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Abstract

We present an algorithm for registration between a

large-scale point cloud and a close-proximity scanned point

cloud, providing a localization solution that is fully in-

dependent of prior information about the initial positions

of the two point cloud coordinate systems. The algo-

rithm, denoted LORAX, selects super-points—local subsets

of points—and describes the geometric structure of each

with a low-dimensional descriptor. These descriptors are

then used to infer potential matching regions for an effi-

cient coarse registration process, followed by a fine-tuning

stage. The set of super-points is selected by covering the

point clouds with overlapping spheres, and then filtering out

those of low-quality or nonsalient regions. The descriptors

are computed using state-of-the-art unsupervised machine

learning, utilizing the technology of deep neural network

based auto-encoders.

This novel framework provides a strong alternative to

the common practice of using manually designed key-point

descriptors for coarse point cloud registration. Utilizing

super-points instead of key-points allows the available geo-

metrical data to be better exploited to find the correct trans-

formation. Encoding local 3D geometric structures using

a deep neural network auto-encoder instead of traditional

descriptors continues the trend seen in other computer vi-

sion applications and indeed leads to superior results. The

algorithm is tested on challenging point cloud registration

datasets, and its advantages over previous approaches as

well as its robustness to density changes, noise and missing

data are shown.

1. Introduction

1.1. Overview

Point clouds, similarly to images, capture semantic in-

formation describing the objects in the world around us. In

contrast to image data, which holds a two-dimensional pro-

jection of the scene in a fixed grid, a point cloud is a set of

Figure 1: Registration between a close-proximity point

cloud (colored) and a large-scale point cloud (grayscale)

unorganized three-dimensional points in a unified coordi-

nate system, capturing 3D spatial information. Methods for

point cloud data analysis have been developed throughout

the past few decades [1], and the significance of research in

this field is trending upwards due to advances in affordable

high-quality 3D scanning technology [2], machine learning

breakthroughs, and new interesting applications.

Point cloud registration is defined as finding the trans-

formation between two separate point cloud coordinate sys-

tems. It is key for Simultaneous Localization and Map-

ping (SLAM) [3, 4], 3D reconstruction of scenes [5], and it

has become central in vision-based autonomous driving [6].

Much progress has been achieved, yet there are still major

challenges, such as registration of large-scale point clouds,

with low scene overlap and without prior positional infor-

mation.

Outdoor localization today relies heavily on GPS tech-

nology, accompanied by ground based augmentation sys-

tems to improve accuracy. This localization requires receiv-

ing signals from multiple satellites simultaneously with an

accuracy that varies greatly with the number of satellites

available, the weather, and physical obstructions blocking

or altering the signal path. The technology is inaccurate and

unreliable in areas around the world with little to no ground

infrastructure [7].

In this paper we focus on a localization technique that
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relies on registering a large-scale point cloud and a small-

scale point cloud scanned within a scene at different times.

The registration is independent of proximity information

between the clouds’ initial coordinate systems. We define

the two point clouds: a “global point cloud”, made up of a

large scanned outdoor scene with a coordinate system fixed

to a real-world geographic coordinate system, and a “lo-

cal point cloud”, made up of a substantially smaller point

cloud, captured online at an unknown location and orienta-

tion within the global point cloud scene. The transformation

between the local and global point cloud is calculated using

a machine learning analysis of their geometry. This serves

as a high quality localization method that is completely in-

dependent of GPS for outdoor environments. See Fig. 1.

1.2. Related Work

Registration algorithms are divided into those dealing

with coarse registration and those dealing with fine regis-

tration. Coarse registration algorithms make no prior prox-

imity assumptions of the point cloud positions and aim for

a coarse alignment, meaning a lenient loss function pol-

icy. Fine registration algorithms assume that the input point

clouds are approximately aligned; they thus utilize the ini-

tial proximity between the points to fine-tune the alignment

between the point cloud coordinate systems. Fine registra-

tion can be used when the two clouds are acquired con-

secutively with large overlaps between their scenes, or as

a follow-up to a coarse registration procedure.

