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Abstract

Shape models provide a compact parameterization of a

class of shapes, and have been shown to be important to

a variety of vision problems, including object detection,

tracking, and image segmentation. Learning generative

shape models from grid-structured representations, aka sil-

houettes, is usually hindered by (1) data likelihoods with

intractable marginals and posteriors, (2) high-dimensional

shape spaces with limited training samples (and the associ-

ated risk of overfitting), and (3) estimation of hyperparam-

eters relating to model complexity that often entails compu-

tationally expensive grid searches. In this paper, we pro-

pose a Bayesian treatment that relies on direct probabilis-

tic formulation for learning generative shape models in the

silhouettes space. We propose a variational approach for

learning a latent variable model in which we make use of,

and extend, recent works on variational bounds of logistic-

Gaussian integrals to circumvent intractable marginals and

posteriors. Spatial coherency and sparsity priors are also

incorporated to lend stability to the optimization problem

by regularizing the solution space while avoiding overfitting

in this high-dimensional, low-sample-size scenario. We de-

ploy a type-II maximum likelihood estimate of the model hy-

perparameters to avoid grid searches. We demonstrate that

the proposed model generates realistic samples, generalizes

to unseen examples, and is able to handle missing regions

and/or background clutter, while comparing favorably with

recent, neural-network-based approaches.

1. Introduction

Shape modeling deals with learning statistical prop-

erties of a shape population. This is typically accom-

plished by estimating a probability distribution from a set

of i.i.d. training samples drawn from the true, unknown dis-

tribution, treating individual data points as samples in a

high-dimensional shape space. Shape models are an en-

abling technology for a variety of vision and imaging ap-

plications, such as feature localization [1–3], object recog-

nition [4, 5], pose estimation [6, 7], object detection [8–10],

image segmentation [11–15], tracking [16–18], object re-

construction [19,20], animation [21–23], and shape synthe-

sis [24]. Image segmentation, for instance, often benefits

from incorporating expectations of particular classes of ob-

jects (e.g., birds, animals, faces), in the form of shape priors

to guide/constrain the segmentation process [25].

This paper addresses the problem of learning generative

shape models from grid-structured representations in which

data points in the shape space are represented as binary

functions defined over a discrete image domain, i.e., sil-

houettes. There is a rich history of work on learning shape

statistics from silhouettes in which the main distinction is

capturing local (i.e., low-level) versus global (i.e., high-

level) correlations. Local structure interactions between

pixels typically capture generic properties, e.g., smoothness

and continuity (often via Markov random fields – MRFs,

e.g., [26–29]). Here we focus on global models designed

to capture complex high-level shape structure (e.g., facial

parts, horse legs, vehicle wheels), which may also be com-

plemented by low-level spatial priors. Learning global

shape models in the silhouettes space is challenging because

the binary variables entail non-Gaussian data likelihoods,

which often lead to intractable marginals and posteriors.

High-dimensional shape space with limited training sam-

ples further increases the tendency to overfit. Additionally,

the hyperparameters associated with model complexity of-

ten result in computationally expensive discrete searches.

Here we rely on a generative model, where a silhouette

is a realization of a spatially coherent field of Bernoulli ran-

dom variables – characterized by a parameter map – de-

fined on the image domain. This probabilistic represen-

tation of shape yields globally optimal solutions for cer-

tain problems, e.g., segmentation and tracking, due to the

convexity of the parameter maps space [30]. Learning a

probability distribution over the silhouettes space amounts

to estimating the parameter map of a silhouette. Because

the shape space is a unit hypercube, such a learning task

does not benefit from a vector space structure. LogOdds, as

an alternative to probabilities, places parameter maps in a

vector space where addition and scalar multiplications have

probabilistic interpretations [31]. Consequently, most ex-

isting approaches have resorted to modeling shape variabil-

ity indirectly on a space of some predefined implicit func-

tion, including signed distance maps (SDMs) and Gaussian
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Figure 1. ShapeOdds: shape-generating process

smoothed silhouettes [31], whose zero level set reflects the

shape’s boundary. However, such representations typically

do not have a statistical foundation, and therefore do not

benefit from optimal estimation strategies.

Dimensionality reduction techniques (e.g., linear [30–

34] and nonlinear [35–39]) are often applied to those in-

termediate representations to parameterize the underlying

shape variation. Nonparameteric approaches (e.g., [40–

45]), on the other hand, avoid making assumptions about the

form of the underlying density function by explicitly relying

on the available training samples, hence promoting a local

influence of individual samples being encoded in the esti-

mator kernel width, but creating challenges for the robust-

ness and generalization of the fitted nonparametric model

with inherent tradeoff between the estimate bias and vari-

ance [46, 47]. Nonetheless, these modeling approaches fail

to define a proper generative model, which is advantageous

in handling unbiased noise (e.g., missing regions and/or

background clutter) [48–50]. They also do not readily lead

to hierarchical/layered architectures (e.g., deep learning),

which promise to capture different levels of representation

abstraction [51, 52]. Moreover, these approaches rely on

maximum-likelihood estimation of the principal subspace

and thus ignore uncertainties associated with the estimated

low-dimensional representation [50, 51, 53]. Welling et al.

