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Abstract

While deep feature learning has revolutionized tech-

niques for static-image understanding, the same does not

quite hold for video processing. Architectures and optimiza-

tion techniques used for video are largely based off those for

static images, potentially underutilizing rich video informa-

tion. In this work, we rethink both the underlying network

architecture and the stochastic learning paradigm for tem-

poral data. To do so, we draw inspiration from classic the-

ory on linear dynamic systems for modeling time series. By

extending such models to include nonlinear mappings, we

derive a series of novel recurrent neural networks that se-

quentially make top-down predictions about the future and

then correct those predictions with bottom-up observations.

Predictive-corrective networks have a number of desirable

properties: (1) they can adaptively focus computation on

“surprising” frames where predictions require large cor-

rections, (2) they simplify learning in that only “residual-

like” corrective terms need to be learned over time and (3)

they naturally decorrelate an input data stream in a hierar-

chical fashion, producing a more reliable signal for learn-

ing at each layer of a network. We provide an extensive

analysis of our lightweight and interpretable framework,

and demonstrate that our model is competitive with the two-

stream network on three challenging datasets without the

need for computationally expensive optical flow.

1. Introduction

Computer vision is undergoing a period of rapid

progress. While the state-of-the-art in image recognition

is disruptively increasing, the same does not quite hold for

video analysis. Understanding human action in videos, for

example, largely remains an unsolved, open problem. De-

spite a considerable amount of effort, CNN-based features

do not yet significantly outperform their hand-designed

counterparts for human action understanding [1, 48]. We

believe that one reason is that many architectures and op-

timization techniques used for video have largely been in-

spired by those for static images (so-called “two-stream”

models [38, 50, 51, 8]), though notable exceptions that di-
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Figure 1. Our model first predicts the future and then updates its

predictions with corrections from observing subsequent frames.

rectly process spatio-temporal volumes exist [42, 43]. In

terms of benchmark results, two-stream models currently

outperform the latter, perhaps because of the large compu-

tational demands of processing spatio-temporal volumes.

Recurrent models: An attractive solution to the above

are state-based models that implicitly process large spatio-

temporal volumes by maintaining a hidden state over time,

rather than processing the whole block at once. Classic tem-

poral models based on Hidden Markov Models (HMMs)

or Kalman filters do exactly this. Their counterpart in the

world of neural nets would be recurrent models. While an

active area of research in the context of language [44, 6],

they are relatively less explored for video-based feature

learning (with the important exceptions of [56, 58, 40]). We

posit that one reason could be the difficulty of stream-based

training with existing SGD solvers. Temporal data streams

are highly correlated, while most solvers rely heavily on

uncorrelated i.i.d. data for efficient training [30]. Typi-

cal methods for ensuring uncorrelated data (such as random

data permutations) would remove the very temporal struc-

ture that we are trying to exploit!

Our approach: We rethink both the underlying net-

work architecture and stochastic learning paradigm. To

do so, we draw inspiration from classic theory on linear

dynamic systems for time-series learning models. By ex-

tending such iconic models to include nonlinear hierarchi-
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cal mappings, we derive a series of novel recurrent neural

networks that work by making top-down predictions about

the future and correct those predictions with bottom-up ob-

servations (Fig. 1). Just as encoder-decoder architectures

allow for neural networks to incorporate insights from clus-

tering and sparse-coding [11], predictive-corrective archi-

tectures allow them to incorporate insights from time-series

analysis: (1) adaptively focus computation on “surprising”

frames where predictions require large corrections, (2) sim-

plify learning in that only “residual-like” corrective terms

need to be learned over time and (3) naturally decorrelate

an input stream in a hierarchical fashion, producing a more

reliable signal for learning at each layer of a network.

Prediction: From a biological perspective, we leverage

the insight that the human vision system relies heavily on

continuously predicting the future and then focusing on the

unexpected [7, 25]. By utilizing the temporal continuity

of video we are able to predict future frames in the spirit

of [46, 47]. This serves two goals: (1) achieves consistency

in predicted actions, reducing the chance that a single noisy

frame-level prediction changes the model’s interpretation of

the video, and (2) results in a computationally efficient sys-

tem, which is critical for real-world video analysis. If no

significant changes are observed between frames then the

computation burden can be significantly reduced.

