
ECO: Efficient Convolution Operators for Tracking

Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, Michael Felsberg

Computer Vision Laboratory, Department of Electrical Engineering, Linköping University, Sweden

{martin.danelljan, goutam.bhat, fahad.khan, michael.felsberg}@liu.se

Abstract

In recent years, Discriminative Correlation Filter (DCF)

based methods have significantly advanced the state-of-the-

art in tracking. However, in the pursuit of ever increasing

tracking performance, their characteristic speed and real-

time capability have gradually faded. Further, the increas-

ingly complex models, with massive number of trainable pa-

rameters, have introduced the risk of severe over-fitting. In

this work, we tackle the key causes behind the problems of

computational complexity and over-fitting, with the aim of

simultaneously improving both speed and performance.

We revisit the core DCF formulation and introduce: (i) a

factorized convolution operator, which drastically reduces

the number of parameters in the model; (ii) a compact gen-

erative model of the training sample distribution, that sig-

nificantly reduces memory and time complexity, while pro-

viding better diversity of samples; (iii) a conservative model

update strategy with improved robustness and reduced com-

plexity. We perform comprehensive experiments on four

benchmarks: VOT2016, UAV123, OTB-2015, and Temple-

Color. When using expensive deep features, our tracker pro-

vides a 20-fold speedup and achieves a 13.0% relative gain

in Expected Average Overlap compared to the top ranked

method [12] in the VOT2016 challenge. Moreover, our fast

variant, using hand-crafted features, operates at 60 Hz on a

single CPU, while obtaining 65.0% AUC on OTB-2015.

1. Introduction

Generic visual tracking is one of the fundamental prob-

lems in computer vision. It is the task of estimating the tra-

jectory of a target in an image sequence, given only its ini-

tial state. Online visual tracking plays a crucial role in nu-

merous real-time vision applications, such as smart surveil-

lance systems, autonomous driving, UAV monitoring, intel-

ligent traffic control, and human-computer-interfaces. Due

to the online nature of tracking, an ideal tracker should

be accurate and robust under the hard computational con-

straints of real-time vision systems.

In recent years, Discriminative Correlation Filter (DCF)

ECO C-COT

Figure 1. A comparison of our approach ECO with the baseline

C-COT [12] on three example sequences. In all three cases, C-

COT suffers from severe over-fitting to particular regions of the

target. This causes poor target estimation in cases of scale varia-

tions (top row), deformations (middle row), and out-of-plane ro-

tations (bottom row). Our ECO tracker successfully tackles the

causes of over-fitting, leading to better generalization of the target

appearance, while achieving a 20-fold speedup.

based approaches have shown continuous performance im-

provements in terms of accuracy and robustness on track-

ing benchmarks [23, 37]. The recent advancement in

DCF based tracking performance is driven by the use of

multi-dimensional features [13, 15], robust scale estimation

[7, 11], non-linear kernels [20], long-term memory com-

ponents [28], sophisticated learning models [3, 10] and re-

ducing boundary effects [9, 16]. However, these improve-

ments in accuracy come at the price of significant reductions

in tracking speed. For instance, the pioneering MOSSE

tracker by Bolme et al. [4] is about 1000× faster than the re-

cent top-ranked DCF tracker, C-COT [12], in the VOT2016

challenge [23], but obtains only half the accuracy.

As mentioned above, the advancement in DCF tracking

performance is predominantly attributed to powerful fea-

tures and sophisticated learning formulations [8, 12, 27].

This has led to substantially larger models, requiring hun-

dreds of thousands of trainable parameters. On the other

hand, such complex and large models have introduced the

6638

risk of severe over-fitting (see figure 1). In this paper,

we tackle the issues of over-fitting in recent DCF trackers,

while restoring their hallmark real-time capabilities.

1.1. Motivation

We identify three key factors that contribute to both in-

creased computational complexity and over-fitting in state-

of-the-art DCF trackers.

Model size: The integration of high-dimensional feature

maps, such as deep features, has led to a radical increase

in the number of appearance model parameters, often be-

yond the dimensionality of the input image. As an example,

C-COT [12] continuously updates about 800,000 parame-

ters during the online learning of the model. Due to the

inherent scarcity of training data in tracking, such a high-

dimensional parameter space is prone to over-fitting. Fur-

ther, the high dimensionality causes an increase in the com-

putational complexity, leading to slow tracking speed.

Training set size: State-of-the-art DCF trackers, includ-

ing C-COT, require a large training sample set to be stored

due to their reliance on iterative optimization algorithms.

In practice however, the memory size is limited, particu-

larly when using high-dimensional features. A typical strat-

egy for maintaining a feasible memory consumption is to

discard the oldest samples. This may however cause over-

fitting to recent appearance changes, leading to model drift

(see figure 1). Moreover, a large training set increases the

computational burden.

Model update: Most DCF-based trackers apply a contin-

uous learning strategy, where the model is updated rigor-

ously in every frame. On the contrary, recent works have

shown impressive performance without any model update,

using Siamese networks [2]. Motivated by these findings,

we argue that the continuous model update in state-of-the-

art DCF is excessive and sensitive to sudden changes caused

by, e.g., scale variations, deformations, and out-of-plane ro-

tations (see figure 1). This excessive update strategy causes

both lower frame-rates and degradation of robustness due to

over-fitting to the recent frames.

1.2. Contributions

We propose a novel formulation that addresses the previ-

ously listed issues of state-of-the-art DCF trackers. As our

first contribution, we introduce a factorized convolution op-

erator that dramatically reduces the number of parameters

in the DCF model. Our second contribution is a compact

generative model of the training sample space that effec-

tively reduces the number of samples in the learning, while

maintaining their diversity. As our final contribution, we

introduce an efficient model update strategy, that simulta-

neously improves tracking speed and robustness.