Numerous point cloud coarse registration methods have

been developed [8], yet coarse registration remains an open

challenge with much room for improvement. In the Fast

Point Feature Histogram [9, 10] (FPFH) algorithm, a his-

togram based descriptor is calculated for each point within

the point cloud, over multiple scales. Salient persistent his-

tograms over multiple scale calculations are labeled as key-

points, which are then matched to find the registration be-

tween the point clouds. Other descriptors for locating and

describing key-points were suggested as well. See [11] for

a survey. Some examples are 3D-SIFT [12] , NARF [13],

and SHOT [11]. Many complex hand-coded features were

proposed, with the same goal of being invariant to rotation

and translation, and robust to noise.

In the field of 2D computer vision, a similar develop-

ment period of hand-coded features has come to an abrupt

end due to the breakthrough research in the field of deep

learning [14]. Using the deep learning methods, much more

advanced features (with complexity beyond human design)

are calculated from within the data, advancing major fields

in 2D computer vision such as detection, classification, seg-

mentation, localization and registration [15]. These meth-

ods focus almost exclusively on 2D data. The unstruc-

tured, continuous and large point cloud datasets pose ex-

treme problems not enabling a straightforward dimension

adaption into 3D space. In order to utilize the 3D data in

our method, the point cloud is densely sampled, and the 2.5

dimensional data of each local surface is captured and com-

bined. The advanced tools of deep learning are applied to

this data, in the form of unsupervised machine learning for

high quality dimension reduction [16], as a critical stage for

the coarse point cloud registration.

A different approach based on linear plane matching was

developed for the coarse registration of airborne LIDAR

point clouds [17]. By relying on the presence of linear struc-

tures, this approach is limited to specific dataset classes.

The problem of fine registration between point clouds

has been intensively studied, and high quality solutions now

exist for online applications such as SLAM [3, 4]. The so-

lutions revolve around the Iterative Closest Point (ICP) [18]

algorithm and its improvements [19]. A noteworthy fine

registration method that is based on the correlation of Ex-

tended Gaussian Images in the Fourier domain [20] was

proposed as an alternative to ICP, although its final stage

again relied on iterations of ICP for fine-tuning. Fine-

registration is not the focus of this research, although to

achieve end-to-end registration the standard ICP algorithm

is utilized in its final stages.

All of the above registration methods were designed for

input point cloud pairs that are similar in order of magnitude

and low in quantity (under 1 million) of points.

1.3. Contribution

This work proposes and tests two original approaches,

applied for the first time as a base to point cloud registration:

1. Using super-points (selected by a Random Sphere

Cover Set) as the basic units for matching, instead of

the commonly used key-points or local linear struc-

tures. This utilizes a much wider variety of geomet-

ric structures, and better exploits the available data for

finding the correct transformation. In addition, it trans-

forms the complexity of the rest of the algorithm to be

correlated to the surface area covered in the point cloud

scene instead of on the number of points in the scene.

It is simple, fast, and allows for scalability.

2. Encoding local 3D geometric structures using a deep

neural network auto-encoder. This method provides

state-of-the-art encoding in image analysis applica-

tions. By adapting the data and applying this method

within the algorithmic pipeline developed, it creates

features from within the data that are proven to out-

perform manually designed local geometry features.

We show here that combining these ideas produces promis-

ing registration results on multiple challenging datasets.

The method is generic in the sense that it can work with

any data regardless of the type of sensor or scene.
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While most registration algorithms deal with similar-

sized point clouds, we take on the unique problem setup

of point clouds that differ significantly in size, and we de-

signed our algorithm to be effective on large-scale scanned

data. Although the algorithm requires an initial offline

stage, the online stages can be implemented efficiently in

parallel, making it suitable for real-time applications.

2. The LORAX Registration Algorithm

We focus on the registration of two point clouds: a global

point cloud depicting a large outdoor area, and a small lo-

cal point cloud captured from within the global point cloud

scene. The global point cloud can contain as many as ~100

million 3D points, while the local point cloud is two-to-

three orders of magnitude smaller.

In this section we present the LOcalization by Registra-

tion using a deep Auto-encoder reduced Cover Set (LO-

RAX) algorithm.

2.1. Algorithm Overview

The algorithm includes the following steps:

1. Division of the point clouds to super-points using the

new Random Sphere Cover Set algorithm.

2. Selection of a normalized local coordinate system for

each super-point.