Correction: Even more importantly, explicitly model-

ing appearance predictions allows the model to focus on

correcting for novel or unexpected events in the video.

In fine-grained temporal action localization, transitions be-

tween actions are commonly signified by only subtle ap-

pearance changes. By explicitly focusing on these resid-

ual changes our model is able to identify action transitions

much more reliably. Further, from a statistical perspective,

focusing on changes addresses a key challenge in learning

from sequential data: it reduces correlations between con-

secutive samples, as illustrated in Fig. 2. While consecu-

tive video frames are highly correlated (allowing us to make

accurate predictions), changes between frames are not, in-

creasing the diversity of samples observed during training.

Contributions: We introduce a lightweight, intuitive

and interpretable model for temporal action localization

in untrimmed videos. By making predictions about fu-

ture frames and subsequently correcting its predictions,

the model is able to achieve significant improvements in

both recognition accuracy and computational efficiency.

We demonstrate action localization results on three bench-

marks: the standard 20 sports actions of THUMOS [15],

the 65 fine-grained actions of MultiTHUMOS [55] and the

157 common everyday actions of Charades [37]. Our model

is competitive with the two-stream network [38] on all three

datasets without the need for computationally expensive op-

tical flow. Further, it even (marginally) outperforms the

state of the art MultiLSTM model on MultiTHUMOS [55].
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Figure 2. Every data point corresponds to a single location in two

subsequent frames. The x-axis is the pixel intensity at this loca-

tion in frame1 and the y-axis is the pixel intensity at this location in

frame2 on the left and frame2-frame1 on the right. (Left) Consec-

utive video frames contain highly correlated information, allow-

ing our model to make accurate and efficient predictions about fu-

ture frames. (Right) Explicitly reasoning about frame differences

removes correlation and allows the model to focus on reasoning

about visual changes by making corrections to the predictions.

2. Related Work

Action recognition: There is a vast literature on action

recognition from videos: to name a few, [19, 58] explore

fusing image-based convolutional networks over time, [38]

use RGB pixel information together with optical flow to

capture motion, [14, 42, 43] extend image-based convolu-

tional networks into 3D convolutional networks that operate

on video “volumes” consisting of a fixed number of video

frames. In contrast to these works, we focus on the more

challenging task of temporal action localization.

Temporal action localization: A common way to ex-

tend action recognition models to temporal detection is

through the sliding windows paradigm [48, 17, 49, 27, 57].

However, this is both computationally inefficient and pre-

vents the model from leveraging memory over the video.

Classical temporal models, on the other hand, can leverage

information from the past as well as the future. These mod-

els generally rely on chain structured models that admit ef-

ficient inference, such as HMMs [33, 12] and CRFs [52].

More recent approaches for reasoning about memory gen-

erally focus on Recurrent Neural Networks (RNNs), which

sequentially [55] or sporadically [56] process video frames

and maintain an explicit memory of the previously observed

frames. [20] develop a “Clockwork RNN” that maintains

memory states that evolve at different speeds while pro-

cessing a sequence; [32] extend this model to convolutional

networks for semantic segmentation in videos. Our model

follows similar intuition for temporal action detection.

Predictive models: It has been shown that leveraging

global contextual information can be used to improve im-

age [26] or video [23] understanding. Recent work has ex-

amined predicting the appearance and semantic content of

future video frames [45, 46, 47, 54, 9, 22, 24]. Recently

Srivastava et al. [40] train a recurrent neural network in

an encoder-decoder fashion to predict future frames, and
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demonstrates that the learned video representation improves

action recognition accuracy. However, to the best of our

knowledge these insights have not been used for designing

accurate end-to-end action localization models.

Accelerating learning: Recurrent neural nets are noto-

riously difficult to train because of the exploding gradients

encountered during SGD [29]. We refer the reader to [3] for

an excellent introduction to general SGD learning. Though

naturally a sequential algorithm that processes one data ex-

ample at a time, much recent work focuses on mini-batch

methods that can exploit parallelism in GPU architectures

or clusters [5]. One general theme is efficient online approx-

imation of second-order methods [2], which can model cor-

relations between input features. Batch normalization [13]

computes correlation statistics between samples in a batch,

speeding up convergence. Predictive-corrective networks

naturally de-correlate batch statistics without needing ex-

pensive second-order computations (Fig. 2).

