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Abstract

We formulate an Alternating Direction Method of Mul-

tipliers (ADMM) that systematically distributes the compu-

tations of any technique for optimizing pairwise functions,

including non-submodular potentials. Such discrete func-

tions are very useful in segmentation and a breadth of other

vision problems. Our method decomposes the problem into

a large set of small sub-problems, each involving a sub-

region of the image domain, which can be solved in parallel.

We achieve consistency between the sub-problems through

a novel constraint that can be used for a large class of pair-

wise functions. We give an iterative numerical solution that

alternates between solving the sub-problems and updating

consistency variables, until convergence. We report com-

prehensive experiments, which demonstrate the benefit of

our general distributed solution in the case of the popular

serial algorithm of Boykov and Kolmogorov (BK algorithm)

and, also, in the context of non-submodular functions.

1. Introduction

A mainstay in computer vision, regularization serves a

breadth of applications and problems including segmenta-

tion [27, 29], optical flow [18], shape fitting [17], stereo

matching [15], deconvolution [10], high-dimensional clus-

tering [28], among many others [3, 13]. For instance, in

the discrete setting, segmentation problems are commonly

stated as optimizing a regularization-based functional1 of

the following general form [1, 4, 16]:

E(y) =
∑

i∈Ω

ui yi + λ
∑

i,j∈Ω2

wij |yi − yj | (1)

where Ω is the image domain and y = (y1, y2, . . . , yn)
⊤ ∈

{0, 1}|Ω| is a binary vector indicating a possible foreground-

1We give a binary (two-region) segmentation functional for simplicity

but the discussion extends to multi-region segmentation.

background segmentation: yi = 1 if pixel i belongs to the

foreground class, otherwise yi = 0. λ ≥ 0 controls the

relative importance of each term. The first term is a sum of

unary potentials typically defined via log posteriors:

ui = log p(yi = 0 |xi)− log p(yi = 1 |xi) (2)

with xi ∈ R
M denoting the feature vector of pixel i ∈ Ω

(e.g., color). The second term in (1) is a general form

of pairwise regularization. The second-order Potts model

[4] is an important example of pairwise regularization, and

is very popular in computer vision: given a neighborhood

N (i) for pixel i, wij > 0 if j ∈ N (i) and 0 elsewhere.

In this case, wij is a penalty for assigning different labels

to neighboring pixels i and j. Such a penalty can be ei-

ther a constant, in which case the regularization term mea-

sures the length of segment boundary, or a decreasing func-

tion of feature (e.g., color) difference ‖xi − xj‖, which at-

tracts the segment boundary towards strong feature edges

[4]. Potts regularization belongs to an important family of

discrete pairwise functions, submodular functions2, which

were instrumental in the development of various efficient

computer vision algorithms. The global optimum of a func-

tion containing unary and submodular pairwise potentials

can be computed exactly in polynomial time using graph cut

(or max-flow) algorithms [5]. Other examples of pairwise

terms of the general form in (1) include non-submodular

functions, which arise in problems such as curvature regu-

larization [10, 22], surface registration [13], deconvolution

[10] and inpainting [13]. It also includes dense (fully con-

nected) models [16], where pairwise penalties wij are not

restricted to neighbouring pixels. These are only few ex-

amples of pairwise-function problems widely used in com-

bination with popular optimization techniques such as LP

relaxation [13] or mean-field inference [1, 16]. Finally, it

is worth mentioning that total-variation (TV) terms can be

2A function f defined over a pair of discrete binary variables is sub-

modular if and only if f(1, 0) + f(0, 1) ≥ f(1, 1) + f(0, 0).
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viewed as the continuous counterpart of Potts regulariza-

tion, and were the subject of a large number of vision works

in recent years [7, 23, 24, 30].

Recently, there have been significant research efforts fo-

cusing on designing parallel (or distributed) formulations

for optimizing pairwise functions [1, 19, 25]. Distribut-

ing computations would be beneficial not only to high-

resolution images and massive 3D grids but also to difficult

high-order models [11, 14, 26], which require approximate

solutions solving a large number of problems of the form

(1). For instance, continuous convex relaxation techniques

have been gaining popularity recently due to their ability

to accommodate parallel implementations [7, 23, 24, 30].