3. Projection of super-point data onto 2D depth maps.

4. Saliency detection and filtration of super-points.

5. Dimension reduction using a Deep Neural Network

Auto-Encoder.

6. Finding candidate matches between correlating de-

scriptors.

7. Coarse registration using a localized search.

8. Iterative Closest Point fine-tuning.

Next, each stage of the algorithm will be explained in detail

and analyzed.

2.2. Random Sphere Cover Set (RSCS)

First, the set of super-points (SP) that will be used as the

basic units for the matching process is defined. Each super-

point is a subset of points describing a local surface. Over-

lapping is allowed (i.e., one point can be included in several

super-points). To obtain coverage of almost all points in a

cloud (~95%) with a manageable representation, we sug-

gest the following iterative procedure: (1) randomly select

a point P that does not yet belong to any SP; (2) define a

new SP as the set of points located inside the sphere of a

fixed radius Rsphere with P as its center.

Figure 2: Coverage of points vs. RSCS iterations

This simple procedure, which we refer to as RSCS, has

interesting properties that allow the Rsphere parameter to

be estimated. In random sphere packing, non-overlapping

spheres were shown to fill approximately 64% of an en-

closed 3D region [21]. Let Vlocal be the volume of a sphere

encompassing the local point cloud and let m be the number

of matches used in the final stage of the algorithm. To en-

sure that the minimum, m, of SP pairs will be matched, we

select Rsphere so that it will be possible to randomly pack

2m spheres inside the volume Vlocal.

Rsphere ≈

✓

3

4 · π
·
0.64

2m
· Vlocal

◆
1

3

(1)

An estimation of the number of SPs created by the RSCS

algorithm given the intrinsic parameters of the local and

global point clouds is analyzed in the Supplementary Mate-

rial (in project Github). It is shown that the method covers

points of the point cloud at an exponentially decaying rate.

Fig. 2 shows the percentage of points covered as a function

of RSCS iterations. The RSCS algorithm is applied once

on the global point cloud and multiple times on the local

point cloud, for robustness in the later stages. The N local
SP

SPs found from the multiple applications of RSCS on the

local point cloud are combined into a single set represent-

ing the local point cloud in the next stages of the algorithm,

as shown in Fig. 7(a) and (b).

2.3. Selection of a Normalized Local Coordinate
System for each Super-point

The local coordination system for a SP is defined as fol-

lows: the origin is set to be the centroid of the SP, then the

coordinate system of the SP is set using Singular Value De-

composition (SVD) on the estimated covariance matrix of

the points within the SP.

The assumption that each SP describes a surface of the

scene is utilized in this stage. The eigenvalues of surfaces
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hold two large eigenvectors of similar size and one smaller

eigenvector. This signifies that the points are mostly scat-

tered in two dimensions while the third dimension has sig-

nificantly lower variance. The z-axis is set to be the third

eigenvector. In order to define the x-axis, the mean height

of discrete radial slices of the SP are calculated and inserted

into a polar histogram. Then the x-axis is set to the direc-

tion corresponding to the largest bin. This local coordinate

system creates invariance to the location and orientation of

the SP, while preserving its geometry.

2.4. Depth Map Projection

After bringing each SP into a local coordinate system,

they can be directly compared. However the results will be

completely unreliable, as they will have been affected by

the variation in point density and by random noise. A di-

mension reduction is crucial to mitigate these effects. To

this end, the continuous point location data is converted

into a discrete image format (of size [dim1, dim1]). The

SP is scaled to the dimensions of the image dim1 (we used

dim1 = 64), after which the z-axis height of each point

is projected onto the depth map for each corresponding

pixel. Finally, the image is cropped to [dim2, dim2] (we used

dim2 = 32), to remove the circular edges of the SP in the

depth map. See Fig. 3 (a) and (b).

(a) Example SP (b) The depth map (c) The reconstruction

Figure 3: Super-point depth map projection

To reduce the effects of noise and varying densities, a

max filter and then a mean filter are applied to the image.

This modification of the SP information can be visualized

by reconstructing the SP from the depth map. As shown in

Fig. 3(c), the reconstruction reliably holds the same geomet-

ric shapes and qualities as the original SP point cloud, while

creating a complete coverage over the unknown sparse re-

gions.