[54] have argued that non-Bayesian approaches ”optimize

a questionable objective”, and are prone to overfitting in

high-dimensional spaces with a small number of training

samples—a very common circumstance in training from sil-

houettes. Another adverse consequence of non-Bayesian

point estimates is the sensitivity to regularization parame-

ters, requiring careful discrete searches [55, 56].

Recently, stochastic neural nets, in particular re-

stricted Boltzmann machines (RBMs) [57, 58] and their

deep/layered architectures [59–62], have offered more flex-

ible undirected models for binary inputs without rely-

ing on any intermediate implicit representation. Efficient

maximum-likelihood learning and inference algorithms are

available via the omission of lateral connections in the same

layer [52, 63]. Motivated by the pragmatic development

of tractable algorithms [64], these models mostly rely on

a generic type of deep network structure that does not in-

ject any domain knowledge of the modeling problem at

hand; i.e., there is no attempt to model a particular gen-

erative process. Consequently, an exponential number of

hidden units and a large amount of training data are typi-

cally required to approximate an arbitrary binary distribu-

tion [65]. The shape Boltzmann machine (ShapeBM) [60]

was recently proposed to alleviate the need for large training

data by heuristically partitioning the shape space using axis-

aligned overlapping boxes combined with a weight-sharing

scheme. Nonetheless, ShapeBM inherits the lack of a spe-

cific generating process. Further, the unsupervised, data-

driven, learning scheme of such networks typically comes

with high demands on practitioner expertise and computa-

tional costs to determine the ideal network architecture and

associated hyperparameters for a particular data set.

In this paper, we propose a method to learn the under-

lying variability of a silhouettes population that is derived

from a generative model, thus defining a propability density

function directly over the silhouettes space while not rely-

ing on heuristics for the computation of parameter maps.

We present a Bayesian treatment of a latent variable model

– ShapeOdds – for generative shape modeling in which an

observed high-dimensional shape space is assumed to be

generated from an underlying latent low-dimensional pro-

cess. We extend recent works in the machine learning lit-

erature on variational bounds of logistic-Gaussian integrals

designed to circumvent the intractable marginal likelihood

and latent posterior leading to deterministic learning. The

proposed variational formulation further reduces the sen-

sitivity to hyperparameters by modeling posterior uncer-

tainties [66]. This extension to computer vision applica-

tions makes use of general-purpose priors [52]—in partic-

ular, spatial coherency and sparsity—to untangle the un-

derlying factors of shape variation revealed by the data.

ShapeOdds is further equipped with a data-driven hyper-

prior that automatically estimates model hyperparameters –

with closed-form re-estimation expressions – without the

need for discrete searches and cross validation. In con-

trast to RBMs and their deep variants, ShapeOdds benefits

from the explaining-away property of directed probabilis-

tic models, yielding parsimonious posteriors in which latent

variables compete and collaborate to explain the observed

shape instance [52]. Such a property could be achieved

with undirected models in the presence of lateral connec-

tions in the observed and hidden layers [52] at the expense

of not benefiting from efficient sampling-based training al-

gorithms (e.g., [67–70]) that are associated with RBMs and

increase the parameter space dimensionality, thereby exac-
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erbating the risk of overfitting. Experiments demonstrate

that ShapeOdds is able to generate realistic samples, gener-

alize to unseen data, and handle unbiased noise. ShapeOdds

paves the way to a rich class of shape models with which

deep architectures of latent models can be introduced to

capture more complex shape distributions.

2. Latent Gaussian Model for Silhouettes

Consider a raster defined over a spatial domain Ω ⊂ R
d

(here d = 2) containing D pixels. The foreground object

ω ⊂ Ω is represented by a silhouette f ∈ {0, 1}D, where

f(x) = 1, iff x ∈ ω ∀ x ∈ Ω. In a generative sense, f is

a realization of a spatially correlated field of D Bernoulli

random variables defined on Ω with a pixelwise parameter

q(x) ∈ [0, 1] where q(x) = p(x ∈ ω). Spatial regularity on

the silhouettes, typically modeled as MRFs, help describe

local correlations between nearby pixels. The Bernoulli

likelihood has an equivalent form in terms of the exponen-

tial family distributions that is parameterized by a field of

real values φ(x) ∈ R, known as natural parameters, where

φ(x) = logit[q(x)] with q(x) being the first moment of

this form and hence denoted a expectation parameters. The

merit in considering such an equivalence is casting any pa-

rameter estimation problem as an unconstrained optimiza-

tion in the natural parameters space. Hence, the generative

model of a silhouette includes a pixelwise Bernoulii likeli-

hood and the MRF spatial prior.

p(f |φ) =

{
∏

x∈Ω

p(f(x)|φ(x))

}
×

1

Z
exp

(
−

1

T
U(f)

)
(1)

with p(f(x)|φ(x)) = exp [f(x)φ(x)− llp[φ(x)]] (2)

where llp[φ] = log
(
1 + eφ

)
is the logistic-log-partition

function, U(f) are clique potentials that favor spatially co-

herent silhouettes, Z is a Gibbs distribution normalization

constant, and T is its temperature [71].