Interpretable models: Understanding the inner work-

ings of models is important for diagnosing and correcting

mistakes [28, 59]. However, despite some recent progress

on this front [18], recurrent neural networks largely remain

a mystery. By introducing a lightweight interpretable re-

current model we aim to gain some insight into the critical

components of accurate and efficient video processing.

3. Predictive-Corrective Model

Consecutive video frames contain redundant informa-

tion, which both causes needless extra computation and cre-

ates difficulty during training since subsequent samples are

highly correlated. In our predictive-corrective model, we re-

move this redundancy by instead explicitly reasoning about

changes between frames. This allows the model to focus on

key visual changes, e.g., corresponding to human motion.

We first provide some intuition motivated by Kalman

Filters. Then, we describe a procedural way to ap-

ply our model to image-based networks to create recur-

rent predictive-corrective structures for action detection.

The model smoothly updates its memory over consecu-

tive frames through residual corrections based on frame

changes, yielding an accurate and efficient framework.

3.1. Linear Dynamic Systems

Setup: Consider a single-shot video sequence that

evolves continuously over time. For a video frame at

time t, let xt denote the underlying semantic representa-

tion of the state. For example, on the standard THUMOS

dataset [15] with 20 sports actions of interest, xt could be a

20-dimensional binary vector indicating the presence or ab-

sence of each action within the frame. Instead of a discrete

binary vector, we think of xt as a smooth semantic represen-

tation: for example, actions can be decomposed into mini

muscle motions and xt can correspond to the extent each of

these motions is occurring at time t. The action detection

model is unaware of the underlying state xt but is able to

observe the pixel frame appearance yt and is tasked with

making an accurate semantic prediction x̂t of the state xt.

Dynamics: We model the video sequence as a linear dy-

namic system, which evolves according to

xt = Axt−1 + noise

yt = Cxt + noise
(1)

In other words, the semantic state xt is a noisy linear func-

tion of the semantic state at the previous time step xt−1,

and the pixel-level frame appearance yt is a noisy linear

function of the underlying semantic action state xt. This is

an imperfect assumption, but intuitively xt can be thought

of as action probabilities, A can correspond to the transi-

tion matrix between actions, and, if xt is sufficiently high-

dimensional, then a linear function can serve as a reasonable

approximation of the appearance yt.

Kalman filter: Under this linear dynamic system as-

sumption, the posterior estimate of the action state xt is:

x̂t = x̂t|t−1
︸ ︷︷ ︸

prediction

+K(yt − ŷt|t−1
︸ ︷︷ ︸

correction

) (2)

where x̂t|t−1 and ŷt|t−1 are the prior prediction of xt and

yt respectively given observations y1 . . .yt−1 up to previ-

ous time steps t− 1, and K is the Kalman gain matrix. We

refer the reader to [41] for an overview of Kalman filters; for

our purposes, we think of K as a learned non-linear func-

tion of the difference between actual and predicted frame

appearance yt − ŷt|t−1. We analyze Eqn. 2 step by step.

State approximation: To make predictions of the se-

mantic action space x̂t|t−1 and of appearance ŷt|t−1, we

rely on the fact that the actions and pixel values of a video

evolve slowly over time [53]. Using this fact, we can use

the previous time step t−1 and approximate x̂t|t−1 ≈ x̂t−1

with our best prediction of the action state at the previous

frame, intuitively saying that the transition matrix between

actions in subsequent frames is near-identity. Further, we

can assume that the video frame appearance is near constant

and approximate ŷt|t−1 ≈ yt−1 with the observed appear-

ance of the previous frame. Eqn. 2 now simplifies to:

x̂t = x̂t−1 + g(yt − yt−1) (3)

where g is a learned function, which helps compensate for

the imperfect assumptions made here.

Learning: What remains is learning the non-linear func-

tion g from differences in frame appearance to differences

in action state. We call this a predictive-corrective block

and it forms the basis of our model described below.