Comprehensive experiments clearly demonstrate that our

approach concurrently improves both tracking performance

and speed, thereby setting a new state-of-the-art on four

benchmarks: VOT2016, UAV123, OTB-2015, and Temple-

Color. Our approach significantly reduces the number of

model parameters by 80%, training samples by 90% and

optimization iterations by 80% in the learning, compared

to the baseline. On VOT2016, our approach outperforms

the top ranked tracker, C-COT [12], in the challenge, while

achieving a significantly higher frame-rate. Furthermore,

we propose a fast variant of our tracker that maintains com-

petitive performance, with a speed of 60 frames per second

(FPS) on a single CPU, thereby being especially suitable for

computationally restricted robotics platforms.

2. Baseline Approach: C-COT

In this work, we collectively address the problems of

computational complexity and over-fitting in state-of-the-

art DCF trackers. We adopt the recently introduced Con-

tinuous Convolution Operator Tracker (C-COT) [12] as our

baseline. The C-COT obtained the top rank in the recent

VOT2016 challenge [23], and has demonstrated outstand-

ing results on other tracking benchmarks [26, 37]. Unlike

the standard DCF formulation, Danelljan et al. [12] pose

the problem of learning the filters in the continuous spatial

domain. The generalized formulation in C-COT yields two

advantages that are relevant to our work.

The first advantage of C-COT is the natural integration

of multi-resolution feature maps, achieved by performing

convolutions in the continuous domain. This provides the

flexibility of choosing the cell size (i.e. resolution) of each

visual feature independently, without the need for explicit

re-sampling. The second advantage is that the predicted de-

tection scores of the target are directly obtained as a contin-

uous function, enabling accurate sub-grid localization.

Here, we briefly describe the C-COT formulation, adopt-

ing the same notation as in [12] for convenience. The C-

COT discriminatively learns a convolution filter based on a

collection of M training samples {xj}
M
1 ⊂ X . Unlike the

standard DCF, each feature layer xd
j ∈ RNd has an inde-

pendent resolution Nd.1 The feature map is transfered to

the continuous spatial domain t ∈ [0, T) by introducing an

interpolation model, given by the operator Jd,

Jd
{

xd
}

(t) =

Nd−1
∑

n=0

xd[n]bd

(

t−
T

Nd

n

)

. (1)

Here, bd is an interpolation kernel with period T > 0. The

result Jd
{

xd
}

is thus an interpolated feature layer, viewed

as a continuous T -periodic function. We use J{x} to denote

the entire interpolated feature map, where J{x}(t) ∈ RD.

In the C-COT formulation, a continuous T -periodic

multi-channel convolution filter f = (f1 . . . fD) is trained

1For clarity, we present the one-dimensional domain formulation. The

generalization to higher dimensions, including images, is detailed in [12].

6639

to predict the detection scores Sf{x}(t) of the target as,

Sf{x} = f ∗ J{x} =

D
∑

d=1

fd ∗ Jd
{

xd
}

. (2)

The scores are defined in the corresponding image region

t ∈ [0, T) of the feature map x ∈ X . In (2), the convo-

lution of single-channel T -periodic functions is defined as

f ∗ g(t) = 1

T

∫ T

0
f(t − τ)g(τ) dτ . The multi-channel con-

volution f ∗ J{x} is obtained by summing the result of all

channels, as defined in (2). The filters are learned by mini-

mizing the following objective,

E(f) =

M
∑

j=1

αj ‖Sf{xj} − yj‖
2

L2 +

D
∑

d=1

∥

∥wfd
∥

∥

2

L2
. (3)

The labeled detection scores yj(t) of sample xj is set to

a periodically repeated Gaussian function. The data term

consists of the weighted classification error, given by the

L2-norm ‖g‖2
L2 = 1

T

∫ T

0
|g(t)|2 dt, where αj ≥ 0 is the

weight of sample xj . The regularization integrates a spa-

tial penalty w(t) to mitigate the drawbacks of the periodic

assumption, while enabling an extended spatial support [9].

As in previous DCF methods, a more tractable optimiza-

tion problem is obtained by changing to the Fourier basis.

Parseval’s formula implies the equivalent loss,

E(f) =

M
∑

j=1

αj

∥

∥

∥
Ŝf{xj} − ŷj

∥

∥

∥

2

ℓ2
+

D
∑

d=1

∥

∥

∥
ŵ ∗ f̂d

∥

∥

∥

2

ℓ2
. (4)

Here, the hat ĝ of a T -periodic function g denotes the

Fourier series coefficients ĝ[k] = 1

T

∫ T

0
g(t)e−i 2π

T
kt dt and

the ℓ2-norm is defined by ‖ĝ‖2
ℓ2

=
∑

∞

−∞
|ĝ[k]|2. The

Fourier coefficients of the detection scores (2) are given by

the formula Ŝf{x} =
∑D

d=1
f̂dXdb̂d, where Xd is the Dis-

crete Fourier Transform (DFT) of xd.