Consider an unknown shape distribution p(f) in the sil-

houettes space F , of which we have only an ensemble of

silhouettes F = {fn}
N
n=1 ⊂ F . In latent variable for-

malism, this distribution is governed by a low-dimensional

shape-generating process of L independent latent variables

z ∈ R
L where L ≪ D. Here we consider a class of latent

Gaussian models (LGMs) to capture correlations between

observed pixels through Gaussian latent variables. In partic-

ular, a point z in the latent space Z is generated according

to a Gaussian prior disitribution p(z) = N (z;µ,Σ), where

µ ∈ R
L and Σ ∈ R

L×L, which is mapped onto the natural

parameters space P by a smooth mapping h : Z → P . The

logit function further maps P to the expectation parameters

space Q. A natural parameters map φ ∈ R
D is assumed

to be confined to a linear subspace in P parameterized by

a factor loading matrix W ∈ R
D×L and an offset vector

w0 ∈ R
D where φ = h(z) = Wz + w0. A φ−map thus

induces a distribution p(f |φ) of silhouettes in F .

The corresponding natural parameters of F are Φ =

{φn}
N
n=1 ⊂ P . Although they lie in a linear subspace

in P , typically they correspond to a nonlinear manifold in

F . In a high-dimensional setting, suboptimal local max-

ima of the log-likelihood will result in a mapping h that in-

duces a badly twisted manifold in F , giving rise to a multi-

modal posterior distribution in Z . Penalizing highly twisted

mappings is usually achieved through regularization [72],

which from a Bayesian viewpoint requires introducing a

smoothness prior on the mapping parameters W and w0

controlled by hyperparameters. This prior serves a compu-

tational purpose by lending stability to the learning process

through regularizing the solution space and a statistical pur-

pose, which is to avoid overfitting in this high-dimensional

low-sample-size scenario [72]. We introduce a Gaussian

MRF (GMRF) prior over individual loading/offset vectors

{wl}
L
l=0 with wl : Ω → R

D where the prior on the map-

ping h can be factored out as p(W,w0) =
∏L

l=0 p(wl|λl).
The smoothness prior over a vector wl can be written as

a Gibbs distribution, p(wl|λl) ∝ exp {−λlE(wl)} where

λl > 0 is a hyperparameter that controls the general-

izability aspect of the resultant mapping. Gibbs energy

E(wl), hence, is chosen to favor smooth vectors by pe-

nalizing abrupt edges. We use Laplacian-square energy,

i.e., E(wl) = ‖∆wl‖
2
2 to quantify the edges within wl.

The intrinsic dimensionality of the silhouettes manifold

is determined by the choice of the latent dimensionality

L. Nonetheless, an exhaustive grid search over this choice

can become computationally intractable, especially when

extending the proposed shape model to mixtures or even

deep architectures of latent models. The probabilistic for-

mulation of LGMs allows this discrete model selection to

be handled within the Bayesian paradigm [73]. We make

use of the sparsity-inducing automatic relevance determi-

nation (ARD) prior to further regularize the solution space

via a parameterized data-driven prior distribution that effec-

tively prunes away irrelevant factors of variations, as data

reveals [74]. We introduce an ARD prior on the loading

vectors {wl}
L
l=1 with L set to the maximum allowed di-

mensionality, i.e., L = N − 1 and N ≪ D. ARD is a zero-

mean isotropic Gaussian prior parameterized by βl ∈ R>0

such that p(wl|βl) = N (wl;0D, β
−1
l ID) where 0D and ID

are the zero vector and identity matrix in R
D, respectively.

During the learning process, βl → ∞ for irrelevant fac-

tors to remove the unnecessary complexity of the resulting

model [75]. These sparsity and smoothness priors impose

a special structure on the loading matrix W that enables

model identifiability [76], an inherent property of LGMs.

These priors do not necessarly ensure unique model param-

eters, but they encourage interpretable solutions [77].

ShapeOdds thus refers to the shape-generating process

with model parameters Θ = {µ,Σ,W,w0} and priors hy-

perparameters Ψ = {λ,β} where λ ∈ R
L+1
>0 and β ∈ R

L
>0.