3.2. Layered Predictive­Corrective Blocks

Setup: So far we described a general way to predict a

hidden state xt given observations yt. Instead of thinking
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Figure 3. An instantiation of our predictive-corrective block. The

filled and unfilled trapezoids correspond to f i and gl respectively.

of yt as the frame appearance and xt as the semantic action

state at time t, here we recursively extend our predictive

models to capture the hierarchical layers of a deep network:

we simply model lower layers as observations that are used

to infer the hidden state of higher layers. Our model nat-

urally combines hierarchical top-down prediction with hi-

erarchical bottom-up processing prevalent in deep feedfor-

ward nets. Let us imagine that layers are computing suc-

cessively more invariant representations of a video frame,

such as activations of parts, objects, actions, etc. We use

our model to infer latent parts from image observations, and

then treat part activations as observations that can be used

to infer objects, and so forth. Let zl
t

represent the latent

activation vector in layer l at time t.

Single layer: Let us assume zl
t

evolves over time accord-

ing to a linear dynamic system that generates observations

in the layer below zl−1. Then the zl
t

can be predicted as ẑl
t

by observing the temporal evolution of zl−1 using Eqn. 3:

ẑl
t
= ẑl

t−1
+ gl(zl−1

t − zl−1

t−1
) (4)

There are three things that deserve further discussion. First,

the true latent state zl
t

can never be observed directly and

we have to rely on predictions ẑl
t
. Second, the base case of

the temporal recursion at time t = 0 needs to be considered.

Third, the layer-specific function gl needs to be learned to

predict the evolution of layer l based on the evolution of

layer l − 1. We now address each of these in order.

Hierarchical model: The latent state of a layer zl
t

can

never be observed except at the lowest layer l = 0 where z0
t

is the pixel appearance of the frame. Thus, at each time step

t we initialize z0
t

with the pixel appearance, compute the

predicted state ẑ1
t

using Eqn. 4, and use it as the observed

z1
t

to compute ẑ2
t
, continuing the layerwise recursion.

Temporal initialization: For the base case of the tem-

poral recursion at time t = 0 we need a separate convo-

lutional neural network f . This network does not consider

the evolution of the dynamic system and can be thought of

as a simple per-frame (action) recognition model. At the

final layer L this network computes the action predictions
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Figure 4. (Top) A predictive-corrective block placed at layer l and

layer l + 1. (Bottom) An equivalent but simplified network.

ẑL
0
= f(z0

0
) from pixel activations z0

0
; it can also be decom-

posed layerwise into zl
0
= f l(zl−1

0
). In practice we train f

jointly with g. Fig. 3 depicts an instantiation of the system

for a single layer l, where f l is used to process the initial

frame and gl is used to compute sequential updates.

Learning: Both the initial-frame function f and the

residual function g need to be learned. At any time t, we

know the pixel frame features z0
t

at the zeroth layer of the

network and the desired action labels zL
t

at the final layer.

To compute the action predictions at time t = 0 we use

ẑL
0

= f(z0
0
). To compute the action predictions at time

t 6= 0 we let ∆l
t
, ẑl

t
− ẑl

t−1
and rewrite the predictive-

corrective block equations in Eqn. 4 as:

∆L

t
= gL(∆L−1

t ) = gL(gL−1(· · · g1(∆0

t
))) = g(z0

t
− z0

t−1
)

where z0
t
−z0

t−1
is the pixelwise difference between the cur-

rent and previous frame. Now we can independently com-

pute ∆L
1
, . . . ,∆L

t
using the network g and obtain desired

action predictions ẑL
t
= ẑL

0
+

∑
t

i=1
∆L

i
for any time step

t. The full system is depicted in Fig. 4. The known action

labels zL
t

at every time step t provide the training signal for

learning the networks f and g, and the entire system can be

trained end-to-end.

3.2.1 Connections to prior art

Nonlinear Kalman filters: At this point, it is natural to

compare our nonlinear dynamic model other nonlinear ex-

tensions of Kalman filtering [10]. Popular variants include

the “extended” Kalman filter that repeatedly linearizes a

nonlinear model [21], and the “unscented” Kalman filter

that uses particle filtering to model uncertainty under known

but nonlinear dynamic function [16]. Our work differs in

that we assume simple linear dynamics (given by identity

mappings), but model the data with complex (nonlinear) hi-

erarchical observation models that are latently-learned from

data without hierarchical supervision.
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Recurrent networks: We also briefly examine the

connection between our framework and a RNN formula-

tion [56, 20, 55]. The update equation for RNN mem-

ory is xt = σ(Wyt + V xt−1) for input yt, non-linearity

σ and learned weights W and V . Similarly, our fully-

connected predictive-corrective block in Eqn. 3 can be writ-

ten as xt = xt−1 + σ(W (yt − yt−1)). The key differences

are (1) we use the past output xt−1 in a linear fashion, and

(2) we maintain the previous input yt−1 as part of the mem-

ory. These imposed constraints are natural for video pro-

cessing and allow for greater interpretability of the model.

