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Abstract

Zero-shot learning for visual recognition has received

much interest in the most recent years. However, the se-

mantic gap across visual features and their underlying se-

mantics is still the biggest obstacle in zero-shot learning.

To fight off this hurdle, we propose an effective Low-rank

Embedded Semantic Dictionary learning (LESD) through

ensemble strategy. Specifically, we formulate a novel frame-

work to jointly seek a low-rank embedding and seman-

tic dictionary to link visual features with their seman-

tic representations, which manages to capture shared fea-

tures across different observed classes. Moreover, ensem-

ble strategy is adopted to learn multiple semantic dictio-

naries to constitute the latent basis for the unseen classes.

Consequently, our model could extract a variety of visual

characteristics within objects, which can be well general-

ized to unknown categories. Extensive experiments on sev-

eral zero-shot benchmarks verify that the proposed model

can outperform the state-of-the-art approaches.

1. Introduction

Visual recognition algorithms assume that the training

and test data share the same classes/labels/tags and feature

space, so that the learned classifier can be reused for the

test data without any change. However, it is a bottleneck to

collect a large number of well-labeled images for each class,

especially when visual recognition task is moving towards

a fine-grained scenario. In addition, labeling work for such

collections is expensive, and requires either large quantities

of attributes or expert opinions [20, 21, 34, 1, 23].

To that end, zero-shot learning (ZSL) has been de-

veloped recently which attracts great attention due to its

appealing performance. ZSL is inspired by the learn-
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Figure 1. Illustration of our proposed framework, where low-rank

projection W maps visual features X into a new space, thus sim-

ilar features, e.g., “has a tail”, would gather together. Simultane-

ously, multiple semantic dictionaries Dk are learned with the con-

straint WX ≈ DA to connect visual features and their semantic

representations. In this way, multiple transferable semantic dictio-

naries could constitute the latent basis for the unseen classes.

ing mechanism of human brain and attempts to recognize

new classes which are not observed in the training stage

[30, 13, 37, 17, 3, 33, 25, 10, 24]. For example, one can

recognize a new species of animal after being told what it

looks like and how it is similar to or different from other ob-

served animals. The reason is simple: humans can explore

the relationship across different objects through secondary

information, and adapt the knowledge from known classes

to unknown ones. Likewise, ZSL aims to uncover the intrin-

sic semantic relationship across seen and unseen classes. In

general, three fundamental elements are needed: (1) visual

representation conveying nontrivial yet informative visual

features; (2) semantic representation reflecting the relation-

ship across different classes; (3) learning model properly

linking visual features with the underlying semantics.

While ZSL is promising in simulating the human learn-

ing process, it has two degenerating factors. First, the dis-

tribution of samples in visual feature space is often distinct

from that of their underlying semantic space as visual fea-

tures in various forms may convey the same concept. Such
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semantic gap traps the knowledge transfer from the ob-

served classes to unseen classes. Secondly, the “hubness”

[27] is recently identified as a factor that accounts for the

poor performance, which is exacerbated by a lack of train-

ing instances of unknown classes in visual domain. Hence,

the domain shift problem, i.e., the distribution difference

between training and test data, raises a challenge in ZSL

[9, 37, 4].

Convectional ZSL approaches typically consider that

there exists a shared semantic latent space where both the

visual features and the class labels of the seen and unseen

classes lie in [30, 13, 37, 17, 3, 33, 25, 10, 24]. Specifi-

cally, the information learned through the observed data is

usually captured by a mapping function, e.g., embedding,

that transforms each low-level feature vector to its class pro-

totype. Through such a mapping, the captured knowledge

could be adapted to the unseen data in the evaluation stage.

In this paper, we develop an effective Low-rank Embed-

ded ensemble Semantic Dictionary learning (LESD) to han-

dle issues in zero-shot learning (Figure 1). Our main as-

sumption is that the latent semantic dictionary for unseen

data should share its majority with semantic dictionary for

the seen data1, which can be identified in the low-rank em-

bedding space. In addition, multiple transferable dictionar-

ies learned for the unseen data will have better chance to

recover the latent semantic dictionary. Finally, we summa-

rize our contributions in three folds:

• First, we identify a low-rank embedding to transfer the

intrinsic knowledge and shared features from the seen

categories. In this way, a better latent semantic dictio-

nary for the unseen categories can be recovered.

