation of Tc that

scales in O(KM) and some table lookup and addition op-

erations to calculate TcA, which scale in O(l N). Due to

KM ≪ N , the query complexity mainly relies on the size

N of search database and the hyper-parameter l, rather than

the code length K. Therefore, the query time of AMVHreal

and AMVHmul is constant for all code lengths, differing

from the traditional binary hashing methods, whose query

complexity depends on the code length K, which prevents

the use of long codes.

Storage complexity. Compared with conventional bina-

ry hashing methods, the storage complexity of AMVHmul

is acceptable. Due to the fact that the memory cost of the

dictionary C ∈ {−1,+1}K×M is negligible, the database

storage is mainly from A ∈ {0, 1}M×N . In view of the

sparsity of a, only l indices of 1s in each a are required to

store for each database point. Specifically, the storage of

each sample (i.e., a) is l logM bits. Therefore, an interest-

ing observation is that the storage of AMVHmul only relies

on the hyper-parameter l and the number of atoms M , rather

than the code length K. For this reason, if appropriate val-

ues of l and M are set, the storage of AMVHmul might be

less than that of conventional binary hashing methods, even

if the multi-integer-valued embeddings are employed.

3. Experiments

In this section, we compare AMVH with the binary hash-

ing methods on search tasks in terms of search accuracy and

efficiency. All the experiments are conducted on a 64-bit

windows PC with 32 GB RAM and 3.50 GHz CPU.

3.1. Experimental Settings

Datasets. Three multi-label datasets are adopted to

evaluate the performance of AMVH: ESP-GAME [37],

MIR-FLICKR [12] and NUS-WIDE [1]. The ESP-GAME

dataset consists of 20, 768 images, with each image la-

beled with multiple semantic labels from 268 categories.

The MIR-FLICKR dataset includes 25, 000 images crawled

from Flickr, with each image associated with multiple se-

mantic labels from 38 categories. Each image of both ESP-

GAME dataset and MIR-FLICKR dataset is represented by

a 512-dimensional GIST [30] feature vector. The NUS-

WIDE dataset contains 269, 648 images collected from

Flickr, each of which belongs to multiple categories taken

from 81 concept tags. And the provided 500-dimensional

bag-of-words (BoW) feature vectors are utilized in our ex-

periments. As in [14], 209, 347 images are collected by re-

moving the images without any labels. For all datasets, two

images are semantically similar if they share at least one la-

bel; otherwise, they are dissimilar. Each dataset is randomly

split into a query set with 1000 samples and a training set

with the remaining samples for evaluation.

Compared methods. Owing to the superiority of super-

vised hashing, AMVH is mainly compared against several

state-of-the-art supervised hashing methods: ITQ-CCA [9],

KSH [24], FastHash [21], SDH [34], COSDISH [14], and

one unsupervised method SGH [13]. For the pairwise hash-

ing methods with high computational complexity (i.e., KSH

and FastHash), 10K samples are randomly selected from

training set for learning. While all the training samples are

utilized for the remaining methods, due to their favorable

scalability. All experiments are repeated 10 times with ran-

dom data partitions, and the averaged results are reported.

3.2. Experimental Details

Kernel feature mapping. RBF kernel mapping is a

commonly-used and powerful method for nonlinear hash-

ing [17, 24, 34]. For each data point x ∈ R
D, we random-

740



8 16 24 32 48 64

0.3

0.35

0.4

0.45

0.5

0.55

Code length K

M
A

P

8 16 24 32 48 64

0.6

0.65

0.7

0.75

0.8

Code length K

M
A

P

8 16 24 32 48 64

0.4

0.5

0.6

0.7

Code length K

M
A

P

ITQ-CCA

KSH

SGH

FastHash

COSDISH

SDH

AMVHbin

AMVHreal

AMVHmul

1 51 101 151 201 251 301 351 401 451

0.3

0.4

0.5

0.6

Number of top returned images

P
re

c
is

io
n

@
3
2
b
it
s

(a) ESP-GAME

1 51 101 151 201 251 301 351 401 451
0.6

0.65

0.7

0.75

0.8

0.85

Number of top returned images

P
re

c
is

io
n

@
3
2
b
it
s

(b) MIR-FLICKR

1 51 101 151 201 251 301 351 401 451

0.4

0.5

0.6

0.7

Number of top returned images

P
re

c
is

io
n

@
3
2
b
it
s

(c) NUS-WIDE

ITQ-CCA

KSH

SGH

FastHash

COSDISH

SDH

AMVHbin

AMVHreal

AMVHmul

Figure 1. Retrieval performance of different hashing methods on three datasets. Top row: MAP with different code lengths; bottom row:

top-K precision with 32-bit codes w.r.t. different numbers of top returned images.