Concretely, our memory is simply the convolutional activa-

tions at the previous time step, and, thus is as interpretable

as the activations of an image-based CNN (using e.g., [59]).

Second, memory updates are transparent: we clear mem-

ory every few frames on re-initialization, and access it only

to subtract it from the current convolutional activations, in

contrast to the LSTM’s more complex update mechanism.

3.3. Dynamic Computation

Coming back to our model, so far we discussed the case

where layer activations evolve smoothly in a linear dynamic

system. However, layer activations between subsequent

frames may not change at all or may change too much to

be modeled via smooth updates. Both cases are naturally

incorporated into our predictive-corrective model, with the

first case additionally yielding computational savings.

Static activations: Layer activations do not change at

every time step within a video. This may be because the

video depicts a static scene with no moving objects (e.g.,

in a surveillance camera) or because the frame rate is so

high that occasionally subsequent frames appear identical.

It may also be the case that while the low-level pixel appear-

ance changes, the higher layers remain static (e.g., a “face”

neuron that fires regardless of the face’s pose or position).

Within our model, this leads to ∆l
t
= 0, eliminating the

need for subsequent processing of the corrective block of

this frame t for layers l′ > l and thus improving efficiency.

Shot changes: On the flip side, occasionally layer acti-

vations change so much between subsequent frames that a

smooth update is not a reasonable approximation. Then we

“re-initialize” by reverting to our initialization network f .

Dynamic updates: Concretely, let αl
t

be an indicator

variable representing whether the change in all lower lay-

ers l′ < l is large enough to warrant corrective computa-

tion. Let δl
t

be an indicator variable representing whether

ẑl
t

should be reinitialized, either because the change |ẑl
t
−

ẑl
t−1

| is too large or according to a preset layerwise clock

rate [32, 20]. Then, we can rewrite Eqn. 4 as:

ẑl
t
=







ẑl
t−1

if αl
t
= 1

f l(ẑl−1

t ) if δi
t
= 1

ẑl
t−1

+ gl(zl−1

t − zl−1

t−1
) else

(5)

We analyze the effect of dynamic updates on both accuracy

and efficiency in our experiments.

4. Experiments

We begin by presenting a detailed analysis of our model

with experiments on a validation split of the MultiTHU-

MOS dataset [55] in Sec. 4.1. Leveraging this analysis, we

then compare the optimal configuration of our predictive-

corrective architecture with prior work in Sec. 4.2.

Implementation: For our initial and update models, we

use the VGG-16 network architecture [39]. The model is

initialized by training on ILSVRC 2016 [31]. We finetune

the model on the per-frame action classification task for all

actions, and use these finetuned weights to initialize both

the initial and update networks in our model. All of our

models are implemented using the Torch [4] deep learning

framework. We will release source code, including hyper-

parameters and validation splits, for training and evaluat-

ing our models. For all of our experiments, we work with

frames extracted from the videos at 10 frames per second.

Each frame is resized to 256x256 pixels, and we take ran-

dom crops of 224x224 for each frame.

4.1. Predictive­Corrective Model Analysis

To analyze the contributions from our proposed ap-

proach, we first compare a simple configuration of our ap-

proach to baseline models (Sec. 4.1.1). Next, we evaluate

the trade-off of accuracy and efficiency in our framework

(Sec. 4.1.2). Finally, we consider different model architec-

tures by varying the placement of the predictive-corrective

block in the VGG-16 architecture (Sec. 4.1.3).

Setup: MultiTHUMOS [55] contains 65 fine-grained

action annotations on videos from the THUMOS 2014

dataset [15], which contain 2,765 trimmed training videos,

200 untrimmed training videos, and 213 untrimmed test

videos. Of the 200 untrimmed training videos, we select

40 for validation, on which we report experiments below.