• Second, ensemble strategy is exploited to learn mul-

tiple semantic dictionaries, which is able to complete

the latent semantic dictionary to mitigate the distribu-

tion divergence across seen and unseen classes.

• Computationally, we adopt a novel low-rank re-

framing approach to overcome the existing sparse sin-

gular values issues to secure a better low-rank embed-

ding space. We also design a nontrivial solution for

efficiency.

2. Related Work

Zero-shot learning (ZSL) manages to build models of

visual concepts without test images containing these con-

cepts. As visual knowledge from such test classes is unob-

servable during training, ZSL requires auxiliary information

to make up for the unknown visual knowledge. Attribute-

based descriptions are the most well-known characteristics

shared across various classes [20, 21, 34, 1, 23], which pro-

vide a secondary representation linking the low-level visual

1Both seen and unseen data in our work share lots of semantics.

features with the semantic labels. Given the low-level vi-

sual representations of images and their underlying high-

level semantics, the key problem in ZSL turns to “how to

adapt knowledge from the visual data of observed classes to

those of unobserved ones” [30, 13, 37, 17, 3, 33, 25]. Gen-

erally, there are three lines of ZSL approaches in terms of

the strategy to bridge the semantic gap.

First of all, direct mapping is designed to seek a pro-

jection function from visual features to their correspond-

ing semantic representations [1, 13]. Along this line, Direct

Attribute Prediction as well as Indirect Attribute Prediction

adopted the hidden layer of attributes as variables decou-

pling the images from the layer of labels [15]. Further, Gan

et al. proposed to seek a representation transformation in vi-

sual space to enhance the attribute-level discriminative ca-

pacity for attribute prediction [11].

Secondly, common space learning tries to find new

spaces where visual features and semantic representations

enjoy the maximum similarities for instances of the same

class. The learned common space is either interpretable [36]

or latent [9]. Following this, Zhang et al. developed a model

by treating any instance in unseen classes as a mixture of

those in known classes in both visual and semantic spaces

[36]. More recently, Zhang et al. further presented a prob-

abilistic framework for learning joint similarity latent em-

bedding where both visual and semantic embedding along

with a class-independent similarity measure are learned si-

multaneously [37].

Thirdly, parameter mapping aims to estimate model pa-

rameters for unseen classes by “tuning” model parame-

ters learned from observed classes. Essentially, it exploits

the inter-class relationship between observed and unseen

classes in semantic space [19, 4]. Along this line, Mensink

et al. employed co-occurrences statistics of visual concepts

within images and adopted the co-occurrences to design a

new classifier [19]. Furthermore, Changpinyo et al. pro-

posed to gain model parameters for unseen classes by align-

ing the topology of all the classes in semantic and model

parameter spaces [4].

However, all these methods pay less attention to discrim-

inative knowledge in the unseen classes given high intra-

class variability, and may fail to discover shared semantics

across different domains. Our proposed approach follows

in the direct mapping category, which is similar to the re-

gression problem as “dictionary learning + sparse coding”

[13]. Moreover, recent research efforts show the appeal-

ing superiority of ensemble learning in dictionary learning

[35, 38, 26], in which a set of base classifiers are trained and

integrated as an ensemble classifier to obtain extra perfor-

mance. Differently, we jointly optimize low-rank embed-

ding and semantic dictionary to capture shared discrimina-

tive features across seen and unseen classes. Furthermore,

ensemble strategy helps recover the complete latent seman-
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tic space that cannot be fulfilled by a single dictionary.

3. The Proposed Algorithm

In this section, we will present our novel low-rank em-

bedded semantic dictionary learning via ensemble strategy,

followed by an efficient solution.

Suppose there are C seen classes with n labeled samples

S = {X,A, y} and Cu unseen classes with nu unlabeled

samples U = {Xu, Au, yu}. Each sample is denoted as

visual feature with dimension d. Assume there are n sam-

ples in the seen training data and nu samples in the unseen

test data, and thus, the visual features are represented as

X ∈ R
d×n and Xu ∈ R

d×nu , while their corresponding

class label vectors are y ∈ R
n and yu ∈ R

nu . In ZSL

setting, the observed and unobserved classes have no label

overlap, i.e., y ∩ yu = ∅. A ∈ R
m×n and Au ∈ R

m×nu are

the m-dimensional semantic representations of instances in

the seen and unseen datasets, respectively. For the seen

dataset, A is provided in advance since seen samples X are

labeled with either attribute features or word2vector rep-

resentations corresponding to their class labels y. On the

other hand, Au needs to be estimated since the unseen data

are unlabeled. The task of ZSL is to predict Au and yu
given visual features Xu using the classifier learned from

seen classes.