ly select m anchor points {u1, . . . ,um} from the database

and map x into an m-dimensional representation, using

φ(x) = [exp(‖x − u1‖2/σ), . . . , exp(‖x − um‖2/σ)].
Here, σ is the kernel width estimated according to the aver-

age Euclidean distances between the training samples.

Label transformation. Given the binary label vectors,

we generate the similarity matrix by YTY. Compared to

the binary similarity matrix used in [21, 24], YTY can

make better use of the supervised information implied in

the semantic labels. In addition, as will be detailed later, it

also facilitates the training of large-scale dataset efficiently.

However, due to the label imbalance problem demonstrated

by [5], YTY is improper for direct use. For this reason, the

label transformation is applied to construct a new semantic

similarity matrix: Ŝ = (1 + α)YTY − α. Here α is set to

µ(ns/nd), where µ is a hyper-parameter; ns and nd are the

number of similar and dissimilar pairs, respectively, which

satisfy ns + nd = N2. Explicitly using Ŝ in Algorithm 1

is both time and storage consuming. Inspired by SGH [13],

Ŝ is decomposed into a product of two smaller matrices,

that is, Ŝ = PTQ, where P = [
√
1 + αY;

√
α1T ],Q =

[
√
1 + αY;−√

α1T ] ∈ R
(C+1)×N . Thus, we employ

the factorization instead of the original Ŝ for computation,

which reduces the complexity from O(N2) to O(NC).
Implementation details. For the compared hashing

methods, the public codes and the suggested parameter-

s from the corresponding authors are utilized. For the

kernel-based hashing methods (KSH, SDH, and AMVH),

m = 1, 000 anchors are randomly chosen for RBF ker-

nel mapping. For a fair comparison, RBF-kernel SVM and

kernel ridge regression are adopted as hash functions for

FastHash and COSDISH, respectively. For AMVH, we set

parameter λ to 1N/C and µ to 0.5 via cross-validation; dic-

tionary size to 256, maximum iteration number t to 15, pa-

rameter l to 1 or 10. And C is circularly updated 10 times.

Evaluation criteria. The widely used criteria: mean

average precision (MAP) and top-K precision are adopted

to evaluate retrieval performance. Additionally, we report

the query time under different code lengths to evaluate the

search efficiency and the training time to evaluate the scal-

ability. For all methods, the query time consists of three

parts: one query sample encoding, distance (similarity) ma-

trix construction and RBF kernel mapping if any.

3.3. Results

Retrieval performance. The retrieval performance of

different hashing methods on ESP-GAME, MIR-FLICKR

and NUS-WIDE is illustrated in Fig. 1. It is obvious that

the performance of the unsupervised hashing method (S-

GH) is worse than that of the supervised methods on all

datasets. Moreover, the asymmetric hashing methods, es-

pecially COSDISH, SDH and AMVH, achieve preferable

performance over the symmetric methods (e.g., KSH and

ITQ-CCA). Therefore, we mainly compare AMVH against

COSDISH and SDH in the remaining sections.

From the top row in Fig. 1, it broadly shows that both

AMVHreal and AMVHmul outperform the other six meth-

ods remarkably on three datasets, especially on ESP-GAME

and NUS-WIDE. First, we compare AMVHreal with SD-

H and COSDISH, as the database points are represented

by binary codes in these methods. Obviously, the perfor-

mance of AMVHreal is better than the others. For exam-

ple, AMVHreal outperforms SDH by 14.53% with 8 bits on

ESP-GAME. Clearly, this shows that the real-valued query

741



Table 2. Training and testing time of different hashing methods on MIR-FLICKR and NUS-WIDE.