ShapeOdds defines a data-driven mapping of silhouettes to
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the P−space with a vector space structure. The underlying

generative process can be defined as follows:

zn ∼ N (µ,Σ), fn|zn,Θ ∼ Expon[φn]Mrf[ν] (3)

Expon[φn]
.
=

∏
x∈Ω

Expon[φn(x)] (4)

φn = Wzn +w0, w0|λ0 ∼ GMrf[λ0] (5)

wl|λl, βl ∼ GMrf[λl] Ard[βl] (6)

with GMrf[λ]
.
= N (0D, λ

−1S) where S is the structure

matrix containing the stencil of the negative bi-Laplacian

operator; the first variation of the Laplacian-square energy

E(wl). The MRF prior in (3), whose hyperparameter ν > 0
is related to the temperature in (1), reflects the spatial regu-

larity of the given silhouettes. Note that the choice of ν does

not affect the model learning process. Eq (4) is due to the

axiom of local/conditional independence [78, 79], i.e., the

observed variables are conditionally independent given the

latent variables, where Expon[φ(x)] is given by (2). The

graphical model of ShapeOdds is given in Figure 1.

3. Variational Learning of ShapeOdds

The potential gain of ShapeOdds is twofold: (1) autode-

tection of the latent dimensionality to avoid grid searches

and (2) autoregularization of the solution space to promote

model generalizability. Nonetheless, this treatment comes

with an extra degree of intractability; the Gaussian prior is

not conjugate to the Bernoulli likelihood, resulting in an

intractable logistic-Gaussian integral. A maximum likeli-

hood point estimate for the posterior ignores associated un-

certainties, resulting in overfitting even with careful regu-

larization [54]. Instead, we propose a variational approxi-

mation to the marginal likelihood to derive a tractable and

deterministic expectation-maximization (EM) algorithm for

model learning while preserving posterior uncertainty.

The marginal likelihood in F−space can be obtained by

integrating the joint density p(f , z) in the product space

F × Z over the latent space Z . To obtain a tractable in-

tegral, we restrict the posterior distribution p(zn|fn,Θ) to a

tractable family. Let q(zn|γn) = N (zn|mn,Vn), where

γn = {mn,Vn}, be a Gaussian approximate to the poste-

rior with mean mn ∈ R
L and covariance Vn ∈ R

L×L. The

lower bound to the log-marginal likelihood can be obtained

by dividing and multiplying by the posterior approximate

and then applying the Jensen inequality.

L(Θ) ≥ LJ(Θ,γ) =
∑N

n=1
Eq(zn|γn)

[
log

p(zn|Θ)

q(zn|γn)

]

+ Eq(zn|γn) [log p(fn|zn,Θ)] (7)

The first expectation term in (7) is the negative Kullback-

Leibler (KL) divergence that pushes the variational poste-

rior to the Gaussian prior. Its closed form is given by

−KLn[q‖p] = 1/2
{
log |VnΣ

−1| − Tr[VnΣ
−1]

− (mn − µ)TΣ−1(mn − µ) + L
}

(8)

Using the mapping h(z) and the conditional independence

in (4), the Gaussian approximate posterior q(zn|γn) in Z

induces a per-pixel Gaussian posterior q(φn(x)|γ̃
x

n) in P

with γ̃
x

n = {m̃x
n, Ṽ

x
n} where wx

0 ∈ R and Wx ∈ R
L.

m̃x

n = Wxmn +wx

0 , Ṽx

n = WxVn(W
x)T (9)

Note that the spatial coherency is still promoted through the

GMRF prior on the offset and loading vectors. Using the

exponential form of the Bernoulli likelihood in (2), the sec-

ond expectation term in (7) can be expressed in P as∑
x∈Ω

Eq(φn(x)|γ̃x

n)
[log p(fn(x)|φn(x))]

=
∑

x∈Ω

{
fn(x)m̃

x

n − Eq(φn(x)|γ̃x

n)
[llp[φn(x)]]

}
(10)

≥
∑

x∈Ω
Bn(x) :=

{
fn(x)m̃

x

n − B(γ̃x

n,α
x

n)
}

(11)

Eq (10) is intractable due to the llp function and can be

lower-bounded in P−space by defining an upper bound B
for the expectation of the llp function with local, i.e., per-

pixel, variational parameters αx
n. The new bound reads as

L(Θ,γ,α) =
∑N

n=1

{
−KLn[q‖p] +

∑
x∈Ω

Bn(x)
}

︸ ︷︷ ︸
Ln(Θ,γn,αn)

(12)

To avoid the recomputation of per-pixel/per-sample αx
n,

we use a fixed piecewise quadratic upper bound for the

llp function recently proposed in [80] as a proven tight

bound compared to other quadratic bounds, e.g., [81, 82],

where αx
n = α ∀ n,x. Consider a quadratic bound

with R−intervals defined by R + 1 control points τ0 =
−∞ < τ1 < ... < τR = +∞, whose parameters

α = {αr}
R
r=1 and αr = [ar, br, cr] are estimated via a

minimax optimization to ensure a tight bound [80] (here

we use R = 20, where the error was shown to ap-

proach zero [80]). The upper bound B can thus be ex-

pressed in terms of truncated Gaussian moments, due to

the approximate Gaussian posterior, whose closed-form

expressions along with their gradients are available [80].