2.5. Saliency Detection and Filtration

For the fastest and best quality registration, the number

of irrelevant SPs that pass through this pipeline should be

reduced. Irrelevant SPs are filtered out by three criteria:

density, geometric properties, and saliency levels.

Density Test: The density is measured both in absolute

terms and in comparison to other SPs. This means that SPs

containing fewer than Nd points are filtered out. In addi-

tion, SPs with relatively few points in comparison to their

K nearest neighbor SP (Euclidean distance is measured be-

tween SP centroids) are also filtered out.

Geometric Quality Test: The height of each SP within its

individual local coordinate system is measured. Low height

SPs, which signal flat surfaces, are filtered out.

Saliency Test: SP depth maps from the global point cloud

are reshaped into a column “depth vector” of length d2im2
.

A Principal Component Analysis (PCA) is performed for

the set of depth vectors. The SPs (from the local and global

point clouds) that are accurately reconstructed using only

the first three eigenvectors have commonly found geometric

characteristics within the dataset, and are thus filtered out.

This reduces the chance of matches between similar SPs

located in different areas of the point clouds.

2.6. Auto-Encoder Dimension Reduction

A key stage in this algorithm is the comparison be-

tween SP geometries from within global and local point

clouds. The comparison of high-dimensional objects is

prone to large noise and variance, even with identical se-

mantic meaning. To compare the semantics of the SP ge-

ometry, the dimension of the depth map images must be re-

duced while retaining maximum geometrical information.

We constructed and tested two separate dimension reduc-

tion methods in this research. The first is based on PCA and

the second on a Deep Auto-Encoder (DAE).

2.6.1 Linear Dimension Reduction

The PCA method lowers the dimension of the data by pro-

jecting it onto a lower dimension linear hyperplane. A base

of k eigenvectors are calculated from the depth vectors of

the global point cloud SP (similarly to the saliency detec-

tion, but here k > 3). The k eigenvalues corresponding to

the eigenvectors define the super-position required to recre-

ate each SP. This compact representation feature holding

geometric information of the SP is denoted as the Princi-

pal Component Analysis Super-point Feature (PCAF). It is

important to note that PCA creates a linear projection of the

data, which results in high data loss and a relatively large

reduced form. This method serves as a comparable bench-

mark for the DAE method.

2.6.2 Deep Auto-Encoder Dimension Reduction

It was shown that DAE neural networks [16] yield state-

of-the-art image compression. Here we use this technique

to obtain compact representations of the 2.5D super-point

geometry, captured in the depth maps.

DAE neural network architectures are made up of en-

coder and decoder stages. The encoder stage starts with

the input layer and then is connected to hidden layers,
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Figure 4: Deep Auto-encoder architecture

which gradually decrease in dimension until reaching the

requested compact dimension. The decoder stage starts

with the compact representation of the data; each succeed-

ing hidden layer is of a higher dimension, until the output

layer dimension, equal to the input dimension, is reached.

The loss function is defined as the pixel-wise error between

the input and the output layer, optimizing the network to

achieve the best compact representation of the image.

To design a DAE that would fit our application, we per-

formed extensive empirical testing and optimization. We

concluded that a network with 4 fully connected hidden

layers, using the sigmoid non-linear activation function be-

tween each of the layers and dropout (DO) on the in-

put layer, returns the satisfactory results. To further re-

duce the number of parameters in the network, the 4th

and 1st hidden layers as well as the 3rd and 2nd lay-

ers mirror each other with identical weights, while retain-

ing individually learned bias values. This weight shar-

ing means that the back propagation learning algorithm

is constrained to optimize the same weights for the en-

coding and decoding process [22]. The compact dimen-

sion of the reduction is defined by the encoder output di-

mension. The architecture uses the following dimensions:

1032(Input), [1032,128](L1), [128,10](L2), [10,128](L3),

[128,1032](L4), 1032(output). See Fig. 4.

A combination of data driven and synthetic depth maps

are utilized to initially train the deep neural network.

100,000 super-point depth maps were used to train the pro-

posed DAE. The training stage is unsupervised, i.e., no

manual annotation of data is required and the network is

initialized with random weights. This training process is

offline, and the network can be improved by updating it pe-

riodically with additional point cloud data acquired from

scanned local clouds. The offline training process can be

lengthy, but the encoding portion can be activated online

inexpensively and quickly.

