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Abstract

This paper introduces WILDCAT, a deep learning

method which jointly aims at aligning image regions for

gaining spatial invariance and learning strongly localized

features. Our model is trained using only global image la-

bels and is devoted to three main visual recognition tasks:

image classification, weakly supervised pointwise object lo-

calization and semantic segmentation. WILDCAT extends

state-of-the-art Convolutional Neural Networks at three

major levels: the use of Fully Convolutional Networks for

maintaining spatial resolution, the explicit design in the net-

work of local features related to different class modalities,

and a new way to pool these features to provide a global im-

age prediction required for weakly supervised training. Ex-

tensive experiments show that our model significantly out-

performs the state-of-the-art methods.

1. Introduction

Over the last few years, deep learning and Convolu-

tional Neural Networks (CNNs) have become state-of-the-

art methods for visual recognition, including image classifi-

cation [34, 56, 28], object detection [21, 20, 10] or semantic

segmentation [8, 42, 9]. CNNs often require a huge number

of training examples: a common practice is to use models

pre-trained on large scale datasets, e.g. ImageNet [53], and

to fine tune them on the target domain.

Regarding spatial information, there is however a large

shift between ImageNet, which essentially contains cen-

tered objects, and other common datasets, e.g. VOC or

MS COCO, containing several objects and strong scale and

translation variations. To optimally perform domain adap-

tation in this context, it becomes necessary to align infor-

mative image regions, e.g. by detecting objects [44, 29],
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(a) original image (b) final predictions

(c) dog heatmap 1 (head) (d) dog heatmap 2 (legs)
Figure 1. WILDCAT example performing localization and seg-

mentation (b), based on different class-specific modalities, here

head (c) and legs (d) for the dog class.

parts [68, 69, 70, 35] or context [23, 13]. Although some

works incorporate more precise annotations during training,

e.g. bounding boxes [43, 21], the increased annotation cost

prevents its widespread use, especially for large datasets

and pixel-wise labeling, i.e. segmentation masks [3].

In this paper, we propose WILDCAT (Weakly super-

vIsed Learning of Deep Convolutional neurAl neTworks),

a method to learn localized visual features related to class

modalities, e.g. heads or legs for a dog – see Figure 1(c)

and 1(d). The proposed model can be used to perform im-

age classification as well as weakly supervised pointwise

object localization and segmentation (Figure 1(b)).

The overall architecture of WILDCAT (Figure 2) im-

proves existing deep Weakly Supervised Learning (WSL)

models at three major levels. Firstly, we make use of the

latest Fully Convolutional Networks (FCNs) as back-end

module, e.g. ResNet [28] (left of Figure 2). FCNs have

recently shown outstanding preformances for fully super-
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Figure 2. WILDCAT architecture. It is based on FCN ResNet-101 to extract local features from whole images with good spatial resolution

(Section 3.1). All regions are encoded into multiple class modalities with a WSL multi-map transfer layer (Section 3.2). Feature maps are

then combined separately to yield class-specific heatmaps that can be globally pooled to get a single probability for each class, using a new

spatial aggregation module (Section 3.3). WILDCAT is trained with image-level labels in a WSL way and is applied to complex scene

understanding, WSL object detection and semantic segmentation (Section 3.4).

vised object detection [10] and semantic segmentation [9],

and we adapt their ability to preserve spatial information in

our WSL context.

Secondly, we incorporate a new multi-map WSL transfer

layer (middle of Figure 2), which explicitly learns multiple

localized features related to complementary class modali-

ties, e.g. head and legs for dogs in Figure 1. Our multi-

map strategy is not specifically designed for any particular

kind of feature, e.g. part or view-based features, as some

approaches are [16, 22, 10, 9].

Finally, we address the problem of aggregating spatial

scores into a global prediction, which is a crucial issue for

WSL training. We propose a new pooling strategy (right of

Figure 2) which generalizes several approaches in the liter-

ature, including (top) max pooling [44, 39], global average

pooling [70] or negative evidence models [47, 12, 13].