Method

MIR-FLICKR (25K, 512-GIST) NUS-WIDE (209K, 500-BoW)

Training Time (s) Testing Time (ms) Training Time (s) Testing Time (ms)

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

ITQ-CCA 11.28 11.84 13.20 0.0865 0.1292 0.1255 119.16 123.39 126.22 0.6467 0.8631 0.8959

KSH 630.91 1285.59 2628.70 0.1197 0.1613 0.1535 624.58 1160.41 2201.88 0.7345 0.8956 0.8533

SGH 6.61 11.73 22.64 0.1280 0.1708 0.1655 31.19 54.37 77.89 0.7193 0.9120 0.8698

FastHash 346.15 632.88 1170.55 0.1232 0.1625 0.1566 402.15 747.89 1469.37 0.7462 0.9108 0.8756

COSDISH 5.49 17.50 67.85 0.1210 0.1619 0.1530 49.59 129.72 425.68 0.7125 0.9135 0.8797

SDH 10.02 20.08 48.45 0.1248 0.1681 0.1606 110.61 235.20 598.67 0.7150 0.9224 0.8662

AMVHreal 7.03 11.93 36.65 0.1642 0.1618 0.1615 61.06 105.38 316.41 1.1274 1.1265 1.1363

AMVHmul 14.21 18.96 59.38 0.3814 0.3888 0.3852 126.76 166.89 496.78 3.1443 3.0689 3.1317

can improve the search accuracy. Second, compared with

AMVHreal, AMVHmul further enhances the capability of

similarity preservation by the multi-integer-valued embed-

ding, achieving the highest MAP on all datasets. For ex-

ample, AMVHmul outperforms COSDISH by 12.41% with

64 bits on NUS-WIDE. Thus, these results verify the su-

periority of the multi-integer-valued embedding strategy of

our approach. Third, AMVHbin obtains a little worse per-

formance, which is because that transforming real values

to binary codes brings some quantization error. However,

AMVHbin is comparable to SDH and COSDISH on ESP-

GMAE and NUS-WIDE. This indirectly demonstrates the

power of our approach. Finally, it is worthy to note that

the performance of AMVHreal and AMVHmul with short-

er codes is superior to that of SDH and COSDISH with 64
bits in most cases. This indicates that AMVH can achieve

satisfying MAP with short code length by leveraging the

real-valued and the multi-integer-valued embeddings.

From the bottom row in Fig. 1, the top-K precision of

AMVHmul is much higher than other methods, especially

on ESP-GAME and NUS-WIDE. Concretely, AMVHmul

gains 11.53% improvement over SDH on ESPGAME at

top-51 and 18.50% improvement over COSDISH on NUS-

WIDE at top-251. Morever, although the top-1 precision of

SDH is almost equal to that of AMVHmul, the performance

degradation of SDH is more serious than AMVHmul and

COSDISH, on MIR-FLICKR. In a word, AMVHmul retains

stable performance and preserves the highest precision with

different numbers of top returned images.

Training time. In order to evaluate the efficiency of our

approach, we report the training time of AMVHreal and

AMVHmul on two large datasets MIR-FLICKR and NUS-

WIDE in Table 2. It can be seen that some prior hashing

methods are time-consuming due to direct manipulations on

the N × N similarity matrix S (e.g., FastHash and KSH).

In comparison with COSDISH and SDH, AMVHreal takes

a little longer time to learn 16-bit hash function and less

time for 32-bit and 64-bit. Moreover, the training time of

AMVHmul is longer than that of AMVHreal but compara-

ble to that of SDH and COSDISH with longer codes.

To further evaluate the scalability of our approach, we

select five training subsets of different sizes from the NUS-

WIDE. Table 3 reports the training time of COSDISH, SDH

and AMVH on different subsets of NUS-WIDE with 16-bit

codes. Clearly, AMVHreal is more scalable than SDH and

is slightly worse than COSDISH, but AMVHmul is com-

parable with SDH and is worse than COSDISH. However,

refering to Table 2, our approach is scalable with different

code lengths. In summary, AMVH is scalable to deal with

large-scale datasets and long code lengths.

Table 3. Training time (in seconds) on different sizes of subsets

from NUS-WIDE with 16-bit codes.