3.1. Low­rank Embedded Semantic Dictionary
Learning

While seen data X and unseen data Xu sampled from

different categories lie in different feature spaces, A and

Au may share similar semantics. For example, in attribute-

based description, both seen and unseen data can be rep-

resented with pre-defined attributes with different weights,

e.g., binary or continuous values. The intuition behind zero-

shot learning is that the classifier would be able to capture

the relationship between the visual-input space and the in-

dividual dimensions of the semantic feature space [20].

Since we are not accessible to the data of test classes dur-

ing the training stage, we are encouraged to discover shared

knowledge generalized to the unseen data from the seen

ones. Inspired by the recent work [13] considering seman-

tic representation A as the encoded coefficients of X based

on a semantic dictionary, we develop an effective low-rank

embedded semantic dictionary learning formula that inte-

grates the merits of both semantic representation learning

and low-rank discriminative embedding:

min
W,D

‖WX −DA‖2F + αrank(W )

s.t. ‖dj‖
2
2 ≤ 1, ∀j,

(1)

where α is the balance parameter, ‖ · ‖F is the Frobenius

norm, and dj ∈ R
d is the j-th atom of semantic dictionary

D ∈ R
d×m. rank(·) is the rank operator of a matrix.

Remarks: In brief, the rank constraint on W ∈ R
d×d en-

forces a new low-rank representation for seen data to high-

light shared semantics across different categories. For ex-

ample, attribute “it has a tail” would be assigned to many

different categories, e.g., horse, monkey, tiger. Low-rank

constraint on W will help collect such visual features which

underlie the embedding space. In this way, discrimina-

tive and descriptive features from seen categories could be

adapted to unseen ones. Mathematically, the low-rankness

will be propagated to DA in Eq. (1), and thus yield a low-

rank semantic dictionary D, which includes shared seman-

tics across categories from seen data.

3.2. Rank Constraint Re­framing

Rank minimization in Eq. (1) is a well-known NP-

hard problem, and considerable approaches have been pro-

posed. Majority of them focuses on seeking a surrogate to

solve instead. One of appealing strategies is to adopt trace

norm ‖W‖∗ to solve the term rank(W ) [5, 6, 7]. Specifi-

cally, trace norm has been corroborated to achieve low-rank

matrix structure in the matrix completion literature, which

equals the sum of all singular values of W . However, it

does not allow an explicit control on the rank of W . That is,

the non-zero singular values of matrix W will change along

with ‖W‖∗, but the rank of W may remain unchanged. In

this sense, trace norm may not be a good surrogate to obtain

the minimal rank matrix.

Alternatively, we exploit a regularization term that guar-

antees that the rank of optimized W will no larger than a

targeted rank r. This skillfully converts the problem to min-

imizing the square sum of r-smallest singular value of W .

When the non-zero singular values increase largely how-

ever, they are excluded by our proposed term such that the

norm value keeps constant. Mathematically, the new for-

mula with fixed rank constraint can be written as:

min
W,D

‖WX −DA‖2F + α
d
∑

i=r+1

(

σi(W )
)2

s.t. ‖dj‖
2
2 ≤ 1, ∀j,

(2)

where σi(W ) is the i-th singular value of W . Such solu-

tions will naturally converge to a subspace corresponding

to the r most significant singular values. As the rank of W

is the size of its non-zero singular values, the proposed reg-

ularization term allows an explicit constraint over the rank

of W . In addition, the novel term can handle the sparse

singular values issues raised by existing works2. Thanks to

the term of square sum of r-smallest singular values, we are

2Interestingly, Hu et al. [12] explored the truncated trace norm by

minimizing the sum of r-smallest singular values, which can also avoid

the effect of large singular values and is better than the traditional trace

norm. However, minimizing the sum of r-smallest singular values is an

l1minimization problem, which results in sparse solution, i.e., some r-

smallest singular values will be zero, but some may get large values.
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able to shrink the singular values and make sure all of them

shrink down near to zeros.

Specifically, we find that
∑d

i=r+1

(

σi(W )
)2

equals

tr(Γ⊤WW⊤Γ), in which tr(·) is the trace operator of ma-

trix and Γ denotes the singular vectors corresponding to the

smallest d-r singular values of WW⊤. In this way, we can

transform Eq. (1) into the following formulation as:

min
W,D,Γ

‖WX −DA‖2F + αtr(Γ⊤WW⊤Γ)

s.t. ‖dj‖
2
2 ≤ 1, ∀j.