We also present a thorough evaluation of the WILDCAT

model on six datasets, reporting outstanding performances

on classification, WSL pointwise detection and segmenta-

tion tasks.

2. Related Work

Despite excellent performances, deep ConvNets [34, 56,

28] carry limited invariance properties, i.e. small shift in-

variance through pooling layers [62, 55, 7]. This is ques-

tionable for object or scene databases with strong scale

and translation variations. One option to detect informa-

tive image regions is to revisit the Bag of Words (BoW)

model [57, 2], by using deep features as local region activa-

tions [27, 25, 24] or by designing specific BoW layers, e.g.

NetVLAD [1].

Another option to gain strong invariance is to consider a

Weakly Supervised Learning framework (WSL), where we

can explicitly align image regions. An important paradigm

for WSL is Multiple Instance Learning (MIL) [11], which

considers an image as a bag of instances (regions). The

main issue concerns the aggregation function to pool in-

stance scores into a global prediction. Different strategies

have been explored to combine deep models and MIL. Max

pooling [44] only selects the most informative region for

the MIL prediction. Recent alternatives include Global Av-

erage Pooling (GAP) [70], soft max in LSE pooling [58],

Learning from Label Proportion (LLP) [65, 36], and top

max scoring [39]. Negative evidence models [47, 12, 13]

explicitly select regions accounting for the absence of the

class. In WILDCAT, we propose to incorporate negative

evidence insights, but with a differentiate positive and neg-

ative contribution process.

Concerning the WSL localization task, [5] uses la-

bel co-occurrence information and a coarse-to-fine strat-

egy based on deep feature maps to predict object loca-

tions. ProNet [58] uses a cascade of two networks: the first

generates bounding boxes and the second classifies them.

Similarly, [6] proposes an specific architecture with two

branches dedicated to classification and detection. Another

important WSL application is segmentation. Many meth-

ods are based on MIL framework: MIL-FCN [49] extends

MIL to multi-class segmentation, MIL-Base [50] introduces
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a soft extension of MIL, EM-Adapt [45] includes an adap-

tive bias into the MIL framework, and Constrained CNN

(CCNN) [48] uses a loss function optimized for any set of

linear constraints on the output space of a CNN.

Similarly to WSL, the attention-based models [63, 29,

66, 64] select relevant regions to support decisions. How-

ever the WSL methods usually include some structure on

the selection process while it is implicit in attention-based

approaches.

Different semantic categories are often characterized by

multiple localized attributes corresponding to different class

modalities (see for example head and legs for the dog class

in Figure 1). The seminal DPM model [16] including sev-

eral template regions for decision has been extensively stud-

ied [54, 46], optionally incorporating priors, e.g. sparsity

or diversity, in order to learn sensible models [30, 59].

While [22, 60] are direct generalizations of DPM to CNN,

R-FCN [10] improves performances by explicitly learning

several part models and using a part-based pooling of fea-

tures designed for accurate spatial localization and directly

inserted at the top of the network. MR-CNN [19] exploits

several modalities by modeling objects with a fixed set of

few local features (e.g. parts, context) and incorporating

segmentation cues. Combining different regions has also

recently been addressed through explicit context model-

ing [23], or by modeling region correlations as in RRSVM

[61]. For fine-grained recognition, multi-feature detection

has been tackled in the fully supervised setting [67, 40, 68],

and in WSL [33].

When computing local features with deep models, the

most naive approach is to rescale each region into a fixed-

size vector adapted to the CNN architecture, as done in early

works for detection, e.g. R-CNN [21], or scene understand-

ing [27, 25, 43, 12]. Since this approach is highly ineffi-

cient, there have been extensive attempts for using convolu-

tional layers to share feature computation, for image classi-

fication [44, 13, 70], object detection [22, 20, 52] or image

segmentation [8, 42]. However, fully connected layers are

beneficial in standard deep architectures, e.g. AlexNet [34]

or VGG [56]. Recently, the huge success of Fully Convo-

lutionnal Networks (FCNs) for image classification, e.g.