This compact low-dimension representation can be seen

as a feature capturing the geometric information of the en-

tire SP. It represents the SP at a fixed lower-dimension vec-

tor, not correlated with the number of points in the SP. This

is a substantial improvement in the reduction of complexity,

Figure 5: Visualization of deep auto-encoder input, reduc-

tion and reconstruction

in comparison to the competing local descriptors at each

point. The SP auto-encoder based Feature (SAF) can be

used for many tasks, such as detection or classification of

3D objects, while here we optimize it for registration.

Fig. 5 shows examples of depth maps input into the DAE

and reduced to a 10-dimensional SAF (5x2 matrix enlarged

for better visualization) and then reconstructed to the origi-

nal dimensions through the decoder. The height of the depth

map is translated into color: blue corresponds to zero height

and dark red corresponds to maximal height. The recon-

struction is not identical to the input, but it does capture the

general geometry of the SP. This is optimal for robustness

to noise and small changes—crucial for our application—

while capturing the significant SP geometric properties.

To further show the effectiveness of the DAE, the fea-

tures learned from within the data are analyzed and com-

pared to the eigenvectors calculated from the PCA method.

To do this, an independent activation of each dimension in

the SAF vector is input into the decoder to visualize what

the DAE has learned. See Fig. 6.

The eigenvectors of the PCA and the independent de-

coder activations of the DAE are the “building-blocks”

of the compact representations created in both methods.

Fig. 6(a) shows the growing complexity of each eigenvector,

which is sorted by eigenvalue. This is in contrast to the un-

structured DAE activation images. See Fig. 6(b). The PCA

method can be approximated as a single hidden layer neural

network with only linear functions [23]. This means that

in order to represent complex geometry, complex eigenvec-

tors are needed. Due to multi-layered super-position of the

values in the DAE, complex geometry is represented using

relatively simple “building blocks”.

2.7. Selecting Candidates for Matching

After describing each SP by a SAF vector we select a

set of similarly described SP pairs to act as candidates for

matching. By measuring the Euclidian distance between

SAF features, each SP in the local point cloud is paired with

its K-nearest-neighbors from the global point cloud (we set

K to 3). When the distance associated with the i+1 nearest

neighbor is significantly larger than that associated with the

i nearest neighbor, we filter out candidates i+1 to K. Note
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that the number of candidates, Pcandidates is in the order

of O(N local
SP ). To get a feeling for the number of candidates

selected, consider a problem set with a global point cloud of

10 million points, and a local point cloud of 500 thousand

points. For this set we get approximately 200 SPs from the

local point cloud, meaning that about 550 candidates are

selected. See Fig. 7(c).

(a) PCA eigenvectors

(b) DAE independent decoder activations

Figure 6: Compact Representation Vectors

2.8. Coarse Registration by Localized Search

To find the 6DoF (6 degrees of freedom) transformation

between the point clouds, at least 3 matches are required

(we used m = 6 for robustness). Dealing with the search

space size of at least
(

Pcandidates

m

)

is impractical (over 1013

for the example above). We therefore consider for each it-

eration only m candidate-pairs for which all global cloud

points can be encompassed in a sphere with a volume not

exceeding Vlocal. This reduces the search space of transfor-

mation options by 8 to 9 orders of magnitude (reducing the

options in the example above to about 40,000). We use a

RANSAC [24] procedure, iteratively selecting 6 candidate-

pairs, computing a transformation, and checking the con-

sensus by measuring the average (physical) distance be-

tween transformed points in the local point cloud and their

nearest neighbors in the global point cloud. (To save run-

time, we transform only a diluted version of the local point

cloud.) We tested 10,000 random selections (about 1/4 of

the search space). Instead of selecting only the best scoring

transformation as the result of the coarse registration step,

we record the 5 best transformations (T1, . . . , T5) in which

(a) Global point cloud with RSCS (b) Local point cloud

with RSCS

(c) Matching candidate connections

Figure 7: RSCS and matching candidates (each point is col-

ored according to the last RSCS iteration to cover it)

the local point clouds are non-overlapping. Then the fine-

tuning step (described in the next section) is applied to each,

and the one that yielded the best scoring fine registration is

finally selected.