(3)

3.3. Ensemble Discriminative Dictionary Learning

While the dictionary learned in Eq. (3) is able to recon-

struct the seen categories in semantic space for each sample

pair {xi, ai}
n
i=1, it fails to capture the discriminative fea-

tures within each class. In zero-shot learning, we expect not

only a shared dictionary in embedding space, but also dis-

criminative features extended to unseen categories. Namely,

the semantic dictionary could also well reconstruct the un-

seen data in the testing stage. Moreover, we have sufficient

pairs {xi, aj}
n
i,j=1 sampling the joint space of X and A.

These matched pairs and semantics therein will play critical

roles in the unseen category learning. For example, if xi is

in class c, then xi will encoded all the semantics from class

c in A too, i.e., Ac with corresponding weights.

To this end, we introduce a new term Z into the dictio-

nary learning to couple the discriminative information from

the seen data, which can be written as:

min
W,D,Γ

‖WX −DAZ‖2F + αtr(Γ⊤WW⊤Γ)

s.t. ‖dj‖
2
2 ≤ 1, ∀j,

(4)

where Z ∈ R
n×n is weight matrix with its element zip =

1
nc

when xi and ap are from the same class (nc is the sample

size for class c), otherwise zip = 0. In this way, the seman-

tic dictionary would be more discriminative by preserving

more class-wise knowledge from the seen data.

Notably, it is difficult to include necessary semantics for

zero-shot learning by a single dictionary D, as little has

been known about the unseen data, which will possibly de-

grade overall performance. This also has been revealed in

[13] where a poor performance was identified for the un-

seen data. Even worse, as we have no access to the unseen

data during training, no adaptation can be employed in this

problem. To approach ideal semantic dictionary for unseen

data, we propose to generate multiple semantic dictionaries

through ensemble learning [38, 18, 26] in the training stage.

We adapt Eq. (4) to achieve this purpose by optimizing the

followed formulation:

K
∑

k=1

‖WXQk −DkAQkZk‖
2
F + αtr(Γ⊤WW⊤Γ)

s.t. ‖djk‖
2
2 ≤ 1, ∀j,

(5)

where d
j
k is the j-th atom of Dk and Qk ∈ R

n×n is col-

umn sampling matrix with values only on the diagonal. If

Qk,ii = 1, the i-th sample is selected, otherwise not. Given

multiple semantic dictionaries, we have better chance to

build the latent semantic space for unseen data. Note as

the sample size for each class may change we update Zk for

each sampling. Specifically, we sample 2
K
×100 percentage

of instances in each class every time.

3.4. Solutions and Optimization

As the formulation in Eq. (5) is not joint convex over

all variables, there is no close solution. Thus, we resort to

an iterative optimization to update a single unknown vari-

able each time. We further split into two sub-problems, i.e.,

ensemble semantic dictionary learning Dk by fixing W,Γ;

and low-rank embedding learning W,Γ with Dk fixed.

Semantic Dictionary Refinement: When W is fixed, we

could optimize the semantic dictionaries Dk as:

Dk = argmin
Dk

‖WXQk −DkAQkZk‖
2
F

s.t. ‖djk‖
2
2 ≤ 1, ∀j.

(6)

By applying projected gradient descent, we update the

j-th dictionary atom d
j
k as follows:











s
j
k = d

j
k − 1

µ
∇

d
j

k

F(W,Dk),

d
j
k = argmin

‖dj

k
‖2

2
=1

‖djk − s
j
k‖2 =

s
j

k

‖sj
k
‖2

, (7)

where µ is the step size, F(W,Dk) = ‖WXQk −
DkAQkZk‖

2
F.

Learning Low-Rank Embedding: When Dk is fixed, we

could update W,Γ.

Update W :

W = argmin
W

K
∑

k=1

‖WXQk −DkAQkZk‖
2
F

+αtr(Γ⊤WW⊤Γ).

(8)

We then calculate the deviation to W and set it to zero:

K
∑

k=1

(WXQk −DkAQkZk)(XQk)
⊤ + αΓΓ⊤W = 0,

⇒ W
K
∑

k=1

XQkX
⊤ + αΓΓ⊤W =

K
∑

k=1

DkAQkZkQkX
⊤,

(9)

which is a standard Sylvester equation, that can be effec-

tively addressed through existing tools such as the Bar-

telsStewart algorithm [2].