ResNet [28], has been driving successful approaches us-

ing FCN for fully supervised object detection [10] and im-

age segmentation [9], which enable complete feature shar-

ing and state-of-the-art performances. Our approach adapts

these insights from these latest FCNs to the WSL setting.

3. WILDCAT Model

The overall WIDLCAT architecture (Figure 2) is based

on a FCN which is suitable for spatial predictions [42], a

multi-map WSL transfer layer encoding modalities associ-

ated with classes, and a global pooling for WSL that learns

accurate localization. We now delve into each of the three

Figure 3. WILDCAT local feature encoding and pooling. Class

modalities are encoded with a multi-map WSL transfer layer and

pooled separately for all classes. Local features are then aggre-

gated with a global spatial pooling to yield a single score per class.

parts of the model.

3.1. Fully convolutional architecture

The selection of relevant information within feature

maps is a major issue in WSL. It impacts the localization

of the learned representation and the precision of the results

(e.g. semantic segmentation or object detection). We thus

expect the resolution of the feature maps to be a key compo-

nent for WILDCAT: finer maps keep more spatial resolution

and lead to more specific regions (e.g. objects, parts).

To this end we exploit the recently introduced FCN

ResNet-101 [28] (left of Figure 2) that naturally preserves

spatial information throughout the network. It also com-

putes local features from all the regions in a single forward

pass, without resizing them. Besides, ResNet architectures

are effective at image classification while being parameter-

and time-efficient [28]. This kind of architecture has been

exploited to speed up computation and to produce accurate

spatial predictions in fully supervised setups, e.g. in object

detection [10] and semantic segmentation [9].

We use the publicly released model pre-trained on Ima-

geNet dataset [53] and remove the last layers (global aver-

age pooling and fully connected) to replace them with WSL

transfer and wildcat pooling layers (Figure 3) described in

the following.

3.2. Multi­map transfer layer

We introduce a multi-map WSL transfer layer that learns

multiple class-related modalities, encoded into M feature

maps per class through 1 × 1 convolutions (middle of Fig-

ure 2). The modalities are learned in a WSL fashion with

only the image-level labels and the transfer layer keeps spa-

tial resolution, key in WSL. We note w × h × d the size of

conv5 maps of ResNet-101, which is W
32 ×

H
32 × 2048 for an

original image of size W ×H × 3 [28]. The transfer output

is then of size w × h×MC (Figure 3).

The M modalities aim at specializing to different class-

specific features, e.g. parts [9, 10] (head and legs of dog in

Figure 1) or views [16, 22]. We highlight differences with
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some specific encoding approaches: position-sensitive RoI

pooling in R-FCN [10] forces position-based specialization

(relative to the object) while our method can also learn other

kind of features, e.g. semantic parts (Figure 1). In the same

way DPM [16] learns only discriminating parts where our

multi-map transfer model can find more general features,

e.g. context. Furthermore, contrarily to the DPM where a

different model is learned for each view, we share most of

the computation within the FCN, which is more efficient.

We note that when M = 1 this reduces to a standard classi-

fication layer, i.e. into C classes.

3.3. Wildcat pooling

WILDCAT learns from image-level labels so we need a

way to summarize all information contained in the feature

maps for each class (right of Figure 2). We note that there

are no more learned parameters in this pooling layers, which

means we can directly interpret and visualize feature maps

at this level [70, 10].

We perform this in two steps (Figure 3): a class-wise

pooling (Equation (1)) that combines the M maps from

the multi-map transfer layer, then a spatial pooling mod-

ule (Equation (2)) that selects relevant regions within the

maps to support predictions. This leads to wildcat pooling,

a two-stage pooling operation to compute the score sc of

class c:










z̄ci,j = Cl.Pool
m∈{1,...,M}

z
c,m
i,j

sc = Sp.Pool
(i,j)∈{1,...,w}×{1,...,h}

z̄ci,j

(1)

(2)

where z is the output of the transfer layer, Cl.Pool is the

chosen class-wise pooling function and Sp.Pool is the spa-

tial aggregation process.