2.9. Iterative Closest Point Fine-tuning

Simple Iterative Closest Point (ICP) fine tuning is per-

formed, initialized by each of T1, ..., T5 transformations.

The registration with the lowest ICP loss is chosen, defining

the LORAX output transformation. This step stems from

the realization that the “closest” coarse registration result

doesn’t always correlate with the correct registration result,

as there are many local minima in the optimization func-

tion. The best fine registration is shown empirically to cor-

respond to the best coarse registration in about 75% of the

cases, the second-best in about 18% of the cases, and the

third-best in about 4%. This stage can be replaced by any

fine-tuning approach.
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2.10. Efficiency Discussion

Our current implementation was not optimized for real-

time performance. However, this algorithm does have the

potential to be incorporated in field equipment and perform

real-time localization, given that the global point cloud is

captured ahead of time via aerial LIDAR or stereographic

reconstruction. The neural network training process and the

calculations on the global point cloud up to the dimension

reduction stage are designed to run offline. The compact

descriptors from the global cloud may be saved into the on-

line equipment along with a downsampled version of the

global point cloud. Once a local point cloud is captured

online from an unknown position within the global scene,

the SP division, normalization, saliency detection, and DAE

dimension reduction stages can be carried out in parallel

for each SP independently. Then KNN candidate selection

based on KD-tree [25], RANSAC based localized candidate

search [26], and ICP [27] can be accomplished efficiently in

parallel as well (using multiple CPUs and/or a GPU). The

code for the RSCS method and SAF descriptor are available

at: https://github.com/gilbaz/LORAX.

3. Experiments and Results

The advantage of the RSCS SP creation over the FPFH

persistent key-point detection and the descriptive quality

of SAF in comparison to the FPFH descriptor are shown

throughout the experiments. Each stage of the registra-

tion was extensively tested using the “Challenging Datasets

for Point Cloud Registration Algorithms” [28], matching

a close-proximity point cloud to a global large-scale point

cloud of the same scene captured in two different seasons.

In addition, controlled experiments were carried out using

large-scale aerial point clouds, in order to better understand

the effects of different types of noise on the registration.

3.1. Challenging Dataset Registration

The datasets utilized contain many point clouds of out-

door scenes, captured by a ground LIDAR scanner, over

multiple seasons. By stitching together the point cloud laser

scans captured in each scene for each season, an authentic

global point cloud is created. This point cloud data is ideal

for testing the LORAX algorithm. We test it by register-

ing local point clouds to a global point cloud of the same

scene, captured in a different season. This setup is indeed

challenging; the scenes contain some rigid stationary ob-

jects such as a gazebo structure, lamp poles and benches,

but also inconsistent objects like people, bushes and tree

branches. This challenge is elevated by missing informa-

tion due to scanning angles and occlusions.

See Fig. 1 for an example of LORAX’s results. The

colors indicate the relative distance between each point in

the local point cloud (after being registered) and its near-

est neighbor in the global point cloud, where green is closer

and red is further.

We test and compare the registration performance with

RSCS super-points vs. with key-points, and with FPFH de-

scriptors vs. PCAF and vs. SAF. The results are summa-

rized in Table 1.

For the comparison to key-point based methods we fol-

lowed [9]. The ‘RSCS+FPFH’ method computed the FPFH

descriptor corresponding with the center points of the RSCS

superpoints. Each result reported is the average perfor-

mance for 12 local point clouds, 9 from the ’Gazebo’ dataset

and 3 from the ’Wood’ dataset. For each registration re-

sult we measure the relative translational error (RTE) and

the relative rotation error (RRE) that are used and defined

in [29]. When the RTE is below a predefined threshold (we

used 1 meter), the registration result is defined as a binary

’success’. For each test we report the binary success rate

and the average RTE and RRE scores of the successful tests.

All methods use the same fine-tuning procedure and there-

fore achieve similar RTEs, yet they have different resulting

RREs and binary success rates, indicating the quality and

the robustness of the coarse registration.