Update Γ:

When W is updated, we could optimize Γ with the

eigenvectors related to the (d − r)-smallest singular val-

ues of WW⊤. To compute Γ, we require singular value
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Algorithm 1 Solving Problem (5)

Input: X,A,Zk, Qk, α

Initialize: W,Dk,Γ, µ = 10−1, ǫ = 10−5, t = 0.

while not converged do

1. Optimize Dk via Eq. (6) by fixing others.

2. Optimize W via Eq. (9) by fixing others.

3. Optimize ΓΓ⊤ by fixing others.

4. Check the convergence conditions |Jt+1 − Jt| < ǫ.

5. t = t+ 1.

end while

output: W,Dk .

decomposition (SVD) of WW⊤. Suppose singular value

decomposition of WW⊤ = UwΣwU
⊤
w , we further define

Uw = [U1
w, U

2
w], in which U1

w ∈ R
d×(d−r) and U2

w ∈ R
d×r,

and therefore, we could easily obtain Γt+1 = U1
w.

Actually, we do not need to directly calculate Γ, but

rather to compute the values of ΓΓ⊤. Given the fact that

UwU
⊤
w = U1

wU
1
w

⊤
+ U2

wU
2
w

⊤
= Id, we have ΓΓ⊤ =

Id − U2
wU

2
w

⊤
. Since WW⊤ is a matrix with low-rankness,

r should be a small value (r ≪ d). A direct computing of Γ
would cost O((d− r)2d) ≈ O(d3) due to the matrix multi-

plication of Γt+1Γ
⊤
t+1. Thanks to a simpler matrix multipli-

cation U2
wU

2
w

⊤
, our newly optimized approach would only

cost O(r2d) ≈ O(d).
So far, we build the optimization rules for all the vari-

ables. Then, we iteratively update all the variables until

converge. For clarity, we list the detailed steps of the op-

timization in Algorithm 1.

3.5. Zero­shot Learning via Ensemble

In zero-shot learning scenario, we need to verify the pre-

dicted class label given reference data. Given a test data xiu
and semantic representation Au with Cu classes, we could

use reconstruction error with semantic dictionary to assign

the label to xiu in the following way:

cku =
Cu

argmin
c=1

‖W xiu −DkA
c
u‖

2
2, (10)

where Ac
u is the average semantic representation for class

c and cku is the prediction result of xiu on the k-th semantic

dictionary. Then we adopt voting strategy to obtain the final

result. For all classes, we measure the overall recognition

performance in terms of accuracy.

4. Experiment

In this section, we experiment on popular ZSL bench-

marks to testify the proposed approach by comparing it with

several state-of-the-art ZSL approaches.

4.1. Dataset & Experimental Setting

Four standard benchmarks are experimented for zero-

shot learning and their statistics are listed in Table 1.

Table 1. Statistics of the 4 ZSL benchmarks.

Dataset aPaY AwA CUB SUN

#Training classes 20 40 150 707

#Test classes 12 10 50 10

#Instances 15,339 30,475 11,788 14,340

#Attributes 64 85 312 102

aPascal-aYahoo (aP&aY) [8] contains 20 objects classes

from the PASCAL VOC 2008 dataset and 12 object classes

collected with the Yahoo image search engine. Following

previous work [28, 36, 37, 3], we treat PASCAL VOC 2008

as seen data for model training, and evaluate on Yahoo im-

ages. Specifically, there are 64 attributes shared by two

datasets to describe the object images.

Animal with Attribute (AwA) [16] includes 50 animals

categories, each with over 92 instances. Each category is

paired with a human annotated 85-attribute semantic fea-

ture.

Caltech-UCSD Birds-200-2011 (CUB) [32] is a fine-

grained bird dataset with 200 different bird species and

11,788 image samples. For semantic representation, there

are 312 visual attributes to annotate those birds in class

level.

SUN scene attribute dataset (SUN) [22] is a fine-grained

dataset, which shows less variations across different classes.

There are 717 scene categories, each with 20 images. In

total, 102 attributes are adopted to annotate those images.

In fact, each sample from the aP&aY, CUB and SUN

benchmarks has its specific attribute description, that is,

any two samples within the same class could have relatively

different descriptions. However, for AwA, all the samples

from the same class share a single class-wise description.