Class-wise pooling. The first step consists in combining

the M maps for all classes independently, and is described

in Equation (1) with a generic pooling function Cl.Pool.
We use average pooling in the following. The maps are

transformed from w × h × MC to w × h × C (Figure 3).

When M = 1 this operation is not needed as each class is

already represented by a single map.

We note that even if a multi-map followed by an aver-

age pooling is functionally equivalent to a single convolu-

tion (i.e. M = 1), the explicit structure it brings with M

modalities has important practical advantages making train-

ing easier. We empirically show that M > 1 yields better

results than regular M = 1.

Spatial pooling. We now introduce our new spatial ag-

gregation method implementing the second, spatial pooling

step in Equation (2) for each map c:

sc= max
h∈H

k+

1

k+

∑

i,j

hi,j z̄
c
i,j+α



min
h∈H

k−

1

k−

∑

i,j

hi,j z̄
c
i,j



 (3)

k+ k− α Pooling

1 0 0 Maximum [44]

k / ρn 0 0 Top instances [39] / LLP [65]

n 0 0 Average [70]

k k 1 WELDON [13]
Table 1. Generalization of wildcat spatial pooling to other exist-

ing MIL approaches with corresponding parameters. n is the total

number of regions, ρ is the proportion of positive labels in LLP, k

is an arbitrary number of regions to choose.

where Hk is such that h ∈ Hk satisfies hi,j ∈ {0, 1} and
∑

i,j hi,j = k. It consists in selecting for each class c the

k+ (resp. k−) regions with the highest (resp. lowest) acti-

vations from input z̄c. The output sc for class c of this layer

is the weighted average of scores of all the selected regions.

We only consider regions defined by single neurons in the

convolutional feature maps.

Several similar MIL approaches have been used but our

proposed model generalizes them in numerous of ways. The

corresponding parameters are described in Table 1. The

standard max-pooling MIL approach [44] is obtained with

only one element, and both top instance model [39], Learn-

ing with Label Proportion [65] and global average pool-

ing [70] can be obtained with more. Drawing from negative

evidence [47, 12, 13] we can incorporate minimum scor-

ing regions to support classification and our spatial pooling

function can reduce to the kMax+kMin layer of [13].

Maximum and minimum scoring regions both are im-

portant for good results [12, 13], but do not bring the same

kind of information. We explore relative weighting of both

types of regions by introducing a factor α which trades off

relative importance between both terms. We hypothesize

that maximum scoring regions are more useful for classi-

fication as they directly support the decision, while mini-

mum scoring regions essentially act as regularization. With

α < 1 WILDCAT should focus more on discriminating re-

gions and then better localize features than with α = 1.

Discussion

WILDCAT architecture is composed of a transfer layer

followed by pooling. Since there are no parameters to learn

in the pooling module, the transfer layer performs classifi-

cation and it is easy to visualize heatmaps with direct local-

ization of discriminating regions. We note that this kind

of architecture is reversed in [70] where pooling is per-

formed before the last fully connected layer, as in the origi-

nal ResNet architecture [28] for example. However this or-

der requires an unnatural way of visualizing class-specific

heatmaps [70].

It is shown in [70] that if the spatial aggregation method

is linear, e.g. global average pooling, then the order of both

layers is not important, but the two configurations can be-

have differently with a non linear pooling function such as
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wildcat spatial pooling. The difference is more significant

when k+ + k− is low, i.e. when wildcat spatial pooling

really differs from global average pooling. We evaluate the

impact of this design choice and of the chosen pooling func-

tion in the experiments and show that our architecture yields

better results.