Table 1 shows that using a combination of RSCS for

the point cloud sub-division and the DAE to create SAF

yields the most robust and highest-quality registration re-

sults. The robustness gained from RSCS is evident in the

comparison of KP+FPFH to RSCS+FPFH. The comparison

RSCS+FPFH to RSCS+PCAF and RSCS+SAF shows the

advantage of using machine-learning based features over

manually designed features, as well as the advantage of

SAF over PCAF.

3.2. Noise, Occlusion, and Density Sensitivity Tests

To further test the quality and limitations of LORAX,

we used a few urban outdoor scene point clouds provided

by [30]. These point clouds, of approximately 1.5 million

points each, depict large areas of 250 square meters. See

Fig. 8 for an example.

Figure 8: Aerial scanned point cloud depicting hill with sur-

rounding houses and roads. An example from [30] dataset.
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RRE [degrees] RTE [meters] Binary Success Rate

KP+FPFH 12.2±4.8 0.44±0.2 8/12 (67%)

RSCS+FPFH 9.1±2.6 0.43±0.24 8/12 (67%)

RSCS+PCAF 7.2±2.3 0.40±0.32 8/12 (67%)

*RSCS+SAF 2.5±1.2 0.42±0.27 10/12 (83%)

Table 1: Registration results

In order to be able to control different parameters of

noise, density and occlusions, we performed semi-synthetic

experiments in which small point clouds with radii of 15-50

meters were cropped from the large original point clouds.

The LORAX and the KP+FPFH registration algorithms

were tested on altered versions of the local point clouds,

matching them to the original global point cloud.

Noise modification included: (1) adding random noise

by randomly moving 10%, 20%, 50% of the points a uni-

formly distributed distance of up to 3 meters, (2) randomly

removing 10%, 20%, 50% of the points to test sensitivity

to the density of the cloud, and (3) simulating occlusions

by removing 10%, 20%, 50% of points within local random

spheres. See Fig. 9.

(a) Original cropped

local point cloud

(b) Same cloud with simulated

noise and occlusions

Figure 9: Simulating noise, density change, and occlusions

50 randomly cropped point clouds from 3 full scenes

were tested to analyze the effects of downsampling (den-

sity change) (DS), random relocation noise (RN), and oc-

clusions (OC) on each. Fig. 10 summarizes the results. To

clarify, each point on the graph represents the average bi-

nary success rate of 50 registration tests given the noise

specifications defined. In this experiment the binary suc-

cess rate is defined by an RTE threshold of 2.5 meters (due

to the large scale of the global point cloud).

These results show high robustness to point density, due

to the depth map projection stage. Random noise has lit-

tle effect on our algorithm, due to the SAF representa-

tion, which captures only the major geometry characteris-

tics. The occlusion is the hardest defect to deal with. The

algorithm overcomes occlusions at a low level, but is greatly

hindered otherwise. Overall we see that LORAX is not sen-

sitive to substantial levels of random noise, density change

and occlusions, and that its robustness deteriorates only at

Figure 10: Noise, Occlusion, and Density Sensitivity Tests

extreme levels. The KP+FPFH algorithm (dashed line) re-

turned a low binary success rate when tested on clean local

point clouds due to the lack of “key-point” inducing scene

features, in many sections of the global point cloud. These

results add confidence in the direction of this research.

4. Conclusion

This paper presented LORAX, an innovative point cloud

registration algorithm. With the goal of outdoor localiza-

tion, this algorithm deals with the challenges of a multiple

magnitude difference in the number of points between the

two registered point clouds and with a large total number of

points involved. Two original approaches were presented:

1) using super-points (selected by a random sphere cover

set) as the basic units for matching, instead of key-points

and 2) encoding local 3D geometric structures using a deep

neural network auto-encoder. We have shown that the com-

bination of these ideas yields promising registration results

on challenging datasets. The method is generic is the sense

that it can work with any data regardless of the type of sen-

sor or scene. Moreover, while it includes an offline train-

ing stage, the online stages can be implemented efficiently

in parallel, making it suitable for serving real-time applica-

tions.

In future work; we intend to adapt this approach for sim-

ilar sized point clouds with small scene overlaps. Another

interesting direction is designing a multi-scale super-point

version of this algorithm. Finally, using a convolutional

auto-encoder with an input of height and color informa-

tion could produce excellent super-point features useful for

a wide range of point cloud analysis tasks.
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