We evaluate our predictions with per-frame1 mean average

precision (mAP). [55]

4.1.1 Comparison with baselines

Setup: We examine a simple variant of our model: the

predictive-corrective block at the fc7 layer, which uses

frame-level corrections to update fc7 activations. In this

case, the initial function f and the update function g consist

of the layers in VGG-16 up to fc7. Fig. 5 shows an in-

stantiation of this with a reinitialization rate of 2. Here we

consider the model with a reinitializion rate of 4 frames.

1Action detection accuracy may also be reported as mAP at specified

intersection-over-union (IOU) thresholds, as in [34]. However, this re-

quires post-processing predictions to generate action instances, and we

choose not to do that as to not complicate our analysis.
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Figure 5. An instantiation of our predictive-corrective network: a

predictive-corrective block between the input images and the fc7

layer with a re-initialization rate of 2 frames.

Method MultiTHUMOS mAP

Single-frame RGB 25.1

4-frame late fusion 25.3

Predictive-corrective (our) 26.9
Table 1. Our predictive-corrective model outperforms both base-

lines. (Per-frame mAP on MultiTHUMOS validation set.)

Baselines: We compare our model against the perfor-

mance of baseline models that do not use our predictive-

corrective blocks. To this end, we evaluate two models.

First, we evaluate the single frame model finetuned to pre-

dict action labels for each frame of a video. Second, we

consider a model similar to the late fusion model of [19] (or

the late pooling model of [58]). It takes as input 4 frames (3

from previous time steps plus the current frame) and aver-

age pools their fc7 activations before making a prediction

of the action occurring at the current time step. When train-

ing this model we tie the weights corresponding to the three

frames, which we found to empirically perform better than

leaving all untied or tying all four branches together.

Results: Table 1 reports the results. These baselines

explore the contribution of naive temporal information to

our performance. While incorporating these cues provide a

small 0.2% boosts over the baseline (25.1% mAP for single-

frame vs 25.3% mAP for late fusion), it does not match the

performance of our predictive-corrective model. Our model

outperforms the single-frame model by 1.8% mAP: from

25.1% mAP of single-frame to 26.9% mAP for ours.

The single-frame model often relies mostly on the image

context when making predictions, yielding many confident

false positive predictions as shown in Fig. 6. For example,

in the top row of Fig. 6 the single-frame model predicts the

“clean and jerk” action based on the scene appearance even

though the human is not currently performing the action. In

contrast, our model is able to effectively use the predictive-

corrective block to focus only on the moving parts of the

scene and realize that the action is not yet being performed.

The precision-recall curves in Fig. 7 verify this intuition.

The single-frame model consistently suffers from low pre-

cision as a result of making many false positive predictions.

time

Ours:

No CleanAndJerk

Single Frame:

CleanAndJerk

time
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Single Frame:
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time
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No CliffDiving

Single Frame:

CliffDiving

Ours:

HighJump

Single Frame:

No HighJump

Figure 6. The single-frame model makes predictions based on

the overall scene context whereas our predictive-corrective model

leverages temporal information from 4 frames to focus on the

scene changes and more accurately reason about actions.
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Figure 7. Precision-Recall curves for our model (orange) vs.

single-frame (blue). The single-frame model often makes predic-

tions based on context (e.g., “CliffDiving” in the presence of a

cliff), leading to a lower precision than our model, which leverages

temporal information to distinguish actions from context. (Per-

frame precision/recall on MultiTHUMOS validation set.)

4.1.2 Test-time reinitialization

One advantage of our model is that it can be reinitialized

dynamically at test time, as described in Sec. 3.3. We have

seen results with varying training re-initialization rates in

Table 3. However, these models can be applied in a different

setting at test time. This can be useful, for example, if our

training data contains videos with many shot changes, but

we are interested in evaluating on smooth videos.

Static reinitialization: We experiment with different

train and test reinitialization rates for our fc7 predictive-

corrective model in Table 2 for simplicity. The model

trained to reinitialize every 4 frames can successfully rea-

son about the video for up to 8 frames without reinitializing

with only a modest drop in mAP, while the model trained on

8 frames can generalize to reasoning for up to 16 frames.