Unfortunately such techniques are restricted to TV regular-

ization terms. Mean-field inference techniques [1, 16] also

attracted significant attention recently as they can be parral-

lelized, albeit at the cost of convergence guarantees [1].

In the context of submodular functions, several studies

focused specifically on parallel formulations of the max-

flow/graph-cut algorithm of Boykov and Kolmogorov (BK

algorithm) [5], which has made a substantial impact in com-

puter vision. The BK algorithm yields a state-of-the-art em-

pirical performance for typical vision problems such as 2D

segmentation. Even though this augmenting path algorithm

is serial, it uses heuristics that handle efficiently sparse 2D

grids, outperforming top parallel push-relabel max-flow al-

gorithms [8]. Unfortunately, distributing the computations

for the BK algorithm is not a trivial problem3, and the ef-

ficiency of the algorithm may decrease when moving from

2D to 3D (or higher-dimensional) grids. Therefore, paral-

lel/distributed computations for this algorithm would be of

substantial benefit to the community, and several works ad-

dressed the problem [2, 19, 25]. For instance, the method

in [19] investigated a bottom-up approach to parallelize the

BK algorithm using two subsequent phases: the first stage

partitions the graph into several sub-graphs and processes

them in parallel, whereas the second stage gradually merges

the subgraphs so as to involve longer paths, until a global

minimum is reached. Unfortunately, this technique requires

a shared-memory model, which does not accommodate dis-

tributed computations. The method in [25] wrote the max-

flow (graph cut) problem as a linear program, and viewed

the objective function as a sum of two functions, each in-

volving a sub-graph. Then, they used a dual decomposition

formulation to process each of the two sub-graphs indepen-

dently. However, it is not clear how to split the problem into

a large number of sub-graphs (for faster computations) as

this would increase exponentially the number of constraints

(w.r.t. the sub-graphs). The method in [2] proposed a linear

program formulation of the BK algorithm, via a L1 min-

imization statement. Solving the problem via Newton it-

3Augmenting-path max-flow algorithms are based on global operations

and, therefore, do not accommodate parallel/distributed implementations

erations yields matrix-vector multiplications, which can be

evaluated in parallel. This method, however, is not signifi-

cantly faster than the serial BK algorithm [25].

In general, the existing distributed/parallel formulations

for optimizing pairwise functions are technique-specific.

For instance, the methods in [2, 19, 25] were tailored for

the BK algorithm, and it is not clear how to extend these

methods beyond the context of max-flow formulations and

submodular functions. In this study, we formulate an Al-

ternating Direction Method of Multipliers (ADMM), which

systematically distributes the computations of any tech-

nique for optimizing pairwise functions, including non-

submodular potentials. Our method decomposes the prob-

lem into a large set of small sub-problems, each involving

a sub-region of the image domain (i.e., block), which can

be solved in parallel. We achieve consistency between the

sub-problems through a novel constraint that can be used in

conjunction with any functional of the form (1). We give an

iterative numerical solution that alternates between solving

the sub-problems and updating consistency variables, until

convergence. Our method can be viewed as a variant of the

alternating projections algorithm to find a point in the inter-

section of two convex sets and, therefore, is well suited to

distributed convex optimization. We report comprehensive

experiments, which demonstrate the benefit of our general

solution in the case of the popular BK algorithm and, also,

in the context of non-submodular functions.

2. Formulation

Let u = (u1, u2, . . . , un)
⊤ ∈ R

|Ω| be the vector of

unary penalties and W ∈ R
|Ω|×|Ω| the matrix of pairwise

penalties wij . It is easy to show that the general segmen-

tation problem in (1) can be expressed in matrix form as

follows:

argmin
y∈{0,1}|Ω|

u⊤y + λy⊤Ly. (3)

Here, L = D − W is the Laplacian matrix corresponding

to W , and D is a diagonal matrix such that dii =
∑

j wij .