In practice, the filters fd are assumed to have finitely

many non-zero Fourier coefficients {f̂d[k]}Kd

−Kd
, where

Kd =
⌊

Nd

2

⌋

. Eq. (4) then becomes a quadratic problem,

optimized by solving the normal equations,

(

AHΓA+WHW
)

f̂ = AHΓŷ . (5)

Here, f̂ and ŷ are vectorizations of the Fourier coefficients

in fd and yj , respectively. The matrix A exhibits a sparse

structure, with diagonal blocks containing elements of the

form Xd
j [k]b̂d[k]. Further, Γ is a diagonal matrix of the

weights αj and W is a convolution matrix with the ker-

nel ŵ[k]. The C-COT [12] employs the Conjugate Gradient

(CG) method [32] to iteratively solve (5), since it was shown

to effectively utilize the sparsity structure of the problem.

3. Our Approach

As discussed earlier, over-fitting and computational bot-

tlenecks in the DCF learning stem from common factors.

We therefore proceed with a collective treatment of these

issues, aiming at both improved performance and speed.

Robust learning: As mentioned earlier, the large number

of optimized parameters in (3) may cause over-fitting due

to limited training data. We alleviate this issue by introduc-

ing a factorized convolution formulation in section 3.1. This

strategy radically reduces the number of model parameters

by 80% in the case of deep features, while increasing track-

ing performance. Moreover, we propose a compact gener-

ative model of the sample distribution in section 3.2, that

boosts diversity and avoids the previously discussed prob-

lems related to storing a large sample set. Finally, we inves-

tigate strategies for updating the model in section 3.3 and

conclude that a less frequent update of the filter stabilizes

the learning, which results in more robust tracking.

Computational complexity: The learning step is the com-

putational bottleneck in optimization-based DCF trackers,

such as C-COT. The computational complexity of the ap-

pearance model optimization in C-COT is obtained by ana-

lyzing the Conjugate Gradient algorithm applied to (5). The

complexity can be expressed as O(NCGDMK̄),2 where

NCG is the number of CG iterations and K̄ = 1

D

∑

d Kd is

the average number of Fourier coefficients per filter chan-

nel. Motivated by this complexity analysis of the learning,

we propose methods for reducing D, M and NCG in sec-

tions 3.1, 3.2, and 3.3 respectively.

3.1. Factorized Convolution Operator

We first introduce a factorized convolution approach,

with the aim of reducing the number of parameters in the

model. We observed that many of the filters fd learned in

C-COT contain negligible energy. This is particularly ap-

parent for high-dimensional deep features, as visualized in

figure 2. Such filters hardly contribute to target localization,

but still affect the training time. Instead of learning one sep-

arate filter for each feature channel d, we use a smaller set

of basis filters f1, . . . , fC , where C < D. The filter for

feature layer d is then constructed as a linear combination
∑C

c=1
pd,cf

c of the filters f c using a set of learned coeffi-

cients pd,c. The coefficients can be compactly represented

as a D × C matrix P = (pd,c). The new multi-channel fil-

ter can then be written as the matrix-vector product Pf . We

obtain the factorized convolution operator,

SPf{x} = Pf∗J{x}=
∑

c,d

pd,cf
c∗Jd

{

xd
}

=f∗P TJ{x}.

(6)

The last equality follows from the linearity of convolu-

tion. The factorized convolution (6) can thus alternatively

2See the supplementary material for a derivation.

6640

(a) C-COT (b) Ours

Figure 2. Visualization of the learned filters corresponding to the last convolutional layer in the deep network. We display all the 512 filters

fd learned by the baseline C-COT (a) and the reduced set of 64 filters fc obtained by our factorized formulation (b). The vast majority of the

baseline filters contain negligible energy, indicating irrelevant information in the corresponding feature layers. Our factorized convolution

formulation learns a compact set of discriminative basis filters with significant energy, achieving a radical reduction of parameters.

be viewed as a two-step operation where the feature vector

J{x}(t) at each location t is first multiplied with the ma-

trix P T. The resulting C-dimensional feature map is then

convolved with the filter f . The matrix P T thus resembles

a linear dimensionality reduction operator, as used in e.g.

[13]. The key difference is that we learn the filter f and

matrix P jointly, in a discriminative fashion, by minimizing

the classification error (3) of the factorized operator (6).

For simplicity, we consider learning the factorized op-

erator (6) from single training sample x. To simplify no-

tation, we use ẑd[k] = Xd[k]b̂d[k] to denote the Fourier

coefficients of the interpolated feature map z = J{x}. The

corresponding loss in the Fourier domain (4) is derived as,

E(f, P) =
∥

∥

∥
ẑTP f̂ − ŷ

∥

∥

∥

2

ℓ2
+

C
∑

c=1

∥

∥

∥
ŵ ∗ f̂ c

∥

∥

∥

2

ℓ2
+λ‖P‖2F . (7)

Here we have added the Frobenius norm of P as a regular-

ization, controlled by the weight parameter λ.

Unlike the original formulation (4), our new loss (7) is a

non-linear least squares problem. Due to the bi-linearity of

ẑTP f̂ , the loss (7) is similar to a matrix factorization prob-

lem [21]. Popular optimization strategies for these applica-

tions, including Alternating Least Squares, are however not

feasible due to the parameter size and online nature of our

problem. Instead, we employ Gauss-Newton [32] and use

the Conjugate Gradient method to optimize the quadratic

subproblems. The Gauss-Newton method is derived by lin-

earizing the residuals in (7) using a first order Taylor series

expansion. Here, this corresponds to approximating the bi-

linear term ẑTP f̂ around the current estimate (f̂i, Pi) as,

ẑT(Pi +∆P)(f̂i +∆f̂) ≈ ẑTPif̂i,∆ + ẑT∆P f̂i (8)

= ẑTPif̂i,∆ + (f̂i ⊗ ẑ)T vec(∆P).

Here, we set f̂i,∆ = f̂i + ∆f̂ . In the last equality, the

Kronecker product ⊗ is used to obtain a vectorization of

the matrix step ∆P .