Dynamic reinitialization: In addition to static reinitial-

ization rates, our model is able to dynamically decide when

to re-initialize at test time. This allows it to use the cor-

rective model when the video is evolving smoothly, and re-

initialize only during big time changes. We implement this

by thresholding the corrective term computed in the given

frame; if its magnitude is greater than our threshold, we re-
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Reinit Train Reinit 4 Train Reinit 8

Test Reinit 2 26.9 25.9

Test Reinit 4 26.9 26.9

Test Reinit 8 25.4 27.3

Test Reinit 16 20.0 25.9
Table 2. Our model is able to reason about the video at test time for

longer than it was trained for, with only modest losses in accuracy.

(Per-frame mAP on MultiTHUMOS validation set.)

Configuration mAP

conv53 every 4 26.5

fc7 every 4 26.9

fc8 every 4 26.6

conv33 every 1, fc7 every 4 27.2

conv43 every 2, conv53 every 4 26.6

conv53 every 2, fc7 every 4 24.8
Table 3. Accuracy of different predictive-corrective architectures.

(Per-frame mAP on MultiTHUMOS validation set.)

initialize the model. To avoid propagating mistakes for long

sequences, we require the model to re-initialize at least ev-

ery 4th frame. We find that by validating over a simple

dynamic threshold on the norm of the correction, we can

already achieve a small improvement in accuracy from the

static reinitialization rate (27.2% mAP dynamic vs 26.9%
mAP static). This suggests that using more advanced meth-

ods such as reinforcement learning to learn dynamic up-

dates may yield further benefits in our frameworks.

Efficiency: Processing videos is computationally chal-

lenging due to the heavy redundancies between frames. Our

model naturally allows us to avoid unnecessary computa-

tion on frames that are mostly redundant. We implement

this by discarding frames when the corrective term is be-

low a threshold. We find that we can dynamically discard

nearly 50% of the frames, thus reducing the computational

burden by a factor of two, while only slightly dropping per-

formance (26.7% mAP with processing only half the frames

vs 26.9% mAP with processing all frames). Note that this is

not the same as randomly discarding frames, as our model

still outputs predictions for all frames.

4.1.3 Architectural Variations

We have so far considered a model with a predictive-

corrective block at the fc7 layer that re-initializes every

4 frames. However, different layers of the network capture

different information about the video, and evolve at differ-

ent rates. We investigate these options to gain deeper insight

into the model and into the structure of temporal data.

Single block: We begin by experimenting on models

with a single predictive-corrective block. We consider plac-

ing the block at different layers in the model other than fc7,

thus asking the model to focus on more low-level (conv53)

no jump no jump jump jump

Initialize Update

no jump no jump jump jump

no body roll body roll body roll body roll

no throw no throw throw throw

no throw discus throw discus throw discus throw discus

Update Update

Figure 8. Qualitative results on the MultiTHUMOS validation set.

Labels are our model’s predictions for each frame. Our model ini-

tializes on the first frame and updates using the next three frames.

Our update mechanism correctly recognizes the start of actions af-

ter initialization, and even corrects errors from initialization (last).

or high-level (fc8) visual changes. Table 3 reports the re-

sults. We find that placing a predictive corrective block at

fc7 is optimal within the single-block setting. Placing the

block at either conv53 or fc8 yields a 0.4% and 0.3%
respective reduction in mAP. Reasoning about higher-level

but non-semantic features proves to be the most effective.

Hierarchical blocks: By placing a single predictive-

corrective block, we force the entire model to reinitial-

ize its memory at the same rate. We hypothesize that re-

initializing at a faster rate may be important, particularly

for predictive-corrective blocks placed at lower levels in the

network since the low-level visual features change faster

than the more semantic fc7. Encouraged by this intuition,

we experiment with placing predictive-corrective blocks at

multiple layers with different reinitialization rates. We ex-

plore a few hierarchical configurations in Table 3. In partic-

ular, the “conv33 every 1, fc7 every 4” model can be in-

terpreted as predicting and correcting conv33 activations

instead of pixel values (as the “fc7 every 4” model does),

which are less sensitive to noise, brightness changes, and

camera motion than raw pixels. Indeed, this model outper-

forms all other configurations, achieving 27.2% mAP.

Effective corrections: We conclude with a qualitative

look into the predictions made by our model. In partic-

ular, one worry is that the model may be predicting the

same action labels across all 4 frames between reinitializa-

tions. Fig. 8 shows that this is not the case. The predictive-

corrective block is able to successfully notice the changes
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that occur between frames and update the action predic-

tions. For example, in the first row of Fig. 8 the “jump”

action happens 2 frames after reinitialization, and the model

successfully corrects its initial prediction.