B(γ̃,α) =
R∑

r=1

∫ τr

τr−1

N (φ; m̃, Ṽ)
[
arφ

2 + brφ+ cr
]
dφ (13)

We propose a variational EM algorithm that optimizes

the rigorous lower bound defined in (12) using the fixed up-

per bound in (13). The E-step in (15) optimizes the vari-

ational posterior means and covariances at an iteration i
given the current guess of model parameters Θ(i−1). The

M-step chooses the next guess of Θ(i) to maximize the reg-

ularized variational bound in (19). Iterating between these

two steps involves concave optimizations due to the concav-

ity of the lower bound in (12) [80,83] and the semi-positive

definiteness of the bi-Laplacian operator, for which we can

use gradient-based optimization (see Algorithm 1 for gradi-

ent expressions). The maximum-a-posteriori (MAP) objec-

tive of the offset and loading vectors, after removing con-

stant terms, can be written as

E(W,w0|γ,α,Ψ) = −L(Θ,γ,α) + (λ0/2)wT
0 Sw0

+
∑L

l=1

{
(λl/2)wT

l Swl + (βl/2)wT
l wl

}
(14)
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The first variation of (14) w.r.t. the offset and loading vec-

tors reads as in (23) and (24): the vectors gm
n and GV

n are

bound gradients in (18), ⊙ refers to a Hadamard product,

mn,l is the l−th entry of mn, and Vn,l is the l−th column

of Vn. To enable large time steps ∆t while maintaining

stable updates, we use a semi-implicit scheme with finite-

forward time marching to define iterative updates for wl’s

in (26), where spatial convolution ⊗ can be efficiently per-

formed as multiplication in the Fourier domain.

Hyperparameters: To complete our Bayesian treatment,

we formulate an evidence approximation, aka type-II maxi-

mum likelihood, in which we marginalize over Ψ. We con-

sider a Jeffery prior to construct a hyper-hyperparameters-

free noninformative hyperprior on the hyperparameters,

leading to analytic integrals. The noninformative hyper-

priors on λl and βl are p(λl) ∝ 1/λl and p(βl) ∝ 1/βl,

respectively. The marginalization over the hyperparame-

ters involves λl−integrals and βl−integrals, each with an

analytic form
Γ(D/2)|S|1/2

πD/2(wT
l Swl)D/2 and

Γ(D/2)|S|1/2
πD/2(wT

l wl)D/2 , respec-

tively, using a Γ−function integral form. For a given Ψ, the

gradient of log p(Θ|Ψ) w.r.t. wl should coincide with that

of the marginal p(Θ) [84]. Hence, the effective values of

the hyperparameters in (30) re-estimate Ψ after each pair

of E- and M-steps to compute the new Ψ given the current

guess of Θ. This re-estimation mechanism can be viewed

as an iterative regularization similar to [85] in which an ap-

propriate sequence of regularizers is used to facilitate the

convergence of the M-step in high-dimensional scenarios.

Robust inference: Inference contexts, e.g., segmentation

and tracking, involve querying the learned shape model to

infer the φ−map (and the corresponding q−map) of the

closest silhouette to a given corrupted one. Missing fore-

ground regions and/or background clutter are rendered as

a lack of compliance with the learned model, i.e., outliers,

introducing an erroneous maximum likelihood estimate

of the approximate posterior due to assigning higher

weights to outlying pixels during the inference process.

To increase the robustness of the estimated posterior,

we deploy a functional, aka ρ−functions in the robust

statistics field [86], of the marginal bound that is more

forgiving of outlying pixels. We formulate the inference

problem in an optimization context without relying on

explicitly detecting the outliers’ spatial support to be

discarded from the inference process. The lower bound

in (15) can be rewritten as a pixelwise bound as follows:

L(γ; Θ,α) =
∑

x∈Ω
−Ex(γ)

.
= −KLx[q||p] + Bn(x) (36)

where the negative KL term in (8) can be defined in

P−space as in (37) with µ̃x = wx
0 and σ̃x = Wx(Wx)T .