We adopt the continuous attributes as the semantic repre-

sentation since it works better than the binary one [4].

Regarding the representation of images, we adopt the

following deep features: AlexNet [14], VGG-VeryDeep-

19 [29], and GoogLeNet [31]. Specifically, for AlexNet,

we take the 7-th layer (FC7) as visual features with dimen-

sions 4,096. For VGG-VeryDeep-19, we adopt the top layer

as visual features with 4,096-dimensional activations3. For

GoogLeNet, we utilize the 1,024-dimensional units as vi-

sual features [4].

In our experiments, we follow previous ZSL approaches

to tune the parameters using cross-validation [28, 36, 37, 3].

Specifically, we split the seen training data into three sub-

sets and then choose the parameters based on the perfor-

mance of one subset with other two as training. We repeat

three times and report the average evaluation accuracies.

3https://zimingzhang.files.wordpress.com/2014/

10/cnn-features.key
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Table 2. Zero-shot classification accuracy (%) of the comparisons

on the four datasets. There are three kinds of features: AlexNet

CNN features [ALEX], VGG-VeryDeep-19 CNN features [VGG]

and GoogLeNet features [GGL].

Features Methods aP&aY AwA CUB SUN

[VGG]

DAP [16] 38.2 57.2 39.8 72.0

ESZSL [28] 24.2 75.3 - 82.1

SSE [36] 46.2 76.3 30.4 82.5

JSLE [37] 50.4 80.5 42.1 83.8

ISEC [3] 53.2 77.3 43.3 84.4

KDICA [11] - 73.8 43.7 -

Ours 55.2 82.8 45.2 86.0

[ALEX]

DAP [16] - 53.2 31.4 -

UDA [13] - 73.2 39.5 -

COSTA [19] - 55.2 36.9 -

SJE [1] - 61.9 40.3 -

ESZSL [28] - 53.2 37.2 -

ISEC [3] 46.1 - 42.0 75.5

SynC [4] - 64.8 47.1 -

Ours 48.9 71.4 43.9 77.1

[GGL]

DAP [16] - 60.5 39.1 -

COSTA [19] - 61.8 40.8 47.9

SJE [1] - 66.7 50.1 87.0

ESZSL [28] - 59.6 44.0 82.1

SynC [4] - 72.9 54.5 90.0

Ours 58.8 76.6 56.2 88.3

4.2. Zero­Shot Classification

In this part, we mainly compare with several state-of-

the-art zero-shot learning methods, including: DAP [16],

ESZSL [28], SSE [36], JSLE [37], ISEC [3], KDICA [11],

UDA [13], COSTA [19], SJE [1] and SynC [4]. Note that

partial results are directly cropped from the published pa-

pers. The classification performance in term of accuracy is

listed in Table 2.

From the results, we notice that the proposed ap-

proach outperforms other competitors in most cases of four

datasets with remarkable margins. Compared with three

kinds of visual features, we notice that VGG-VeryDeep-

19 and GoogLeNet features work better than AlexNet

CNN FC7, which indicates that these two deep features

are more powerful in representing images. Comparing

VGG-VeryDeep-19 and GoogLeNet features, we observe

that VGG-VeryDeep-19 shows superiority on AwA dataset,

while GoogLeNet features are more effective in aP&aY,

CUB and SUN. Furthermore, we also notice that all models

work better on AwA and SUN than on aP&aY and CUB.

The reason we consider is that the class connection in AwA

and SUN is much stronger than in aP&aY, since AwA only

includes animal classes, SUN only contains scene classes,

whereas aP&aY consists of random object classes. Thus, it

is easier to capture the shared information across the cate-

gories in AwA/SUN than in aP&aY. Besides, the semantic

attributes of AwA are provided to tailor for animals with

special descriptions, however, the provided attributes of

Table 3. Performance of our approach with various size of

seen/unseen categories on the CUB dataset.

C(Cu) = 50 C(Cu) = 100 C(Cu) = 150

Cu = 50 40.6 51.2 55.9

C = 50 40.2 38.2 29.3

aP&aY cannot describe an object comprehensively. In this

way, more effective information could be adapted from the

observed categories to the unobserved ones on AwA than

on aP&aY. For CUB, there are 200 bird species and some

birds are very similar. Therefore, CUB is a very challenging

dataset for ZSL.