The Gauss-Newton subproblem at iteration i is derived

by substituting the first-order approximation (8) into (7),

Ẽ(f̂i,∆,∆P) =
∥

∥

∥
ẑTPif̂i,∆ + (f̂i ⊗ ẑ)T vec(∆P)− ŷ

∥

∥

∥

2

ℓ2

+
C
∑

c=1

∥

∥

∥
ŵ ∗ f̂ c

i,∆

∥

∥

∥

2

ℓ2
+ µ‖Pi +∆P‖2F . (9)

Since the filter f is constrained to have finitely many non-

zero Fourier coefficients, eq. (9) is a linear least squares

problem. The corresponding normal equations have a partly

similar structure to (5), with additional components corre-

sponding to the matrix increment ∆P variable.3 We employ

the Conjugate Gradient method to optimize each Gauss-

Newton subproblem to obtain the new filter f̂∗

i,∆ and matrix

increment ∆P ∗. The filter and matrix estimates are then

updated as f̂i+1 = f̂∗

i,∆ and Pi+1 = Pi +∆P ∗.

The main objective of our factorized convolution opera-

tion is to reduce the computational and memory complexity

of the tracker. Due to the adaptability of the filter, the ma-

trix P can be learned just from the first frame. This has

two important implications. Firstly, only the projected fea-

ture map P TJ{xj} requires storage, leading to significant

memory savings. Secondly, the filter can be updated in sub-

sequent frames using the projected feature maps P TJ{xj}
as input to the method described in section 2. This reduces

the linear complexity in the feature dimensionality D to the

filter dimensionality C, i.e. O(NCGCMK̄).

3.2. Generative Sample Space Model

Here, we propose a compact generative model of the

sample set that averts the earlier discussed issues of stor-

ing a large set of recent training samples. Most DCF track-

ers, such as SRDCF [9] and C-COT [12], add one training

sample xj in each frame j. The weights are typically set

to decay exponentially αj ∼ (1 − γ)M−j , controlled by

3See supplementary material for the derivation of the normal equations.

6641

Component 1 Component 2 Component 3

Component 4

O
ur

 R
ep

re
se

nt
at

io
n

B
as

el
in

e

Figure 3. Visualization of the training set representation in the baseline C-COT (bottom row) and our method (top row). In C-COT, the

training set consists of a sequence of consecutive samples. This introduces large redundancies due to slow change in appearance, while

previous aspects of the appearance are forgotten. This can cause over-fitting to recent samples. Instead, we model the training data as a

mixture of Gaussian components, where each component represent a different aspect of the appearance. Our approach yields a compact

yet diverse representation of the data, thereby reducing the risk of over-fitting.

the learning rate γ. If the number of samples has reached a

maximum limit Mmax, the sample with the smallest weight

αj is replaced. This strategy however requires a large sam-

ple limit Mmax to obtain a representative sample set.

We observe that collecting a new sample in each frame

leads to large redundancies in the sample set, as visualized

in figure 3. The standard sampling strategy (bottom row)

populates the whole training set with similar samples xj ,

despite containing almost the same information. Instead,

we propose to use a probabilistic generative model of the

sample set that achieves a compact description of the sam-

ples by eliminating redundancy and enhancing variety (top).

Our approach is based on the joint probability distribu-

tion p(x, y) of the sample feature maps x and corresponding

desired outputs scores y. Given p(x, y), the intuitive objec-

tive is to find the filter that minimizes the expected correla-

tion error. This is obtained by replacing (3) with

E(f) = E

{

‖Sf{x} − y‖2
L2

}

+

D
∑

d=1

∥

∥wfd
∥

∥

2

L2
. (10)

Here, the expectation E is evaluated over the joint sample

distribution p(x, y). Note that the original loss (3) is ob-

tained as a special case by estimating the sample distribu-

tion as p(x, y) =
∑M

j=1
αjδxj ,yj

(x, y), where δxj ,yj
de-

notes the Dirac impulse at the training sample (xj , yj).
4 In-

stead, we propose to estimate a compact model of the sam-

4We can without loss of generality assume the weights αj sum to one.

ple distribution p(x, y) that leads to a more efficient approx-

imation of the expected loss (10).

We observe that the shape of the desired correlation out-

put y for a sample x is predetermined, here as a Gaus-

sian function. The label functions yj in (3) only differ

by a translation that aligns the peak with the target cen-

ter. This alignment is equivalently performed by shifting

the feature map x. We can thus assume that the target is

centered in the image region and that all y = y0 are iden-

tical. Hence, the sample distribution can be factorized as

p(x, y) = p(x)δy0
(y) and we only need to estimate p(x).

For this purpose we employ a Gaussian Mixture Model

(GMM) such that p(x) =
∑L

l=1
πlN (x;µl; I). Here, L

is the number of Gaussian components N (x;µl; I), πl is

the prior weight of component l, and µl ∈ X is its mean.

The covariance matrix is set to the identity matrix I to avoid

costly inference in the high-dimensional sample space.

To update the GMM, we use a simplified version of

the online algorithm by Declercq and Piater [14]. Given a

new sample xj , we first initialize a new component m with

πm = γ and µm = xj (concatenate in [14]). If the number

of components exceeds the limit L, we simplify the GMM.

We discard a component if its weight πl is below a thresh-

old. Otherwise, we merge the two closest components k and

l into a common component n [14],

πn = πk + πl , µn =
πkµk + πlµl

πk + πl

. (11)

The required distance comparisons ‖µk−µl‖ are efficiently

computed in the Fourier domain using Parseval’s formula.