−KLx[q||p] =
1

2

{
log

∣∣∣∣∣
Ṽx

σ̃x

∣∣∣∣∣−
Ṽx

σ̃x
−

(m̃x − µ̃x)2

σ̃x
+ 1

}
(37)

To assign less weight to pixels poorly supported by Θ,

Algorithm 1 Variational EM for learning ShapeOdds

E-Step:

γ(i)
n = argmax

γn
Ln(Θ

(i−1),γn,α) ∀ n ∈ 1, ..., N (15)

∂Ln

∂mn
= −Σ−1(mn − µ) +

∑
x∈Ω

gmn (x)(Wx)T (16)

∂Ln

∂Vn
=

1

2

[
V−1

n − Σ−1
]
+
∑

x∈Ω
GV

n (x)(Wx)TWx (17)

where gmn (x) =
∂Bn(x)

∂m̃x
n

, GV

n (x) =
∂Bn(x)

∂Ṽx
n

(18)

M-Step:

Θ(i) = argmax
Θ

{∑N

n=1
Ln(Θ,γ

(i)
n ,α)

}
+ log p(Θ|Ψ) (19)

where p(Θ|Ψ) = p(w0|λ0)
∏L

l=1
p(wl|λl)p(wl|βl) (20)

µ =
1

N

∑N

n=1
mn (21)

Σ =
1

N

∑N

n=1

{
Vn + (mn − µ)(mn − µ)T

}
(22)

dE

dw0
=

∂L

∂w0
+ λ0Sw0,

∂L

∂w0
= −

∑N

n=1
gm

n (23)

dE

dwl
= −

{
∂L

∂wl
+ λlSwl + βlwl

}
(24)

∂L

∂wl
=

∑N

n=1
gm
n mn,l + 2GV

n ⊙WVn,l (25)

w
(t)
l =

{
1

1 + ∆tλlS

}
⊗
{
w

(t−1)
l

+∆t

[
∂L

∂wl
− δ(l > 0)βlw

(t−1)
l

]}
, ∀ l = {0, 1, ..., L} (26)

H-Step:

p(Θ) =
∏L

l=0

{∫ ∞

0

p(wl|λl)p(λl)dλl

}

×
∏L

l=1

{∫ ∞

0

p(wl|βl)p(βl)dβl

}
(27)

p(wl|λl) =
λ
D/2
l |S|1/2

(2π)D/2
exp

{
−
λl
2
wT

l Swl

}
(28)

p(wl|βl) =
β
D/2
l

(2π)D/2
exp

{
−
βl
2
wT

l wl

}
(29)

λl =
D

wT
l Swl

, βl =
D

wT
l wl

where wT
l Swl = ||∆wl||

2 (30)

Robust E-Step:

γ∗ = argmin
γ={m,V}

ER(γ;κ) :=
∑

x∈Ω
ρ (Ex(γ);κ) (31)

∂ER
∂m

=
∑

x∈Ω
ψ (Ex(γ);κ)

∂Ex
∂m

(32)

∂ER
∂V

=
∑

x∈Ω
ψ (Ex(γ);κ)

∂Ex
∂V

(33)

∂Ex
∂m

=

{
m̃x − µ̃x

σ̃x
− gm(x)

}
(Wx)T (34)

∂Ex
∂V

=

{
−
1

2

[
1

Ṽx
−

1

σ̃x

]
−GV (x)

}
(Wx)TWx (35)

we use the robust ρ−function of Bianco and Yohai [87]

(modified in [88] to ensure boundedness) tailored for

logistic functions. The influence function reads as

ψ(k;κ) = ρ′(k;κ) = e−
√
κδ(k ≤ κ) + e−

√
kδ(k > κ),

where the tuning parameter κ > 0 provides a compromise

between robustness and efficiency. Higher κ values yield a

more efficient estimate by considering all pixels as inliers,

yet less robust. The robust inference formulation can thus

be written as in (31) with gradient expressions in (32) and

(33). The negative of the marginal log-likelihood bound

in (15) is convex w.r.t. the posterior variational parameters
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γ. Nonetheless, its robust formulation in (31) is no longer

convex. Fortunately, the scale parameter κ allows for

continuation methods to be used to find a globally optimal

solution for the nonconvex ER. A global solution can be

achieved by constructing successive convex approximations

of ER that can be readily minimized using gradient-based

methods, e.g., LBFGS. To construct such a sequence, we

use a variant of the graduated nonconvexity algorithm [89].

The minimization can thus begin with κ(0) = max Ex(γ),
chosen so there are no outliers, i.e., ρ′′(k;κ) > 0 ∀ k.

Outliers can then be gradually introduced by lowering the

value of κ and repeating the minimization, starting from

the solution of the previous approximation.

4. Experiments

We assessed the performance of ShapeOdds, as com-

pared to baseline models, w.r.t. generating valid shapes (re-

alism), modeling unseen shapes (generalization), and re-

covering valid shapes from corrupted ones (robustness).

Datasets: We considered two datasets that represent differ-

ent challenging aspects in shape modeling. (1) The Weiz-

mann horse dataset [90] contains 328 silhouettes of horses

facing to the left with significant pose variation, cropped

and normalized to 32 × 32 pixels as in [60]. The chal-

lenge of this dataset is the limited number of training sam-

ples as compared to the underlying shape variability, re-

vealed by the different positions of heads, tails, and legs.