Moreover, we further visualize the zero-shot classifica-

tion results of the proposed approach in term of the confu-

sion matrices (Figure 2), where we experiments on aP&aY

and AwA using VGG-VeryDeep-19 features. In each con-

fusion matrix, the column denotes the ground truth and the

row represents the predicted results. Seen from the confu-

sion matrix for aP&aY, we notice that our model presents

appealing results on certain classes, e.g., donkey (58.54%)

and centaur (60.18%). While for AwA, we observe from

the confusion matrix that our algorithm achieves over 80%

accuracy for some animal classes, e.g., leopard (84.21%)

and rat (83.08%). Considering the fact that we have no data

from these test classes to train our model, it strongly sup-

ports the superiority of our proposed approach for effective

zero-shot learning.

4.3. Qualitative Results

We further provide some qualitative analysis for our pro-

posed algorithm. Specifically, we show what kind of visual

information the model captures for unseen categories.

Figure 3 and 4 present 10 categories of the unseen test

data from CUB and SUN, where we report the Top-5 sam-

ples classified into each category using GoogLeNet fea-

tures. From the top retrieved images, we can witness that

our model can reasonably capture discriminative visual in-

formation for each unseen category. Furthermore, we notice

that the misclassified images have the similar appearance to

that of predicted category which even humans are unable to

easily distinguish them.

4.4. Evaluation on the Size of Seen/Unseen Classes

In this part, we evaluate our model under different num-

ber of seen/unseen classes on the CUB dataset (GoogLeNet

features).

First of all, we testify the performance of zero-shot learn-

ing with various sizes of unseen classes (e.g., 50, 100, 150)

by fixing the number of unseen categories as 50. We ran-

domly select 10 times of seen/unseen categories. Interest-

ingly, we notice that increasing the size of seen classes dur-

ing the training stage results in better accuracy shown in

Table 3.
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Figure 2. Confusion matrices of the classification accuracy on unobserved categories for our approach on (a) aP&aY and (b) AwA, where

diagonal position indicates the classification accuracy. Column means the ground truth and row denotes the predicted results.
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Figure 3. Qualitative results of our approach on CUB, where 10 unseen class labels are shown on the top. Then we represent the top-5

images recognized in each class in the middle, where misclassified images are marked with red bounding boxes. The misclassified class

labels are listed in the bottom part.

Secondly, we show the effectiveness of our proposed al-

gorithm under various sizes of unseen classes (e.g., 50, 100,

150), with the size of seen categories fixed as 50 during

model learning. We also repeat 10 times to build the seen

and unseen categories. The performance in terms of average

accuracy are reported in Table 3, where we notice the per-

formance decreases with more unseen categories involved.

4.5. Empirical Analysis

We further testify some properties of our proposed model

on four datasets with VGG-VeryDeep-19 features. We also

testify the defectiveness of our low-rank projection, by re-

moving rank constraint with Frobenius norm on W .

From the parameter analysis on α (Figure 5 (a)), we ob-
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Figure 5. (a) parameter α analysis, (b) rank r analysis and (c) evaluation of sampling size K on four benchmarks with VGG-VeryDeep-19.

serve that our model can achieve better performance around

α = 0.1 on four datasets. We further evaluate on α = 0,

meaning we remove rank constraint on W and replace with

Frobenius norm. It verifies the effectiveness of rank con-

straint term.

From the analysis on rank r, we notice that when r is set

around 140 to 180, the classification accuracy tends to bet-

ter (Figure 5 (b)). While r is set too large or too small,

the classification performance would both degrade. This

demonstrates that a low-rank projection would benefit the

zero-shot learning.

Moreover, we evaluate the impact of sampling size K.

Figure 5 (c) shows the performance would increase when

enlarging K. Specifically, K = 1 denotes we only learn

one semantic dictionary from seen classes. Clearly, one se-

mantic dictionary is not able to well capture the latent se-

mantic dictionary for unseen classes. Generally, K = 15
is good enough to sample the space of the latent semantic

dictionary based on our experiments.

5. Conclusion

In this paper, we proposed a novel low-rank embedded

semantic dictionary learning through ensemble strategy for

zero-shot learning challenges. Specifically, we developed

an effective model for knowledge transfer by integrating

low-rank embedding and semantic dictionary learning into

a unified framework. In this way, the semantic gap across

visual features and semantic representations would be mit-

igated. Moreover, ensemble strategy was exploited to build

multiple semantic dictionaries to constitute the latent basis

for the unseen classes. Experiments on four ZSL bench-

marks verified the effectiveness of our designed approach.