6642

Finally, the expected loss (10) is approximated as,

E(f) =
L
∑

l=1

πl ‖Sf{µl} − y0‖
2

L2 +

D
∑

d=1

∥

∥wfd
∥

∥

2

L2
. (12)

Note that the Gaussian means µl and the prior weights πl

directly replace xj and αj , respectively, in (3). So, the same

training strategy as described in section 2 can be applied.

The key difference in complexity compared to (3) is that

the number of samples has decreased from M to L. In our

experiments, we show that the number of components L can

be set to M/8, while obtaining an improved tracking perfor-

mance. Our sample distribution model p(x, y) is combined

with the factorized convolution from section 3.1 by replac-

ing the sample x with the projected sample P TJx. The pro-

jection does not affect our formulation since the matrix P is

constant after the first frame.

3.3. Model Update Strategy

The standard approach in DCF based tracking is to up-

date the model in each frame [4, 9, 20]. In C-COT, this

implies optimizing (3) after each new sample is added, by

iteratively solving the normal equations (5). Iterative opti-

mization based DCF methods exploit that the loss function

changes gradually between frames. The current estimate of

the filter therefore provides a good initialization of the iter-

ative search. Still, updating the filter in each frame have a

severe impact on the computational load.

Instead of updating the model in a continuous fashion

every frame, we use a sparser updating scheme, which is a

common practice in non-DCF trackers [31, 38]. Intuitively,

an optimization process should only be started once suffi-

cient change in the objective has occurred. However, find-

ing such conditions is non-trivial and may lead to unneces-

sarily complex heuristics. Moreover, optimality conditions

based on the gradient of the loss (3), given by the residual

of (5), are expensive to evaluate in practice. We therefore

avoid explicitly detecting changes in the objective and sim-

ply update the filter by starting the optimization process in

every NSth frame. The parameter NS determines how often

the filter is updated, where NS = 1 corresponds to optimiz-

ing the filter in every frame, as in standard DCF methods. In

every NSth frame, we perform a fixed number of NCG Con-

jugate Gradient iterations to refine the model. As a result,

the average number of CG iterations per frame is reduced to

NCG/NS, which has a substantial effect on the overall com-

putational complexity of the learning. Note that NS does not

affect the updating of the sample space model, introduced

in section 3.2, which is updated every frame.

To our initial surprise, we observed that a moderately

infrequent update of the model (NS ≈ 5) generally led to

improved tracking results. We mainly attribute this effect to

reduced over-fitting to the recent training samples. By post-

poning the model update a few frames, the loss is updated

Conv-1 Conv-5 HOG CN

Feature dimension, D 96 512 31 11

Filter dimension, C 16 64 10 3

Table 1. The settings of the proposed factorized convolution ap-

proach, as employed in our experiments. For each feature, we

show the dimensionality D and the number of filters C.

by adding a new mini-batch to the training samples, instead

of only a single one. This might contribute to stabilizing

the learning, especially in scenarios where a new sample is

affected by sudden changes, such as out-of-plane rotations,

deformations, clutter, and occlusions (see figure 1).

While increasing NS leads to reduced computations, it

may also reduce the convergence speed of the optimization,

resulting in a less discriminative model. A naive compensa-

tion by increasing the number of CG iterations NCG would

counteract the achieved computational gains. Instead, we

aim to achieve a faster convergence by better adapting the

CG algorithm to online tracking, where the loss changes

dynamically. This is obtained by substituting the standard

Fletcher-Reeves formula to the Polak-Ribière formula [34]

for finding the momentum factor, since it has shown im-

proved convergence rates for inexact and flexible precondi-

tioning [18], which have similarities to our scenario.

4. Experiments

We validate our proposed formulation by performing

comprehensive experiments on four benchmarks: VOT2016

[23], UAV123 [29], OTB-2015 [37], and TempleColor [26].

4.1. Implementation Details

Our tracker is implemented in Matlab. We apply the

same feature representation as C-COT, namely a combina-

tion of the first (Conv-1) and last (Conv-5) convolutional

layer in the VGG-m network [5], along with HOG [6] and

Color Names (CN) [35]. For the factorized convolution pre-

sented in section 3.1, we learn one coefficient matrix P for

each feature type. The settings for each feature is summa-

rized in table 1. The regularization parameter λ in (7) is set

to 2 · 10−7. The loss (7) is optimized in the first frame us-

ing 10 Gauss-Newton iterations and 20 CG iterations for the

subproblems (9). In the first iteration i = 0, the filter f̂0 is

initialized to zero. To preserve the deterministic property of

the tracker, we initialize the coefficient matrix P0 by PCA,

though we found random initialization to be equally robust.

For the sample space model, presented in section 3.2, we

set the learning rate to γ = 0.012. The number of compo-

nents are set to L = 50, which represents an 8-fold reduc-

tion compared to the number of samples (M = 400) used

in C-COT. We update the filter in every NS = 6 frame (sec-

tion 3.3). We use the same number of NCG = 5 Conjugate

Gradient iterations as in C-COT. Note that all parameters

settings are kept fixed for all videos in a dataset.

6643

Baseline Factorized Sample Model

C-COT =⇒ Convolution =⇒ Space Model =⇒ Update

(Sec. 2) (Sec. 3.1) (Sec. 3.2) (Sec. 3.3)

EAO 0.331 0.342 0.352 0.374

FPS 0.3 1.1 2.6 6.0

Compl. change - D → C M → L NCG → NCG

NS

Compl. red. - 6× 8× 6×

Table 2. Analysis of our approach on the VOT2016. The impact

of progressively integrating one contribution at the time, from left

to right, is displayed. We show the performance in Expected Av-

erage Overlap (EAO) and speed in FPS (benchmarked on a single

CPU). We also summarize the reduction in learning complexity

O(NCGDMK̄) obtained in each step, both symbolically and in

absolute numbers (bottom row) using our settings. Our contribu-

tions systematically improve both performance and speed.