(2) The Caltech-101 motorbike dataset [91] contains 798
silhouettes, cropped and normalized to 64 × 64 pixels. We

use this dataset to manifest learning ShapeOdds in high-

dimensional silhouette space with limited training samples.

Baseline models: For comparison, we considered the state-

of-the-art ShapeBM [60], which learns shape models di-

rectly in the silhouettes space without relying on any in-

termediate representation. We used the same hyperparam-

eters settings in [60] for the two datasets. Using the im-

plementation provided by Stavros Tsogkas et al. [92], we

trained ShapeBM with the overlap of four pixels using pre-

training and 3000 epochs. Similar to [60], we used 2, 000
and 100 hidden units for the first and second layers, respec-

tively, for the horse dataset. For the motorbike dataset, we

used 1, 200 and 50 units. We further considered current

practices that use intermediate embeddings such as signed

distance maps (SDMs) and Gaussian smoothed silhouettes

(GAUSS). Since any monotonic transformation of SDMs

can be considered as a valid LogOdds representation [31],

SDMs-based representation has a scalar free parameter that

controls the smoothness of the resulting natural parameters

map. Further, GAUSS-based representation has its kernel

width as a free parameter. As such, for a fair compari-

son, the multiplicative factor for SDMs and the width of the

Gaussian kernel were optimized using cross-validation over

the training data. We considered learning shape models us-

ing PCA in the LogOdds space, similar to [31], and in the

expectation parameters space, similar to [30]. For nonpara-

metric models, we considered the kernel density estimate

(KDE) using SDMs as in [42] where we fixed the kernel

width to be the mean squared nearest-neighbor distance.

Realism: We sampled a set of horses and motorbikes from

the learned models, see Figure 2, where we visualized the

corresponding q−maps. ShapeOdds can be sampled us-

ing its directed model where we start with sampling the

Gaussian prior p(z) and then mapping a latent point z to

the P−space using the mapping h(z). ShapeBM was sam-

pled using extended Gibbs sampling similar to [60]. Sam-

ples from PCA-based models were generated by sampling

the within-subspace Gaussian distribution whose covari-

ance structure is defined by the eigenvalues of the estimated

principal subspace. One can note the poor samples gener-

ated from shape models learned in the expectation param-

eters space, i.e., PCA-Prob-SDMs and PCA-Prob-GAUSS.

The smoothness and ghosting artifacts that are evident in

the generated samples are due to the iterative projection

scheme [30] required to project a given shape onto the ex-

pectation parameters space, which amounts to clamping all

values to the [0, 1]−interval. Learning shape models in the

LogOdds space does not suffer from such artifacts. How-

ever, models fail to learn enough shape variability, leading

to samples with similar shape that do not preserve shape

class features such as horse legs. ShapeBM can generate

sharply defined samples with different horse poses and mo-

torbike shapes. Nonetheless, thin shape features, e.g., horse

legs, are not well defined, especially with highly variable

poses. On the other hand, ShapeOdds can generate crisp

q−maps with significant shape variability while preserving

shape details such as horse legs and motorbike handle bars.

Generalization: We considered a variant of the gen-

eralization measure in [93] to assess whether a learned

model can represent unseen shape instances and quan-

tify the ability of the learned density function to spread

out between and around the training shapes. Rather than

using sample reconstruction error as in [93], we used

cross-entropy as in [94] to measure how likely an un-

seen sample u follows an Expon distribution with a pa-

rameter map q reconstructed from a shape model Θ(N),

trained overN−samples. The generalization measure reads

as G(u;q)
.
= − 1

D

{
uT log [q] + (1D − u)T log [1− q]

}
.

Figure 3 reports the generalization statistics for both

datasets as a function of the training sample size where

training subsets of N = {15%, 35%, 55%, 75%} were ran-

domly drawn 10 times. Since KDE-SDMs does not at-

tempt to learn the silhouettes distribution, one can observe

its poor generalization, which reveals its tendency to over-

fit with sparse training samples in high-dimensional space.

SDMs- and GAUSS-based models make use of more train-

ing samples for better generalization. Nonetheless, poorer

performance indicates that they lead to suboptimal gener-
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Figure 2. Realism – sampled shapes from (left) horses and (right) motorbikes datasets using ShapeOdds and other baseline models.

ative models that do not generalize well on unseen data.

In particular, signed distance to the shape’s boundary is a

geometric representation that does not correlate well with

the underlying generative process. Further, blurring silhou-

ettes lose the ability to model the distribution of the given

population due to the blind smoothing along shape bound-

aries irrespective of the underlying shape variability. The

effect of such smoothing is more evident when learning the

shape model in the LogOdds space, especially with small

N , indicating that blurring silhouettes is not a statistically

principled approach to embed silhouettes in the P−space.