Let us divide a large image Ω into K blocks Ωk (k =
1, . . . ,K) that can overlap, which allows pixels of image

Ω to be simultaneously located in multiple blocks. Let

ŷk ∈ {0, 1}|Ωk| denote the segmentation vector of block

k. Our goal is to reformulate problem (3) in a way that

the tasks of segmenting blocks are not directly coupled,

thus allowing them to be performed simultaneously. To

achieve this, we connect them through the segmentation

vector y ∈ {0, 1}|Ω| of the whole image Ω, by imposing

linear constraints ŷk = Sky, k = 1, . . . ,K, where Sk is a

|Ωk| × |Ω| matrix selecting the pixels of block k.

Given the segmentation vectors of each block, global

segmentation y can be expressed using the following propo-

sition.
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Proposition 1. If each pixel of Ω belongs to at least one

block, i.e. ∪K
k=1

Ωk = Ω, and ŷk = Sky, k = 1, . . . ,K,

then the following relationship holds:

y =
( K∑

k=1

S⊤
k Sk

)−1( K∑

k=1

S⊤
k ŷk

)
. (4)

Here, Q =
∑

k S
⊤
k Sk is a diagonal matrix such that qii

is the number of blocks containing pixel i. In short, this

proposition states that, if the block segmentation vectors

are consistent (i.e., pixels have the same label across blocks

containing them), then yi is simply the mean label of pixel

i within the blocks containing this pixel. This property also

applies when relaxing the integer constraints on y, allowing

us to develop an efficient optimization strategy.

In the following theorem, we show that segmentation

problem (3) can be reformulated as a sum of similar sub-

problems, one for each block k, connected together through

a relaxed global segmentation vector y.

Theorem 1. Denote as ûk = SkQ
−1u and Ŵk =

SkQ
−1WQ−1S⊤

k the unary and binary potential weights

of block k, adjusted to consider the occurrence of pixels in

multiple blocks. Moreover, let D̂k be the diagonal matrix

such that [D̂k]ii =
∑

j [Ŵk]ij , and L̂k = D̂k − Ŵk be

the Laplacian of Ŵk. If ŷk = Sky, k = 1, . . . ,K, then

problem (3) can be reformulated as

argmin
y∈R

|Ω|

ŷk ∈{0,1}|Ωk|

K∑

k=1

(
ûk + λCky

)⊤
ŷk + λ

K∑

k=1

ŷ⊤
k L̂kŷk,

(5)

where Ck = SkQ
−1L− L̂kSk.

Proof. See details in Appendix A. �

We solve problem (5) with an ADMM approach. Mov-

ing constraints ŷk = Sky, k = 1, . . . ,K, into the func-

tional via augmented Lagrangian terms [12] (with multi-

plier ak) gives:

argmin
y∈R

|Ω|, ŷk∈{0,1}|Ωk|

ak ∈R
|Ωk|

K∑

k=1

(
ûk + λCky

)⊤
ŷk

+ λ

K∑

k=1

ŷ⊤
k L̂kŷk +

µ

2

K∑

k=1

‖ŷk − Sky + ak‖
2

2. (6)

In this equation, augmented Lagrangian parameter µ ≥ 0
controls the trade-off between the original functional and

satisfying the constraints. In general, ADMM methods are

not overly sensitive to this parameter and converge if µ is

large enough [6]. In practice, µ is initialized using a small

value and increased at each iteration by a given factor. To

solve problem (6), we note that the functional is convex with

respect to each parameter ŷk, y and ak. We thus update

these parameters alternatively, until convergence is reached

(i.e., the constraints are satisfied up to a given ǫ).