Method
NUS-WIDE (209K, 500-BoW)

5 K 20 K 50 K 100 K 200 K

COSDISH 1.46 4.10 10.64 22.18 41.14

SDH 2.50 11.83 28.99 61.95 130.89

AMVHreal 1.79 6.33 16.26 34.98 69.55

AMVHmul 3.24 12.10 29.98 63.01 137.43

Testing time. Referring to Table 2, three conclusions can

be drawn as follows: (1) The testing time of the compared

methods becomes longer as the code length increases, while

that of AMVHreal and AMVHmul is almost the same for all

code lengths. The reason is that, as analyzed in Section 2.6,

the testing time of AMVHreal and AMVHmul only depends

on l and the database size N , rather than the code length K;

(2) AMVHreal takes slightly longer testing time than other

methods except AMVHmul, since the floating point oper-

ations are more complex than bitwise operations; (3) The

testing time of AMVHmul is the longest, but it can obtain

such desirable performance as shown in Fig 1. Since both

the testing time and retrieval performance rely on l in our

approach, it is flexible to make a trade-off between them.

3.4. Empirical Analysis

Convergence. We validate the convergence of the alter-

native optimization algorithm by experiments. The conver-

gence curves on three datasets with 16-bit codes are illus-

trated in the left of Fig. 3. For convenience, the objective

values are normalized by dividing the maximum on each

742



16 32 64 128 256 512 1024
0.3

0.4

0.5

0.6

Dictionary size

M
A

P

(a) ESP-GAME

AMVHreal AMVHmul

16 32 64 128 256 512 1024
0.6

0.7

0.8

0.9

Dictionary size

M
A

P

(b) MIR-FLICKR

AMVHreal AMVHmul

16 32 64 128 256 512 1024
0.5

0.6

0.7

0.8

Dictionary size

M
A

P

(c) NUS-WIDE

AMVHreal AMVHmul

Figure 2. The search performance of AMVHreal and AMVHmul on the different dictionary sizes on three datasets with 48-bit codes.

Green dashed lines represent the highest MAP of the compared binary hashing methods with 48-bit codes.

dataset. Clearly, the proposed algorithm converges in less

than 15 iterations, demonstrating the high convergence rate.

The effect of l. To empirically verify the effect of l,
the MAP on all datasets with 16-bit codes is reported in the

right of Fig. 3. For convenience, we normalize the MAP by

dividing the maximum on each dataset. It can be seen that

the search performance has a strong relation to l. The MAP

increases rapidly between l = 1 and l = 10, and tends

to be saturated when l is larger than 15. Clearly, AMVH

achieves high MAP with smaller l on NUS-WIDE. It means

that choosing a larger l is not a strict requirement, and thus l
is set to 10 for AMVHmul on all datasets just to demonstrate

the superiority of the multi-integer-valued embeddings.

0 5 10 15 20 25 30
0.75

0.8

0.85

0.9

0.95

1

Iteration number t

N
o

rm
a

liz
e

d
o

b
je

c
ti
ve

va
lu

e

ESP-GAME

MIR-FLICKR

NUS-WIDE

1 10 20 30 40

0.94

0.96

0.98

1

Hyper-parameter l

N
o

rm
a

liz
e

d
M

A
P

ESP-GAME

MIR-FLICKR

NUS-WIDE

Figure 3. Left: convergence curves of AMVHmul on three datasets

with 16-bit codes. Right: the effect of l on MAP on three datasets

with 16-bit codes.

The effect of M . To investigate the effect of dictionary

size M on the search performance, we show the MAP re-

sults on three datastes with 48-bit codes in Fig. 2. As can

be seen from this figure, the MAP of AMVHreal gradual-

ly becomes higher with more atoms, especially on NUS-

WIDE. While AMVHmul always keeps stably satisfying

performance even in the extreme case of 16 atoms. In Fig. 2,

green dashed lines represent the highest MAP of the com-

pared binary hashing methods with 48-bit codes. Compared

with this baseline, AMVHmul with 16 atoms outperforms

the binary hashing with 48-bit codes on all datasets. While

AMVHreal requires more atoms to surpass them. The un-

derlying reason is that AMVHreal chooses only one atom

to represent the database points. Thus, there are only M
kinds of hash codes. While AMVHmul use the sum of 10
atoms selected from M atoms for encoding so that there

are far more than M combinations. Consequently, it reveal-

s that the multi-integer-valued embeddings can remarkably

improve the search accuracy even with a small dictionary.