3.4. WILDCAT applications

Training phase. Our WILDCAT model is based on the

backbone architecture ResNet-101 [28]. We initialize it

from a model pre-trained on ImageNet [53] and train it with

Stochastic Gradient Descent (SGD) with momentum with

image-level labels only. All the layers of the network are

fine tuned. The input images are warped to a square size at

a given scale. We use a multi-scale setup where a different

model is learned for each scale and they are combined with

Object Bank [38] strategy.

WILDCAT is designed to learn from image-level super-

vision only: the same training procedure is used for image

classification, weakly supervised pointwise object detection

and weakly supervised semantic segmentation. When learn-

ing WILDCAT, the gradients are backpropagated through

the wildcat layer only within the k+ + k− selected regions,

all other gradients being discarded [13]. The selection of

right regions for backpropagation is key to learn precisely

localized features without any spatial supervision [58].

Inference phase. Predictions differ according to the task

at hand. For image classification, prediction simply takes

the single-value output of the network (like in training).

Object detection and semantic segmentation require spatial

predictions so we extract the class-specific maps before spa-

tial pooling to keep spatial resolution. They are at resolution
1
32 with respect to the input image for ResNet-101 architec-

ture [28]. For weakly supervised pointwise object detection,

we extract the region (i.e. neuron in the feature map) with

maximum score for each class and use it for point-wise lo-

calization, as it is done in [44, 5]. For weakly supervised

semantic segmentation we compute the final segmentation

mask either by taking the class with maximum score at each

spatial position independently or by applying a CRF for spa-

tial prediction as is common practice [8, 48].

4. Classification Experiments

We evaluate WILDCAT for classification tasks. Our

model is implemented with Torch7 (http://torch.ch/). To

show the robustness of our method in very different recog-

nition contexts, we evaluate it on six datasets: object recog-

nition (VOC 2007 [14], VOC 2012 [15]), scene categoriza-

tion (MIT67 [51] and 15 Scene [37]), and visual recogni-

tion where the context plays an important role (MS COCO

[41], VOC 2012 Action [15]). The performances on MIT67,

15 Scene, VOC 2007 and 2012 are evaluated following the

standard protocol. On MS COCO dataset (resp. VOC 2012

Action), we follow the protocol of [44] (resp. [13]). De-

tailed information is available in section 1 of Supplemen-

tary. We first compare our model to state-of-the-art meth-

ods, then we analyze our contributions.

4.1. Comparison with state­of­the­art methods

We compare WILDCAT with several state-of-the-art ob-

ject classification models. The parameters of our model are

fixed at M = 4 and α = 0.7. The results for object clas-

sifications (Table 2) show that WILDCAT outperforms all

recent methods by a large margin. We can point out a large

improvement compared to deep features computed on the

whole image with ResNet-101 [28]: 5.2 pt on VOC 2007

and 4.2 pt on VOC 2012. Note that these differences di-

rectly measure the relevance of the proposed WSL method,

because WILDCAT is based on ResNet-101. We also com-

pare our model to region selection approaches: DeepMIL

[44], WELDON [13] and RRSVM [61]. Although using

multiple regions as in [44, 13, 61] is important, we show

here that we can further significantly improve performances

by learning multiple modalities per category.

Method VOC 2007 VOC 2012

VGG16 [56] 89.3 89.0

DeepMIL [44] - 86.3

WELDON [13] 90.2 -

ResNet-101 (*) [28] 89.8 89.2

ProNet [58] - 89.3

RRSVM [61] 92.9 -

SPLeaP [35] 88.0 -

WILDCAT 95.0 93.4

Table 2. Classification performances (MAP) on object recogni-

tion datasets. We used VOC evaluation server to evaluate on

VOC 2012. (*) means that results are obtained with online code

https://github.com/facebook/fb.resnet.torch.

In Table 3, we compare WILDCAT results for scene cat-

egorization with recent global image representations used

for image classification: deep features [71, 28], and global

image representation with deep features computed on im-

age regions: MOP CNN [25] and Compact Bilinear Pooling

[18]. Again, WILDCAT gets the best results, showing the

capacity of our model to seek discriminative part regions,

whereas background and non-informative parts are incor-

porated into image representation with other approaches.