Given y, the segmentation vectors of each block k can be

updated independently, in parallel, by solving the following

problem:

argmin
ŷk ∈{0,1}|Ωk|

(
ûk + λCky

)⊤
ŷk + λŷ⊤

k L̂kŷk

+
µ

2
‖ŷk − (Sky − ak)‖

2

2 (7)

Using the fact that ‖ŷk‖
2
2 = 1⊤ŷk for binary vector ŷk, we

reformulate the problem as:

argmin
ŷk ∈{0,1}|Ωk|

(
ûk + λCky + µ

(
ak − Sky + 1

2

))
⊤ŷk

+ λŷ⊤
k L̂kŷk. (8)

Notice that for y fixed, this block problem corresponds to

a sum of unary and pairwise potentials. Therefore, as dis-

cussed in the introduction, it can be solved with one of the

popular techniques4, e.g., the BK algorithm [5]

Once all block segmentation vectors have been com-

puted, we can update the global segmentation y by solving

the following problem:

argmin
y∈R|Ω|

λ

K∑

k=1

ŷ⊤
k Cky+

µ

2

K∑

k=1

‖Sky− (ŷk+ak)‖
2

2. (9)

Since we have relaxed the integer constraints on y, this cor-

responds to a unconstrained least-square problem, whose

solution is given by:

y =
1

µ
Q−1

K∑

k=1

(
µS⊤

k (ŷk + ak)− λC⊤
k ŷk

)
. (10)

Note that since Q is diagonal, computing its inverse is triv-

ial.

Finally, the Lagrangian multipliers are updated as in

standard ADMM methods:

ak = ak + (ŷk − Sky), k = 1, . . . ,K. (11)

The pseudo-code for implementing our DOPE method is

given in Algorithm 1. In a first step, the algorithm com-

putes the unary and pairwise potentials of the global image,

and divides the image into possibly overlapping blocks Ωk,

k = 1, . . . ,K, based on a given partition scheme. For each

block k, the algorithm pre-computes parameters Sk, Ck,

Ŵk and ûk. Note that these parameters can be computed

in parallel. In the main loop, the algorithm then simulta-

neously recomputes segmentation vectors ŷk of each block,

and uses them to update the global segmentation vector y.

This process is repeated until constraints linking the block

4The choice depends on the form of the matrix of pairwise potentials.
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segmentation to the global segmentation are satisfied, up to

a given ǫ ≥ 0. As mentioned earlier, the algorithm’s con-

vergence is facilitated by increasing the ADMM parameter

µ by a factor of µfact at each iteration.

Algorithm 1: DOPE segmentation algorithm

Input: The input image Ω and pixel features x;

Input: Block partition scheme;

Input: Parameters λ, ǫ, µ0, µfact;

Output: The segmentation vector y;

Initialization:

Compute global image unary and pairwise potentials;

Compute blocks and their corresponding parameters;

Set yi :=
1

2
, i = 1, . . . , |Ω|;

Set ak := 0, k = 1, . . .K;

Set µ := µ0;

Main loop:

while ∃k, s.t. ‖ŷk − Sky‖2 > ǫ do

In parallel: update ŷk, k = 1, . . . ,K, by solving (8);

Update y by Eq. (10);

Update ak, k = 1, . . . ,K, based on Eq. (11);

Set µ := µ× µfact;

return y.

3. Experiments

The main goal of our experiments is to demonstrate that

our DOPE formulation can distribute the computations of

powerful serial algorithms without affecting the quality of

the energies at convergence. First, we prove that our for-

mulation can achieve segmentation results consistent with

the popular serial graph cut (sGC) algorithm of Boykov-

Kolmogorov [5], while allowing distributed computations.

We illustrate the usefulness of our method on the task of

segmenting high-resolution 2D multi-channel images (Sec-

tion 3.1) and 3D MRI brain volumes (Section 3.2) using

the second-order Potts model, and compare its accuracy,

obtained energies and efficiency to those corresponding to

sGC. The consistency between our method’s segmentation

and sGC is measured using Dice score coefficient (DSC)

and relative energy differences:

∆E(%) =
EGC − EdistReg

EGC

× 100 (12)

where EGC is the energy of serial GC and EdistReg is the

energy given by our distributed regularization formulation.