As previously mentioned, the storage of AMVHmul with

32 atoms is 10 × log2 32 = 50 bits per sample, which ap-

proximately equals to that of the binary hashing method-

s with 48 bits. As illustrated in Fig. 2, AMVHmul with

32 atoms is greatly superior to the compared binary hash-

ing methods with approximate storage cost (i.e., 48 bits) on

three datasets. In addition, AMVHreal is also better than

the binary hashing methods in most cases. Specifically, the

storage of AMVHreal with 64 atoms (i.e., 1 × log2 64 = 6
bits) is far less than 48 bits of binary codes. To sum up,

AMVH in a way of the multi-valued embeddings achieves

favorable performance with the same or even less storage

cost compared to the traditional binary hashing methods.

4. Conclusion

In this paper, we proposed the Asymmetric Multi-Valued

Hashing method (AMVH). By leveraging both the real-

valued embeddings and the multi-integer-valued embed-

dings, the proposed approach alleviates the binary limita-

tion and achieves appealing search performance. Due to the

well-designed binary sparse representation and the efficient

alternative optimization algorithm, AMVH remains high ef-

ficiency of query and storage, even if the non-binary embed-

dings are employed. Experiments conducted on three multi-

label datasets demonstrate the superiority of our AMVH to

the existing conventional binary hashing methods.

5. Acknowledgments

This work was supported in part by the National Nat-

ural Science Foundation of China under Grants 91646207,

91338202, 61620106003, and 61671451. This work was al-

so supported in part by the Strategic Priority Research Pro-

gram of the CAS (Grant XDB02060009) and the Beijing

Natural Science Foundation under Grant (4162064).

743



References

[1] T. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng.

NUS-WIDE: a real-world web image database from national

university of singapore. In CIVR, pages 1–9, 2009. 5

[2] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni.

Locality-sensitive hashing scheme based on p-stable distri-

butions. In SCG, pages 253–262, 2004. 1

[3] K. Ding, B. Fan, C. Huo, S. Xiang, and C. Pan. Cross-modal

hashing via rank-order preserving. TMM, 19(3):571–585,

2017. 1

[4] K. Ding, C. Huo, B. Fan, and C. Pan. knn hashing with fac-

torized neighborhood representation. In ICCV, pages 1098–

1106, 2015. 2

[5] K. Ding, C. Huo, B. Fan, S. Xiang, and C. Pan. In defense of

locality-sensitive hashing. TNNLS, preprint:1–17, 2016. 1, 6

[6] W. Dong, M. Charikar, and K. Li. Asymmetric dis-

tance estimation with sketches for similarity search in high-

dimensional spaces. In SIGIR, pages 123–130, 2008. 1

[7] A. Gionis, P. Indyk, and R. Motwani. Similarity search in

high dimensions via hashing. In VLDB, pages 518–529,

1999. 1

[8] Y. Gong, S. Kumar, H. A. Rowley, and S. Lazebnik. Learning

binary codes for high-dimensional data using bilinear projec-

tions. In CVPR, pages 484–491, 2013. 1

[9] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Itera-

tive quantization: A procrustean approach to learning binary

codes for large-scale image retrieval. TPAMI, 35(12):2916–

2929, 2013. 1, 5

[10] Y. Gong, M. Pawlowski, F. Yang, L. Brandy, L. Boundev,

and R. Fergus. Web scale photo hash clustering on a single

machine. In CVPR, pages 19–27, 2015. 3

[11] A. Gordo, F. Perronnin, Y. Gong, and S. Lazebnik. Asym-

metric distances for binary embeddings. TPAMI, 36(1):33–

47, 2014. 1, 2

[12] M. J. Huiskes and M. S. Lew. The MIR flickr retrieval eval-

uation. In MIR, pages 39–43, 2008. 5

[13] Q. Jiang and W. Li. Scalable graph hashing with feature

transformation. In IJCAI, pages 2248–2254, 2015. 1, 5, 6

[14] W. Kang, W. Li, and Z. Zhou. Column sampling based dis-

crete supervised hashing. In AAAI, pages 1230–1236, 2016.