We also compare WILDCAT to existing part-based models

including negative evidence during training [47] and non-

linear part classifiers combined with part-dependent soft

pooling [35]. WILDCAT also outperforms recent WSL

models with different spatial pooling strategies: 17 pt with

respect to GAP GoogLeNet [70] which uses a global aver-

age pooling and 6 pt with respect to WELDON [13] which
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uses a kMax+kMin pooling. This validates the relevance of

our spatial pooling.

Method 15 Scene MIT67

CaffeNet Places [71] 90.2 68.2

MOP CNN [25] - 68.9

Negative parts [47] - 77.1

GAP GoogLeNet [70] 88.3 66.6

WELDON [13] 94.3 78.0

Compact Bilinear Pooling [18] - 76.2

ResNet-101 (*) [28] 91.9 78.0

SPLeaP [35] - 73.5

WILDCAT 94.4 84.0

Table 3. Classification performances (multi-class accuracy) on

scene datasets.

Finally, we report the excellent performances of WILD-

CAT on context datasets in Table 4. We compare our model

to ResNet-101 deep features [28] computed on the whole

image and recent WSL models for image classification:

DeepMIL [44], WELDON [13] and ProNet [58]. WILD-

CAT outperforms ResNet-101 by 8 pt on both datasets,

again validating our WSL model in this context.

Method VOC 2012 Action MS COCO

DeepMIL [44] - 62.8

WELDON [13] 75.0 68.8

ResNet-101 (*) [28] 77.9 72.5

ProNet [58] - 70.9

WILDCAT 86.0 80.7

Table 4. Classification performances (MAP) on context datasets.

4.2. Further analysis

We detail the impact of our contributions on three

datasets: VOC 2007, VOC 2012 Action and MIT67. We

present results for an input image of size 448 × 448 and

k+ = k− = 1, but similar behaviors are observed for other

scales and larger k+ and k−. By default, our model param-

eters α and M are fixed to 1.

Deep structure. Firstly, to validate the design choice of

the proposed WILDCAT architecture, we evaluate two dif-

ferent configurations (see discussion before Section 3.4):

(a) conv5 + conv + pooling (our architecture);

(b) conv5 + pooling + conv (architecture proposed in

[70]).These two configurations are different for the non-

linear WILDCAT pooling scheme described in Section 3.3,

and their comparison is reported in Table 5. We can see that

our architecture (a) leads to a consistent improvement over

architecture (b) used in GAP [70] on all three datasets, e.g.

1.7 pt on VOC07.

Method VOC07 VOC12Action MIT67

Architecture (a) 89.0 78.9 69.6

Architecture (b) 87.3 77.5 68.1
Table 5. Classification performances for architectures (a) and (b).

Note that the strategy of architecture (a) has a very dif-

ferent interpretation from (b): (a) classifies each region in-

dependently and then pools the region scores, whereas (b)

pools the output of the convolution maps and then performs

image classification on the pooled space.

Impact of parameter α. We investigate the effect of the

parameter α on classification performances. From the re-

sults in Figure 4, it is clear that incorporating negative evi-

dence, i.e. α > 0, is beneficial for classification, compared

to standard max pooling, i.e. α = 0. We further note that

using different weights for maximum and minimum scores,

i.e. α 6= 1, yields better results than with α = 1 from [13],

with best improvement of 1.6 pt (resp. 2 and 1.8) with

α = 0.6 (resp. 0.7 and 0.8) on VOC 2007 (resp. VOC

2012 Action and MIT67). This confirms the relevance of

using a relative weighting for negative evidence. Moreover

our model is robust with respect to the value of α.

Figure 4. Analysis of parameter α.

Number of modalities. Another important hyper-

parameter of our model is the number of modalities (M )

used in the multi-map transfer layer. The performances for

different values of M are reported in Table 6. Explicitly

learning multiple modalities, i.e. M > 1, yields large

gains with respect to a standard classification layer, i.e.