Another objective of these experiments is to assess the

impact of our method’s parameters on computation time

and segmentation accuracy. In particular, we evaluated how

the partitioning scheme (i.e., block size and overlap) affects

the method’s performance. If blocks are small, a greater

level of parallelism can be achieved, but segmentation con-

sistency across blocks might be harder to satisfy. Con-

versely, using larger blocks with more overlap encourages

global consistency of the segmentation, but might increase

the run times. In our experiments, we considered three par-

titioning schemes, dividing images into K = 32, 64 or

128 even-sized blocks. For each of these, we tested three

levels of overlap. In the first one, denoted by Size00, im-

ages were split into K non-overlapping blocks covering the

whole image (i.e., each pixel/voxel is in exactly one block).

The size of these blocks was then increased by 10% and

25%, leading to larger blocks with greater overlap. We de-

note these two overlapping partitions by Size10 and Size25,

respectively. Furthermore, we investigated the impact of

neighbourhood size (i.e., the number of non-zero pairwise

potentials wij) on segmentation performance. Using larger

neighbourhoods, as defined by the kernel, can lead to a finer

segmentation but significantly increases run times. Kernel

sizes of 3, 5, 7 and 9 pixels/voxels were considered in our

experiments. We used square kernels for 2D images, and

spherical kernels in the 3D setting. The regularization pa-

rameter λ was selected per image (typically, its values are

proportional to image size). Note that the same λ was used

for computing the energy of both our method and sGC. Fi-

nally, the ADMM parameter was initialized to µ0 = 100 for

2D images and µ0 = 500 for 3D volumes, and increased by

a factor of µfact = 1.05 at each iteration.

Finally, we report curvature regularization experiments

to show the use of our formulation in the case of non-

submodular pairwise functions (Section 3.3). These ex-

periments involve distributing the computations of the trust

region (LSA-TR) method in [10], a serial non-submodular

optimizer that recently obtained competitive5 performances

in a wide range of applications (deconvolution, inpainting,

among others). This shows that our formulation can be

readily used in these applications.

Our method was implemented in MATLAB R2015b, and

all experiments were performed on a server with the follow-

ing hardware specifications: 64 Intel(R) Xeon(R) 2.30GHz

CPUs with 8 cores, and 128 GB RAM. For sGC, we used

the publicly available B-K MATLAB tool6, which imple-

ments the max-flow algorithm. In the next sections, we

present the results obtained for high resolution 2D multi-

channel images, 3D MRI data and a squared curvature reg-

ularization example.

3.1. Highresolution 2D multichannel images

We first tested our method on 10 high-resolution 2D

multi-channel images, with resolution ranging between

2000×3000 and 2600×3900 pixels. As in [4], we drew

seeds to generate color model priors for the foreground and

5LSA-TR outperforms significantly popular non-submodular optimiza-

tion techniques such as TRWS and QPBO; See the comparative energy

plots in [10].
6http://vision.csd.uwo.ca/code/

46782
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a) Original image b) Graph cuts c) Our DOPE method

a) Original image b) Graph cuts c) Our DOPE method d) Energy evolution

Figure 1: Visual example of 2D image segmentation by sGC and DOPE approaches (left) and the evolution of the segmenta-

tion energy in both formulations with respect to the number of iterations (right).

background regions (see Fig. 1). The k-means algorithm

[21] was employed to group foreground/background seed

pixels into 5 clusters, which were then used to compute the

log posteriors of unseeded pixels.

Figure 2 gives the average relative energy difference

(%), relative time difference and Dice similarity coefficient

(DSC) between the segmentation of our DOPE method and

sGC, computed over the 10 images. In the left-side plots,

the number of blocks was set to 128, but we varied the size

of these blocks and the kernel. Conversely, the right-side

plots compare our method with sGC for various numbers of

blocks and kernel sizes, while keeping the block size fixed

to Size25. Values are reported for one and three ADMM it-

erations of our method. While a more detailed analysis is

presented below, we found that three iterations were often

sufficient to achieve convergence in the case of 2D images

(e.g., see Fig. 1). We observe that energy differences are

quite small in all tested configurations, with values around

0.1% for one ADMM iteration and 0.01% for three ADMM

iterations. With respect to block size, we observe no differ-

ence between the tested configurations, for the same num-

ber of ADMM iterations. For a single ADMM iteration,

increasing the overlap seems to result in higher energy dif-

ferences. However, these differences disappear when using

three iterations, suggesting that having a greater overlap re-

quires more iterations to converge.