2057



References

[1] Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele. Eval-

uation of output embeddings for fine-grained image classifi-

cation. In CVPR, pages 2927–2936, 2015.

[2] R. H. Bartels and G. Stewart. Solution of the matrix equation

ax+ xb= c [f4]. Communications of the ACM, 15(9):820–

826, 1972.

[3] M. Bucher, S. Herbin, and F. Jurie. Improving semantic em-

bedding consistency by metric learning for zero-shot classif-

fication. In ECCV, pages 730–746. Springer, 2016.

[4] S. Changpinyo, W.-L. Chao, B. Gong, and F. Sha. Syn-

thesized classifiers for zero-shot learning. In CVPR, pages

5327–5336, June 2016.

[5] Z. Ding and Y. Fu. Low-rank common subspace for multi-

view learning. In ICDM, pages 110–119. IEEE, 2014.

[6] Z. Ding, M. Shao, and Y. Fu. Latent low-rank transfer sub-

space learning for missing modality recognition. In AAAI,

2014.

[7] Z. Ding, M. Shao, and Y. Fu. Deep robust encoder through

locality preserving low-rank dictionary. In ECCV, pages

567–582. Springer, 2016.

[8] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describ-

ing objects by their attributes. In CVPR, pages 1778–1785.

IEEE, 2009.

[9] Y. Fu, T. M. Hospedales, T. Xiang, and S. Gong. Trans-

ductive multi-view zero-shot learning. IEEE TPAMI,

37(11):2332–2345, 2015.

[10] Z. Fu, T. Xiang, E. Kodirov, and S. Gong. Zero-shot object

recognition by semantic manifold distance. In CVPR, pages

2635–2644, 2015.

[11] C. Gan, T. Yang, and B. Gong. Learning attributes equals

multi-source domain generalization. In CVPR, pages 87–97,

June 2016.

[12] Y. Hu, D. Zhang, J. Ye, X. Li, and X. He. Fast and accurate

matrix completion via truncated nuclear norm regularization.

IEEE TPAMI, 35(9):2117–2130, 2013.

[13] E. Kodirov, T. Xiang, Z. Fu, and S. Gong. Unsupervised

domain adaptation for zero-shot learning. In ICCV, pages

2452–2460, 2015.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

NIPS, pages 1097–1105, 2012.

[15] C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to

detect unseen object classes by between-class attribute trans-

fer. In CVPR, pages 951–958. IEEE, 2009.

[16] C. H. Lampert, H. Nickisch, and S. Harmeling. Attribute-

based classification for zero-shot visual object categoriza-

tion. IEEE TPAMI, 36(3):453–465, 2014.

[17] X. Li, Y. Guo, and D. Schuurmans. Semi-supervised zero-

shot classification with label representation learning. In

ICCV, pages 4211–4219, 2015.

[18] H. Liu, M. Shao, S. Li, and Y. Fu. Infinite ensemble for

image clustering. In KDD, pages 1745–1754. ACM, 2016.

[19] T. Mensink, E. Gavves, and C. G. Snoek. Costa: Co-

occurrence statistics for zero-shot classification. In CVPR,

pages 2441–2448, 2014.

[20] M. Palatucci, D. Pomerleau, G. E. Hinton, and T. M.

Mitchell. Zero-shot learning with semantic output codes. In

NIPS, pages 1410–1418, 2009.

[21] D. Parikh and K. Grauman. Relative attributes. In ICCV,

pages 503–510. IEEE, 2011.

[22] G. Patterson and J. Hays. Sun attribute database: Discover-

ing, annotating, and recognizing scene attributes. In CVPR,

pages 2751–2758. IEEE, 2012.

[23] P. Peng, Y. Tian, T. Xiang, Y. Wang, and T. Huang. Joint

learning of semantic and latent attributes. In ECCV, pages

336–353. Springer, 2016.

[24] G.-J. Qi, W. Liu, C. Aggarwal, and T. S. Huang. Joint in-

termodal and intramodal label transfers for extremely rare or

unseen classes. IEEE TPAMI, 2016.

[25] R. Qiao, L. Liu, C. Shen, and A. van den Hengel. Less is

more: zero-shot learning from online textual documents with

noise suppression. In CVPR, pages 2249–2257, 2016.

[26] Y. Quan, Y. Xu, Y. Sun, Y. Huang, and H. Ji. Sparse cod-

ing for classification via discrimination ensemble. In CVPR,

pages 5839–5847, 2016.
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