M = 1 [13]. However encoding more modalities than

necessary (e.g. M = 16) might lead to overfitting since

the performances decrease. The best improvement is 3.5 pt

(resp. 4.3 and 3.5) with M = 8 (resp. 8 and 12) on VOC

2007 (resp. VOC 2012 Action and MIT 67). Examples of

heatmaps for the same category are shown in Figure 6.

Ablation study. We perform an ablation study to illustrate

the effect of each contribution. Our baseline is a WSL trans-

fer with M = 1 and the spatial pooling with α = 1. The
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M 1 2 4 8 12 16

VOC 2007 89.0 91.0 91.6 92.5 92.3 92.0

VOCAction 78.9 81.5 82.1 83.2 83.0 82.7

MIT67 69.6 71.8 72.0 72.8 73.1 72.9
Table 6. Analysis of multi-map transfer layer.

results are reported in Table 7. From this ablation study, we

can draw the following conclusions:

– Both α = 0.7 and M = 4 improvements result in large

performance gains on all datasets;

– Combining α = 0.7 and M = 4 improvements further

boost performances: 0.4 pt on VOC 2007, 0.8 pt on VOC

2012 Action and 0.8 on MIT67. This shows the comple-

mentarity of both these contributions.

max+min α=0.7 M = 4 VOC07 VOCAc MIT67

X 89.0 78.9 69.6

X X 90.3 80.9 71.3

X X 91.6 82.1 72.0

X X X 92.0 82.9 72.8
Table 7. Ablation study on VOC 2007, VOC 2012 Action (VO-

CAc) and MIT67. The results are different from results of section

4.1 because only one scale is used for this analysis.

5. Weakly Supervised Experiments

In this section, we show that our model can be applied

to various tasks, while being trained from global image

labels only. We evaluate WILDCAT for two challenging

weakly supervised applications: pointwise localization and

segmentation.

5.1. Weakly supervised pointwise localization

We evaluate the localization performances of our model

on PASCAL VOC 2012 validation set [15] and MS COCO

validation set [41]. The performances are evaluated with the

point-based object localization metric introduced by [44].

This metric measures the quality of the detection, while be-

ing less sensitive to misalignments compared to other met-

rics such as IoU [15], which requires the use of additional

steps (e.g. bounding box regression).

WILDCAT localization performances are reported in Ta-

ble 8. Our model significantly outperforms existing weakly

supervised methods. We can notice an important im-

provement between WILDCAT and MIL-based architecture

DeepMIL [44], which confirms the relevance of our spatial

pooling function. In spite of its simple and multipurpose

architecture, our model outperforms by a large margin the

complex cascaded architecture of ProNet [58]. It also out-

performs the recent weakly supervised model [5] by 3.2 pt

(resp. 4.2 pt) on VOC 2012 (resp. MS COCO), which use

a more complex strategy than our model, based on search-

trees to predict locations.

Method VOC 2012 MS COCO

DeepMIL [44] 74.5 41.2

ProNet [58] 77.7 46.4

WSLocalization [5] 79.7 49.2

WILDCAT 82.9 53.4
Table 8. Pointwise object localization performances (MAP) on

PASCAL VOC 2012 and MS COCO.

Note that since the localization prediction is based on

classification scores, good classification performance is im-

portant for robust object localization. In Figure 5, we eval-

uate the classification and localization performances with

respect to α on VOC 2012. Both classification and local-

ization curves are very similar. The best localization per-

formances are obtained for α ∈ [0.6, 0.7], and the improve-

ment between α = 1 and α = 0.7 is 1.6 pt. We can note that

the worst performance is obtained for α = 0, which con-

firms that the contextual information brought by the mini-

mum is useful for both classification and localization.

Figure 5. Classification and localization performances with respect

to α on VOC 2012.