1, 2, 4, 5

[15] W. Kong and W. Li. Isotropic hashing. In NIPS, pages 1655–

1663, 2012. 1

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, pages 1106–1114, 2012. 1

[17] B. Kulis and T. Darrell. Learning to hash with binary recon-

structive embeddings. In NIPS, pages 1042–1050, 2009. 1,

5

[18] B. Kulis and K. Grauman. Kernelized locality-sensitive

hashing. TPAMI, 34(6):1092–1104, 2012. 1

[19] W. Li, S. Wang, and W. Kang. Feature learning based deep

supervised hashing with pairwise labels. In IJCAI, pages

1711–1717, 2016. 1

[20] G. Lin, C. Shen, D. Suter, and A. van den Hengel. A gen-

eral two-step approach to learning-based hashing. In ICCV,

pages 2552–2559, 2013. 1

[21] G. Lin, C. Shen, and A. van den Hengel. Supervised hash-

ing using graph cuts and boosted decision trees. TPAMI,

37(11):2317–2331, 2015. 1, 2, 5, 6

[22] L. Liu and L. Shao. Sequential compact code learning for

unsupervised image hashing. TNNLS, preprint:1–11, 2016.

1

[23] W. Liu, C. Mu, S. Kumar, and S. Chang. Discrete graph

hashing. In NIPS, pages 3419–3427, 2014. 1

[24] W. Liu, J. Wang, R. Ji, Y. Jiang, and S. Chang. Supervised

hashing with kernels. In CVPR, pages 2074–2081, 2012. 1,

2, 5, 6

[25] W. Liu, J. Wang, S. Kumar, and S. Chang. Hashing with

graphs. In ICML, pages 1–8, 2011. 4

[26] B. Neyshabur, N. Srebro, R. Salakhutdinov, Y. Makarychev,

and P. Yadollahpour. The power of asymmetry in binary

hashing. In NIPS, pages 2823–2831, 2013. 1

[27] M. Norouzi and D. J. Fleet. Minimal loss hashing for com-

pact binary codes. In ICML, pages 353–360, 2011. 1

[28] M. Norouzi and D. J. Fleet. Cartesian k-means. In CVPR,

pages 3017–3024, 2013. 3

[29] M. Norouzi, D. J. Fleet, and R. Salakhutdinov. Hamming

distance metric learning. In NIPS, pages 1070–1078, 2012.

1

[30] A. Oliva and A. Torralba. Modeling the shape of the scene:

A holistic representation of the spatial envelope. IJCV,

42(3):145–175, 2001. 5

[31] M. Raginsky and S. Lazebnik. Locality-sensitive binary

codes from shift-invariant kernels. In NIPS, pages 1509–

1517, 2009. 1

[32] J. Sánchez, F. Perronnin, T. Mensink, and J. J. Verbeek. Im-

age classification with the fisher vector: Theory and practice.

IJCV, 105(3):222–245, 2013. 1

[33] F. Shen, W. Liu, S. Zhang, Y. Yang, and H. T. Shen. Learning

binary codes for maximum inner product search. In ICCV,

pages 4148–4156, 2015. 1, 2

[34] F. Shen, C. Shen, W. Liu, and H. T. Shen. Supervised discrete

hashing. In CVPR, pages 37–45, 2015. 1, 2, 3, 4, 5

[35] F. Shen, C. Shen, Q. Shi, A. van den Hengel, Z. Tang,

and H. T. Shen. Hashing on nonlinear manifolds. TIP,

24(6):1839–1851, 2015. 4

[36] C. Strecha, A. M. Bronstein, M. M. Bronstein, and P. Fua.

Ldahash: Improved matching with smaller descriptors. TPA-

MI, 34(1):66–78, 2012. 1

[37] L. von Ahn and L. Dabbish. Labeling images with a com-

puter game. In CHI, pages 319–326, 2004. 5

[38] J. Wang, O. Kumar, and S. Chang. Semi-supervised hashing

for scalable image retrieval. In CVPR, pages 3424–3431,

2010. 1

[39] J. Wang, H. T. Shen, J. Song, and J. Ji. Hashing for similarity

search: A survey. CoRR, abs/1408.2927:1–29, 2014. 1

[40] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In

NIPS, pages 1753–1760, 2008. 1

[41] J. Zhang, Y. Peng, and J. Zhang. SSDH: semi-supervised

deep hashing for large scale image retrieval. CoRR,

abs/1607.08477:1–13, 2016. 1

744