4.2. Baseline Comparison

Here, we analyze our approach on the VOT2016 bench-

mark by demonstrating the impact of progressively integrat-

ing our contributions. The VOT2016 dataset consists of 60

videos compiled from a set of more than 300 videos. The

performance is evaluated both in terms of accuracy (average

overlap during successful tracking) and robustness (failure

rate). The overall performance is evaluated using Expected

Average Overlap (EAO) which accounts for both accuracy

and robustness. We refer to [24] for details.

Table 2 shows an analysis of our contributions. The inte-

gration of our factorized convolution into the baseline leads

to a performance improvement and a significant reduction

in complexity (6×). The sample space model further im-

proves the performance by a relative gain of 2.9% in EAO,

while reducing the learning complexity by a factor of 8. Ad-

ditionally incorporating our proposed model update elevates

us to an EAO score of 0.374, leading to a final relative gain

of 13.0% compared to the baseline. In table 2 we also show

the impact on the tracker speed achieved by our contribu-

tions. For a fair comparison, we report the FPS measured on

a single CPU for all entries in the table, without accounting

for feature extraction time. Each of our contributions sys-

tematically improves the speed of the tracker, combining to

a 20-fold final gain compared to the baseline. When includ-

ing all steps (also feature extraction), the GPU version of

our tracker operates at 8 FPS.

We found the settings in table 1 to be insensitive to minor

changes. Substantial gain in speed can be obtained by re-

ducing the number of filters C, at the cost of a slight reduc-

tion in performance. To further analyze the impact of our

jointly learned factorized convolution approach, we com-

pare with applying PCA in the first frame to obtain the ma-

trix P . PCA degrades the EAO from 0.331 to 0.319, while

our discriminative learning based method achieves 0.342.

We observed that our sample model provides consis-

tently better results compared to the training sample set

management employed in C-COT when using the same

number of components and samples (L = M). This

50 100 200 500 1000

Sequence length

0

0.1

0.2

0.3

0.4

0.5

0.6

E
x
p

e
c
te

d
 o

v
e

rl
a

p

ECO [0.374]

C-COT [0.331]

TCNN [0.325]

ECO-HC [0.322]

SSAT [0.321]

MLDF [0.311]

Staple [0.295]

DDC [0.293]

EBT [0.291]

SRBT [0.290]

Figure 4. Expected Average Overlap (EAO) curve on VOT2016.

Only the top 10 trackers are shown for clarity. The EAO measure,

computed as the average EAO over typical sequence lengths (grey

region), is displayed in the legend (see [24] for details).

SRBT EBT DDC Staple MLDF SSAT TCNN C-COT ECO-HC ECO

[23] [39] [23] [1] [23] [23] [30] [12] Ours Ours

EAO 0.290 0.291 0.293 0.295 0.311 0.321 0.325 0.331 0.322 0.374

Fail. rt. 1.25 0.90 1.23 1.35 0.83 1.04 0.96 0.85 1.08 0.72

Acc. 0.50 0.44 0.53 0.54 0.48 0.57 0.54 0.52 0.53 0.54

EFO 3.69 3.01 0.20 11.14 1.48 0.48 1.05 0.51 15.13 4.53

Table 3. State-of-the-art in terms of expected average overlap

(EAO), robustness (failure rate), accuracy, and speed (in EFO

units) on the VOT2016 dataset. Only the top-10 trackers are

shown. Our deep feature based ECO achieve superior EAO, while

our hand-crafted feature version (ECO-HC) has the best speed.

is particularly evident for a smaller number of compo-

nents/samples: When reducing the number of samples from

M = 400 to M = 50 in the standard approach, the EAO

decreases from 0.342 to 0.338 (−1.2%). Instead, when us-

ing our approach with L = 50 components, the EAO in-

creases by +2.9% to 0.351. In case of the model update,

we observed an upward trend in performance when increas-

ing NS from 1 to 6. When increasing NS further, a gradual

downward trend was observed. We therefore use NS = 6
throughout our experiments.

4.3. State­of­the­art Comparison

Here, we compare our approach with state-of-the-art

trackers on four challenging tracking benchmarks. Detailed

results are provided in the supplementary material.

VOT2016 Dataset: In table 3 we compare our approach, in

terms of expected average overlap (EAO), robustness, ac-

curacy and speed (in EFO units), with the top-ranked track-

ers in the VOT2016 challenge. The first-ranked performer

in VOT2016 challenge, C-COT, provides an EAO score of

0.331. Our approach achieves a relative gain of 13.0%
in EAO compared to C-COT. Further, our ECO tracker

achieves the best failure rate of 0.72 while maintaining a

competitive accuracy. We also report the total speed in

terms of EFO, which normalizes the speed with respect to

hardware performance. Note that EFO also takes feature ex-

6644

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

10

20

30

40

50

60

70

80

O
v
e
rl
a
p
 P

re
c
is

io
n
 [
%

]

Success plot

ECO [53.7]

C-COT [51.7]

ECO-HC [51.7]

SRDCF [47.3]

Staple [45.3]

ASLA [41.5]

SAMF [40.3]

MUSTER [39.9]

MEEM [39.8]

Struck [38.7]