As expected, segmentation times varied proportionally to

the number and size of blocks. However, doubling the num-

ber of blocks did not lead to reduction in processing time by

the same factor. This is in part due to pre-processing oper-

ations, such as computing the unary and pairwise potentials

for the whole image, which need to be performed regardless

of the image partitioning scheme used. Another trend that

can be observed is that the speed-up provided by our method

increases with the kernel size. Thus, for kernel sizes of 7 or

more, our method obtained nearly identical segmentation

results up to 5 times faster than sGC. Additionally, allow-

ing the algorithm to run three iterations did not increase run

times significantly for larger kernels, suggesting that most

operations are performed in pre-processing steps.

In terms of segmentation consistency, it can be seen that

our DOPE method obtains segmentation results quite simi-

lar to those of sGC, with DSC values above 0.99. In most

cases, increasing the number of blocks decreases DSC val-

ues, although this difference is not significant. A similar

effect can be observed when employing larger blocks and

kernels. Overall, the segmentation results obtained by our

method are consistent with those of sGC, for all tested con-

figurations.

Figure 1 gives two examples of segmentations obtained

by sGC and our DOPE method. The first column shows the

image to be segmented with foreground/background scrib-

bles, whereas the second and third columns give the seg-

mentation result of sGC and our method, respectively. The

evolution of the segmentation energy is also shown in Fig-

ure 1 (right). We observe that our approach converges

rapidly, requiring only two iterations to achieve near-zero

energy differences.

3.2. 3D MRI volumes

Segmentation efficiency is particularly important in the

case of 3D volumes, where computational and memory re-

quirements often exceed the capacity of current methods.

As a second experiment, we tested our DOPE method on a

3D MRI brain volume of size 200×200×100. For this ex-

periment, we considered the task of segmenting sub-cortical

brain regions, and used the soft probability map generated

by a 3D convolutional neural network [9] 7 as unary poten-

tials in the energy function.

7https://github.com/josedolz/LiviaNET
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Figure 2: Mean relative energy difference (%), relative

time difference (%) and Dice similarity coefficient (DSC)

between the segmentation of sGC and our DOPE method,

computed over the 10 high-definition 2D images. In the

left-side plots, the number of blocks is fixed to 128, and

values are reported for different block and kernel sizes. In

right-side plots, the block size is fixed to Size25, and values

are reported for different number of blocks and kernel sizes.

ADMM energy

Number of iterations

Figure 3: Evolution of the ADMM energy (augmented La-

grangian terms) for a partitioning comprised of 128 blocks

with Size10 and different kernel sizes.

Figure 3 shows the energy related to the augmented La-

grangian terms in Eq. (6), for a partitioning composed

of 128 blocks with Size10, and kernel sizes correspond-

ing to 3, 5, 7 and 9. Recall that this energy corresponds

to segmentation consistency across different blocks. We

observe that the number of iterations required to achieve

convergence increases with kernel size, probably due to the

0 2 4 6 8 10 12 14 16 18 20

Number of iterations

3.4

3.5

3.6

3.7

3.8

3.9

E
n
e
rg

y

10
7

0

1000

2000

3000

4000

5000

E
n

e
rg

y

Primal Energy

ADMM Energy

Figure 4: Evolution of the segmentation (primal) energy

and ADMM (augmented Lagrangian terms) energy during

optimization, for a partitioning comprised of 128 blocks

with Size10 and a kernel of size 7.

broader interaction between blocks for larger kernels. How-

ever, our method converged in less than 10 iterations, for

all kernel sizes. These observations are confirmed by Fig-

ure 4, which also shows the variation of segmentation en-

ergy (unary and pairwise potentials) when employing 128

blocks with Size10 and a kernel of size 7. We notice that

the segmentation energy increases with the number of iter-

ations. This can be explained by the fact that this energy is

computed using the integer-relaxed segmentation vector y,

which gets increasingly restricted to a binary solution over

time. Segmentation convergence is illustrated in Fig. 5,

which shows the evolution of y for a random 2D slice of

the volume.