5.2. Weakly supervised segmentation

We evaluate our model on the PASCAL VOC 2012 im-

age segmentation dataset [15], consisting of 20 foreground

object classes and one background class. We train our

model with the train set (1,464 images) and the extra an-

notations provided by [26] (resulting in an augmented set

of 10,582 images), and test it on the validation set (1,449

images). The performance is measured in terms of pixel

Intersection-over-Union (IoU) averaged across the 21 cate-

gories. As in existing methods, we add a fully connected

CRF (FC-CRF) [32] to post-process the final output label-

ing.

Segmentation results. The result of our method is pre-

sented in Table 9. We compare it to weakly supervised

methods that use only image labels during training. We

can see that WILDCAT without CRF outperforms existing

weakly supervised models by a large margin. We note a
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(a) original image (b) ground truth (c) heatmap1 (d) heatmap2 (e) WILDCAT prediction
Figure 6. Segmentation examples on VOC 2012. Our prediction is correct except for the train (last row) where our model aggregated rails

and train regions. For objects as bird or plane, one can see how two heatmaps (heatmap1 (c) and heatmap2 (d) representing the same class:

respectively bird, aeroplane, dog and train) succeed to focus on different but relevant parts of the objects.

large gain with respect to MIL models based on (soft-)max

pooling [49, 50], which validates the relevance of our pool-

ing for segmentation. The improvement between WILD-

CAT with CRF and the best model is 7.1 pt. This confirms

the ability of our model to learn discriminative and accu-

rately localized features. We can note that all the methods

evaluated in Table 9 have comparable complexity.

Method Mean IoU

MIL-FCN [49] 24.9

MIL-Base+ILP+SP-sppxl [50] 36.6

EM-Adapt +FC-CRF [45] 33.8

CCNN + FC-CRF [48] 35.3

WILDCAT 39.2

WILDCAT + FC-CRF 43.7
Table 9. Comparison of weakly supervised semantic segmentation

methods on VOC 2012.

With a quite more complex strategy, the very recent pa-

per [31] presents impressive results (50.7 MIoU). The train-

ing scheme in [31] incorporates different terms, which are

specifically tailored to segmentation: one enforces the seg-

mentation mask to match low-level image boundaries, an-

other one incorporates prior knowledge to support predicted

classes to occupy a certain image proportion. In contrast,

WILDCAT uses a single model which is trained in the same

manner for the three tasks, i.e. classification, localization

and segmentation.

Qualitative Results. In Figure 6, we show predicted seg-

mentation masks for four images. Compared to ground truth

((b) column), we can see that our predicted segmentation

masks ((e) column) are always relevant, except for the last

example where the rails and the train are glued together.

The heatmaps from the same class (columns (c) and (d))

show different modalities learned by our model. When suc-

cessful, they focus on different parts of the objects. For ex-

ample, on the first row, the heatmap (c) focuses on the head

of the bird whereas the heatmap (d) focuses on the legs and

the tail.

6. Conclusion

We propose WILDCAT, a new weakly supervised learn-

ing dedicated to learn discriminative localized visual fea-

tures by using only image-level labels during training. Ex-

tensive experiments have shown the effectiveness of WILD-

CAT on three main visual recognition tasks: image classifi-

cation, for which we report outstanding performances on six

challenging datasets, and WSL localization and segmenta-

tion, using a single and generic training scheme for all tasks.

Future works include adapting WILDCAT for semantic

applications where localized features are crucial, e.g. Visual

Question Answering [64, 4] or Visual Grounding [17].
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[32] P. Krähenbühl and V. Koltun. Efficient inference in fully

connected crfs with gaussian edge potentials. In NIPS. 2011.

[33] J. Krause, T. Gebru, J. Deng, L.-J. Li, and F.-F. Li. Learn-

ing features and parts for fine-grained recognition. In ICPR,

2014.

[34] A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet clas-

sification with deep convolutional neural networks. In NIPS.

2012.

[35] P. Kulkarni, F. Jurie, J. Zepeda, P. Pérez, and L. Chevallier.
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