4.2. Comparison to Prior Approaches

Building off our analysis in Sec. 4.1, we now evalu-

ate our predictive-corrective model on three challenging

benchmarks: MultiTHUMOS [55], THUMOS [15], and

Charades [37]. Table 3 motivates using the hierarchical

“conv33 every 1, fc7 every 4” architecture; Table 2

demonstrates that training to reinitialize every 8 frames

yields further improvement. Thus we use the “conv33 ev-

ery 1, fc7 every 8” as our predictive-corrective model.

4.2.1 THUMOS and MultiTHUMOS

Setup: THUMOS [15] contains 20 annotated action

classes; MultiTHUMOS [55] includes 45 additional action

classes annotated on the THUMOS videos. We train models

on the training and validation videos for all the MultiTHU-

MOS actions jointly. We then evaluate on the THUMOS

test videos by computing the per-frame mAP over the 20

THUMOS and 65 MultiTHUMOS action classes.

Results: We report results in Table 4. The single-frame

model has been shown to be a strong baseline for action

recognition, outperforming, e.g., C3D [42] in [37]. On Mul-

tiTHUMOS our predictive-corrective model not only out-

performs the single-frame baseline by 4.3% mAP (29.7%
mAP ours vs 25.4% mAP single-frame), but also compares

favorably to the state-of-the art MultiLSTM model [55].

On THUMOS, our model still outperforms the single-

frame model by 4.2% (38.9% mAP ours vs 34.7% mAP

single-frame), but is not yet on par with MultiLSTM. This

may be due to the significantly longer actions in THUMOS,

which the LSTM-based model can handle better due to a

longer (though less interpretable) memory of the video.

At the cost of efficiency, we can further improve our

model by running it in a dense sliding window fashion

where the model has a 7 frame history when making a

prediction for each frame. With this approach, our model

achieves 30.8% mAP on MultiTHUMOS (significantly

outperforming MultiLSTM’s 29.6% mAP) and 40.9% on

THUMOS (only 0.4% behind MultiLSTM at 41.3% mAP).

4.2.2 Charades

Setup: Whereas the THUMOS and MultiTHUMOS

datasets contain primarily videos of sports actions, the Cha-

rades dataset [37] contains videos of common everyday ac-

tions performed by people in their homes. The dataset con-

tains 7,986 untrimmed training videos and 1,864 untrimmed

test videos, with a total of 157 action classes. This is a sig-

nificantly more challenging testbed: first, it contains many

Method MultiTHUMOS THUMOS

Single-frame [55] 25.4 34.7

Two-Stream3[38] 27.6 36.2

Multi-LSTM [55] 29.6 41.3

Predictive-corrective 29.7 38.9
Table 4. Comparison of our model with prior art. (Per-frame mAP

on MultiTHUMOS and THUMOS test sets.)

Method Charades

Single-frame 7.9

LSTM (on RGB) 7.7

Two-Stream [35] 8.9

Predictive-corrective 8.9
Table 5. Comparison of our model with prior work on Charades.

Our model matches the accuracy of the two-stream model without

using optical flow. (Localization mAP on the Charades test set.)

more actions than MultiTHUMOS, and second, it is con-

structed so as to decorrelate actions from scenes.

Results: Our model generalizes to this new domain de-

spite the challenges. We report action localization results

(following [36]) in Table 5. Our predictive-corrective model

improves from 7.9% mAP of the single-frame baseline and

the 7.7% mAP of the LSTM baseline to 8.9% mAP. Further,

our model is able to match the accuracy of the two-stream

network, without the need for explicitly computing expen-

sive optical flow.2

5. Conclusions

We introduced a recurrent predictive-corrective network

that maintains an interpretable memory that can be dynami-

cally re-initialized. Motivated by Kalman Filters, we exploit

redundancies and motion cues within videos to smoothly

update our per-frame predictions and intermediate activa-

tions within a convolutional network. We perform extensive

ablation studies of this model, carefully choosing where to

place predictive-corrective blocks, improving accuracy over

baselines on the MultiTHUMOS and THUMOS datasets.
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