Analyzing detailed results, we see that mean relative en-

ergy differences increase with kernel size, ranging from

0.1% for kernels of size 3 to 2.5% when employing ker-

nel of size 9. Moreover, for a fixed kernel size, having a

greater overlap leads to smaller energy differences (e.g., en-

ergy difference of 1.5% for Size20 compared to 2.25% for

Size00, for a kernel size of 9 and 128 blocks). This sug-

gests the greater usefulness of having overlapping blocks

in the segmentation of 3D volumes. However, when over-

lap is allowed, larger block sizes reported slightly higher

energy differences. As was the case for 2D image segmen-

tation, the speed-up of our DOPE method depends on kernel

size and the block number/size. Hence, for 64 blocks with

Size10 and kernel size of 7, our method was about 3 times

faster than sGC, while a speed-up of 4 was achieved using

128 blocks with Size00 and a kernel size of 9. For segmenta-

tion consistency, DSC values ranged from 0.95 to 0.99 in all

tested configurations. While a few iterations were sufficient

for small kernels, larger kernels required more iterations to

converge.

Figure 6 shows the segmentation of white matter tissues

in three axial slices, obtained by our DOPE method using

128 blocks with Size10 and kernel size of 7 (left column)

and sGC (middle column). Segmentation differences are

shown in the rightmost column. It can be observed that the

two segmentations are very similar, with a DSC equal to

0.9638 and an energy difference of only −1.33%. In Fig-

ure 7, we illustrate 3D segmentation results by showing the
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1 iteration 2 iterations 3 iterations 4 iterations 5 iterations 22 iterations

Figure 5: Evolution of the segmentation results (relaxed y) with respect to the number of iterations.

DOPE Graph Cuts Difference

Figure 6: Several 2D images in axial view of the 3D seg-

mentation of white matter generated by our DOPE approach

(left) and serial graph cuts (middle). Differences between

both segmentations are shown in the last column.

Figure 7: 3D volumes segmented by serial GC (left) and our

DOPE approach.

surface of the left and right putamen regions, extracted by

our method and sGC. Note that, in this case, the probability

maps of these specific regions were used as unary potentials

in the energy function.

3.3. Curvature regularization

We demonstrated that our general formulation can dis-

tribute the computations of a powerful serial sub-modular

optimization algorithm (i.e., BK) without affecting the qual-

ity of the energies at convergence. In this section, we re-

port a curvature regularization experiment to illustrate how

our method can also distribute the computations of non-

submodular optimization techniques. Specifically, we fo-

cused on distributing the computations of the stat-of-the-art

LSA-TR method in [10].

Table 1 reports the energies obtained by LSA-TR non-

submodular optimization [10] and a distributed version

based on our DOPE formulation. To obtain these energies,

we employed the squared curvature model and the Picasso’s

ink drawing used in [22]. Fig. 8 depicts the results of this

experiment. Notice that, by distributing the computations

of LSA-TR with our DOPE formulation, we obtained a very

similar result while reducing computation time.

LSA-TR [10]
LSA-TR (DOPE)

(8 sub-blocks)

Energy 1.0906 × 104 1.1115 × 104

Time 174 s 53 s

Table 1: Energies obtained by LSA-TR non-submodular op-

timization [10] and our formulation.

Original LSA-TR [10] LSA-TR(DOPE)

Figure 8: Curvature regularization results of Picasso’s ink

drawing using the trust region (LSA-TR) method in [10]

and our DOPE formulation.
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4. Conclusion

In this work, we have formulated a general Alternating

Direction Method of Multipliers (ADMM) technique that

systematically distributes computations in the context of

pairwise functions. Our method is scalable, allowing com-

putations for large images by decomposing the problem into

a large set of small sub-problems that can be solved in par-

allel. Unlike existing approaches, which distributes com-

putation to a restricted number of cores [20], our algorithm

can be easily adapted to the number of available cores. As

shown in the results, another advantage of our technique

is that it requires a small number of iterations to converge:

about 3 iterations for high-definition 2D images and 5-10 it-

erations for 3D volumes. This allows our method to obtain

segmentation results consistent with those of sGC, while al-

lowing distributed computations.