ShapeOdds compares favorably against all baseline mod-

els and shows better generalization performance even with

small training sizes compared to the underlying variability.

However, ShapeBM shows slightly better generalization on

the horse dataset with N = 49 samples. The main rea-

son is that ShapeBM advocates an axis-aligned shape space

partitioning with a weight-sharing scheme to balance the

number of parameters to estimate and the generality of the

model. Extending ShapeOdds to mixtures would achieve

such a balance in a data-driven manner and a statistically

principled approach by parameterizing each mixture com-

ponent by its dominant subspace. Figure 4 demonstrates

that ShapeOdds generalizes to unseen examples in nontriv-

ial ways. One can observe the crisp q−maps that are recov-

ered from ShapeOdds compared to other baseline models.

Robustness: We further assessed ShapeOdds capability to

recover valid shapes from corrupted ones. Here we consider

unbiased noise where there is no prior assumption about the

Figure 3. Mean and std of the generalization measure on the horse

(top) and motorbike (bottom) datasets. Lower is better.

corrupted region, i.e., foreground and/or background. An

unseen silhouette is assumed to be corrupted by another

Bernoulli random field with parameter map qc and with

contamination rate ǫ ∈ [0, 1]. We generated correlated noise

masks using qc’s simulated by convolving random noise

with a Gaussian kernel of standard deviation σc = 2.0 and

mapping the resulting field to [0, 1]−interval. Missing fore-

ground regions and/or background clutter were determined

by thresholding the simulated qc using the threshold that re-

sults in a contamination rate of ǫ = {0.1, 0.2, 0.3, 0.4, 0.5}.

Figure 5 shows the cross-entropy of the recovered q−maps

for corrupted horse silhouettes as a function of ǫ. Fig-

ure 6 demonstrates sample inference results of corrupted

horses for different corruption scenarios. Motorbike dataset

showed a similar performance but was omitted due to space

limitations. Note that the best performance for ShapeBM is

handling missing foreground regions, e.g., occlusion. How-
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Figure 4. Generalization: (a) unseen silhouette, (b) closest sil-

houette in the training dataset, (c) overlay of (a) and (b) (red pixels

are present only in the unseen sample, green pixels are present

only in the training sample, and yellow pixels are present in both),

reconstructed q−maps from (d) ShapeOdds, (e) ShapeBM, (f)

PCA-LogOdds-SDMs, (g) PCA-Prob-SDMs, (h) PCA-LogOdds-

GAUSS, (i) PCA-Prob-GAUSS, and (j) KDE-SDMs. Generarl-

ization measure G(u;q) (lower is better) is reported where bold

indicates best generalization.

ever, qualitative and quantitative results are indicative of its

poor performance in cases of background clutter and gen-

eral unbiased corruption. KDE-SDMs constructs a non-

parametric estimate of the φ−maps based on the similar-

ity of the given corrupted silhouette to each training sam-

ple. However, it tends to recover similar, over-smoothed,

q−maps for all corrupted silhouettes. This is a typical

mode of failure for this model and appears to be an inabil-

ity to find, through optimization, a good set of weights on

training samples to, in turn, recover a good parameter map.

ShapeOdds shows some success in handling low noise lev-

els, but it fails to properly recover valid q−maps for highly

contaminated silhouettes. The proposed robust inference,

on the other hand, maintains good performance even with

high levels of foreground and/or background corruption.

5. Conclusion and Future Work

We presented a probabilistic generative shape model –

ShapeOdds – that can capture variability patterns directly in

the silhouettes space. Our formulation offers a tractable and

deterministic EM-like model learning that avoids overfit-

Figure 5. Robustness – horse: (left) missing foreground regions

and background clutter, (middle) background clutter only, and

(right) missing foreground regions only. Lower is better.

Figure 6. Robustness: (a) corrupted silhouette, (b) groundtruth

silhouette, q−maps recovered from (c) ShapeOdds-Robust, (d)

ShapeOdds, (e) ShapeBM, (f) PCA-LogOdds-SDMs, (g) PCA-

Prob-SDMs, (h) PCA-LogOdds-GAUSS, (i) PCA-Prob-GAUSS,

and (j) KDE-SDMs. Cross entropy (lower is better) is reported

where bold indicates best performance.

ting in high-dimensional shape spaces with closed-form re-

estimation formulas for the hyperparameters. Experiments

have shown that ShapeOdds can generate realistic-looking

shapes, generalize to unseen samples in nontrivial ways,

and recover shape instances from corrupted ones. In the

future, we plan to pursue several extensions to ShapeOdds,

including data-driven soft partitioning of the shape space by

learning mixtures of ShapeOdds, transformation-invariant

model learning to relax the assumption of aligned train-

ing shapes, learning with outlying shape instances by using

heavy-tailed latent priors, joint modeling of shape and ap-

pearance, and deep latent models to allow scaling to higher

resolution silhouettes while avoiding overfitting.
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