(a) UAV123

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

20

40

60

80

100

O
v
e

rl
a

p
 P

re
c
is

io
n

 [
%

]

Success plot

ECO [70.0]

C-COT [69.0]

MDNet [68.5]

TCNN [66.1]

ECO-HC [65.0]

DeepSRDCF [64.3]

SRDCFad [63.4]

SRDCF [60.5]

Staple [58.4]

SiameseFC [57.5]

(b) OTB-2015

0 0.2 0.4 0.6 0.8 1

Overlap threshold

0

10

20

30

40

50

60

70

80

90

O
v
e
rl
a
p
 P

re
c
is

io
n
 [
%

]

Success plot

ECO [60.5]

C-COT [59.7]

ECO-HC [55.8]

DeepSRDCF [54.3]

SRDCFad [54.1]

SRDCF [51.6]

Staple [50.9]

MEEM [50.6]

HCF [48.8]

SAMF [46.7]

(c) Temple-Color

Figure 5. Success plots on the UAV-123 (a), OTB-2015 (b) and TempleColor (c) datasets. Only the top 10 trackers are shown in the legend

for clarity. The AUC score of each tracker is shown in the legend. Our approach significantly improves the state-of-the-art on all datasets.

traction time into account, a major additive complexity that

is independent of our DCF improvements. In the compari-

son, our tracker ECO-HC using only hand-crafted features

(HOG and Color Names) achieves the best speed. Among

the top three trackers in the challenge, which are all based

on deep features, TCNN [30] obtains the best speed with an

EFO of 1.05. Our deep feature version (ECO) achieves an

almost 5-fold speedup in EFO and a relative performance

improvement of 15.1% in EAO compared to TCNN. Fig-

ure 4 displays the EAO curves of the top-10 trackers.

UAV123 Dataset: Aerial tracking using unmanned aerial

vehicles (UAVs) has received much attention recently, with

many vision applications, including wild-life monitoring,

search and rescue, navigation, and crowd surveillance. In

these applications, persistent UAV navigation is required,

for which real-time tracking output is crucial. In such cases,

the desired tracker should be accurate and robust, while

operating in real-time under limited hardware capabilities,

e.g., CPUs or mobile GPU platforms. We therefore intro-

duce a real-time variant of our method (ECO-HC), based on

hand-crafted features (HOG and Color Names), operating at

60 FPS on a single i7 CPU (including feature extraction).

We evaluate our trackers on the recently introduced

aerial video benchmark, UAV123 [29], for low altitude

UAV target tracking. The dataset consists of 123 aerial

videos with more than 110K frames. The trackers are eval-

uated using success plot [36], calculated as percentage of

frames with an intersection-over-union (IOU) overlap ex-

ceeding a threshold. Trackers are ranked using the area-

under-the-curve (AUC) score. Figure 5a shows the success

plot over all the 123 videos in the dataset. We compare with

all tracking results reported in [29] and further add Staple

[1], due to its high frame-rate, and C-COT [12]. Among the

top 5 compared trackers, only Staple runs at real-time, with

an AUC score of 45.3%. Our ECO-HC tracker also operates

in real-time (60 FPS), with an AUC score of 51.7%, sig-

nificantly outperforming Staple by 6.4%. C-COT obtains

an AUC score of 51.7%. Our ECO outperforms C-COT,

achieving an AUC score of 53.7%, using same features.

OTB2015 Dataset: We compare our tracker with 20 state-

of-the-art methods: TLD [22], Struck [19], CFLB [16],

ACT [13], TGPR [17], KCF [20], DSST [7], SAMF [25],

MEEM [38], DAT [33], LCT [28], HCF [27], SRDCF [9],

SRDCFad [10], DeepSRDCF [8], Staple [1], MDNet [31],

SiameseFC [2], TCNN [30] and C-COT [12].

Figure 5b shows the success plot over all the 100 videos

in the OTB-2015 dataset [37]. Among the compared track-

ers using hand-crafted features, SRDCFad provides the

best results with an AUC score of 63.4%. Our proposed

method, ECO-HC, also employing hand-crafted features

outperforms SRDCFad with an AUC score of 65.0%, while

running on a CPU with a speed of 60 FPS. Among the com-

pared deep feature trackers, C-COT, MDNet and TCNN

provide the best results with AUC scores of 69.0%, 68.5%
and 66.1% respectively. Our approach ECO, provides the

best performance with an AUC score of 70.0%.

TempleColor Dataset: In figure 5c we present results on

the TempleColor dataset [26] containing 128 videos. Our

method again achieves a substantial improvement over C-

COT, with a gain of 0.8% in AUC.

5. Conclusions

We revisit the core DCF formulation to counter the issues

of over-fitting and computational complexity. We introduce

a factorized convolution operator to reduce the number of

parameters in the model. We also propose a compact gener-

ative model of the training sample distribution to drastically

reduce memory and time complexity of the learning, while

enhancing sample diversity. Lastly, we suggest a simple yet

effective model update strategy that reduces over-fitting to

recent samples. Experiments on four datasets demonstrate

state-of-the-art performance with improved frame rate.

Acknowledgments: This work has been supported by SSF

(SymbiCloud), VR (EMC2, starting grant 2016-05543),

SNIC, WASP, Visual Sweden, and Nvidia.

6645

References

[1] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and

P. H. S. Torr. Staple: Complementary learners for real-time

tracking. In CVPR, 2016.

[2] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and

P. H. Torr. Fully-convolutional siamese networks for object

tracking. In ECCV workshop, 2016.

[3] A. Bibi, M. Mueller, and B. Ghanem. Target response adap-

tation for correlation filter tracking. In ECCV, 2016.