While our experiments have focused on a standard Potts

model, one of the main benefits of our formulation lies in its

generality. This generality has been proven by distributing

the computations in the context of a non-submodular func-

tion. Thus, our approach is not technique-specific, and can

be applied to a wide variety of pairwise potentials, includ-

ing dense (or fully connected) models. In future work, we

plan to extend our method to such models, e.g., the dense

pairwise potentials in [16], and to the case of multi-label

segmentation.

A. Proof of Theorem 1

Using relationship (4) in Eq. (3), and relaxing the integer

constraints on y, the general segmentation problem (3) can

be reformulated as

argmin
y∈R

|Ω|

ŷk ∈{0,1}|Ωk|

K∑

k=1

u⊤Q−1S⊤
k ŷk

+ λ

K∑

k=1

K∑

l=1

ŷ⊤
k SkQ

−1LQ−1S⊤
l ŷl (13)

where ŷk = Sky and k = 1, . . . ,K. The unary term can be

simplified by defining vectors ûk = SkQ
−1u, and then the

problem can be written as

argmin
y∈R

|Ω|

ŷk ∈{0,1}|Ωk|

K∑

k=1

û⊤
k ŷk + λ

K∑

k=1

K∑

l=1

ŷ⊤
k SkQ

−1LQ−1S⊤
l ŷl.

(14)

We notice that the segmentation vectors of each block are

still coupled in the right-most term of this new cost function.

In order to segment each block independently, we thus split

this term in two: the cost of assigning labels to pixels in the

same block and in different blocks:

argmin
y∈R

|Ω|

ŷk ∈{0,1}|Ωk|

K∑

k=1

û⊤
k ŷk

︸ ︷︷ ︸
1©

+ λ

K∑

k=1

ŷ⊤
k SkQ

−1LQ−1S⊤
k ŷk

︸ ︷︷ ︸
2©

+ λ

K∑

k=1

K∑

l 6=k

ŷ⊤
k SkQ

−1LQ−1S⊤
l ŷl

︸ ︷︷ ︸
3©

. (15)

Using the fact that L = D − W and ŷk = Sky, we can

transform 2© as follows:

2© = λ

K∑

k=1

ŷ⊤
k SkQ

−1(D −W )Q−1S⊤
k ŷk

= λ

K∑

k=1

ŷ⊤
k

(
SkQ

−1DQ−1S⊤
k − Ŵk + D̂k − D̂k

)
ŷk

= λ

K∑

k=1

ŷ⊤
k L̂kŷk + ŷ⊤

k

(
SkQ

−1DQ−1S⊤
k − D̂k

)
Sky,

(16)

where Ŵk = SkQ
−1WQ−1S⊤

k and L̂k = D̂k − Ŵk is

the Laplacian of Ŵk. Likewise, since
∑

l 6=k S
⊤
l Sl = Q −

S⊤
k Sk, the rightmost term in (15) becomes

3© = λ

K∑

k=1

ŷ⊤
k SkQ

−1LQ−1
∑

l 6=k

S⊤
l Sly

= λ

K∑

k=1

ŷ⊤
k SkQ

−1L
(
I −Q−1S⊤

k Sk

)
y

= λ

K∑

k=1

ŷ⊤
k SkQ

−1Ly + ŷ⊤
k

(
Ŵk − SkQ

−1DQ−1S⊤
k

)
Sky.

(17)

Replacing 2© and 3© by these equalities, the problem re-

duces to

argmin
y∈R

|Ω|

ŷk ∈{0,1}|Ωk|

K∑

k=1

û⊤
k ŷk + λ

K∑

k=1

ŷ⊤
k L̂kŷk

+ λ

K∑

k=1

ŷ⊤
k

(
SkQ

−1L− L̂kSk

)
y, (18)

which is the formulation of Theorem 1.
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