[4] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui.

Visual object tracking using adaptive correlation filters. In

CVPR, 2010.

[5] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman.

Return of the devil in the details: Delving deep into convo-

lutional nets. In BMVC, 2014.

[6] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, 2005.

[7] M. Danelljan, G. Häger, F. Shahbaz Khan, and M. Fels-

berg. Accurate scale estimation for robust visual tracking.

In BMVC, 2014.

[8] M. Danelljan, G. Häger, F. Shahbaz Khan, and M. Fels-

berg. Convolutional features for correlation filter based vi-

sual tracking. In ICCV Workshop, 2015.

[9] M. Danelljan, G. Häger, F. Shahbaz Khan, and M. Felsberg.

Learning spatially regularized correlation filters for visual

tracking. In ICCV, 2015.

[10] M. Danelljan, G. Häger, F. Shahbaz Khan, and M. Felsberg.

Adaptive decontamination of the training set: A unified for-

mulation for discriminative visual tracking. In CVPR, 2016.

[11] M. Danelljan, G. Häger, F. Shahbaz Khan, and M. Felsberg.

Discriminative scale space tracking. TPAMI, PP(99), 2016.

[12] M. Danelljan, A. Robinson, F. Shahbaz Khan, and M. Fels-

berg. Beyond correlation filters: Learning continuous con-

volution operators for visual tracking. In ECCV, 2016.

[13] M. Danelljan, F. Shahbaz Khan, M. Felsberg, and J. van de

Weijer. Adaptive color attributes for real-time visual track-

ing. In CVPR, 2014.

[14] A. Declercq and J. H. Piater. Online learning of gaussian

mixture models - a two-level approach. In VISAPP, 2008.

[15] H. K. Galoogahi, T. Sim, and S. Lucey. Multi-channel corre-

lation filters. In ICCV, 2013.

[16] H. K. Galoogahi, T. Sim, and S. Lucey. Correlation filters

with limited boundaries. In CVPR, 2015.

[17] J. Gao, H. Ling, W. Hu, and J. Xing. Transfer learning based

visual tracking with gaussian process regression. In ECCV,

2014.

[18] G. H. Golub and Q. Ye. Inexact preconditioned conjugate

gradient method with inner-outer iteration. SIAM J. Scientific

Computing, 21(4):1305–1320, 1999.

[19] S. Hare, A. Saffari, and P. Torr. Struck: Structured output

tracking with kernels. In ICCV, 2011.

[20] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-

speed tracking with kernelized correlation filters. TPAMI,

37(3):583–596, 2015.

[21] J. Hyeong Hong and A. Fitzgibbon. Secrets of matrix factor-

ization: Approximations, numerics, manifold optimization

and random restarts. In ICCV, 2015.

[22] Z. Kalal, J. Matas, and K. Mikolajczyk. P-n learning: Boot-

strapping binary classifiers by structural constraints. In

CVPR, 2010.

[23] M. Kristan, A. Leonardis, J. Matas, R. Felsberg, Pflugfelder,

M., L. Čehovin, G. Vojı́r, T.and Häger, and et al.˙ The visual

object tracking vot2016 challenge results. In ECCV work-

shop, 2016.

[24] M. Kristan, J. Matas, A. Leonardis, M. Felsberg, L. Čehovin,

G. Fernández, T. Vojı́r, G. Nebehay, R. Pflugfelder, and

G. Häger. The visual object tracking vot2015 challenge re-

sults. In ICCV workshop, 2015.

[25] Y. Li and J. Zhu. A scale adaptive kernel correlation filter

tracker with feature integration. In ECCV Workshop, 2014.

[26] P. Liang, E. Blasch, and H. Ling. Encoding color informa-

tion for visual tracking: Algorithms and benchmark. TIP,

24(12):5630–5644, 2015.

[27] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang. Hierarchical

convolutional features for visual tracking. In ICCV, 2015.

[28] C. Ma, X. Yang, C. Zhang, and M.-H. Yang. Long-term

correlation tracking. In CVPR, 2015.

[29] M. Mueller, N. Smith, and B. Ghanem. A benchmark and

simulator for uav tracking. In ECCV, 2016.

[30] H. Nam, M. Baek, and B. Han. Modeling and propagat-

ing cnns in a tree structure for visual tracking. CoRR,

abs/1608.07242, 2016.

[31] H. Nam and B. Han. Learning multi-domain convolutional

neural networks for visual tracking. In CVPR, 2016.

[32] J. Nocedal and S. J. Wright. Numerical Optimization.

Springer, 2nd edition, 2006.

[33] H. Possegger, T. Mauthner, and H. Bischof. In defense of

color-based model-free tracking. In CVPR, 2015.

[34] J. R. Shewchuk. An introduction to the conjugate gradient

method without the agonizing pain. Technical report, Pitts-

burgh, PA, USA, 1994.

[35] J. van de Weijer, C. Schmid, J. J. Verbeek, and D. Lar-

lus. Learning color names for real-world applications. TIP,

18(7):1512–1524, 2009.

[36] Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A

benchmark. In CVPR, 2013.

[37] Y. Wu, J. Lim, and M.-H. Yang. Object tracking benchmark.

TPAMI, 37(9):1834–1848, 2015.

[38] J. Zhang, S. Ma, and S. Sclaroff. MEEM: robust tracking

via multiple experts using entropy minimization. In ECCV,

2014.

[39] G. Zhu, F. Porikli, and H. Li. Beyond local search: Track-

ing objects everywhere with instance-specific proposals. In

CVPR, 2016.

6646

