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Abstract

Efficient estimation of depth from pairs of stereo images

is one of the core problems in computer vision. We efficiently

solve the specialized problem of stereo matching under ac-

tive illumination using a new learning-based algorithm. This

type of ‘active’ stereo i.e. stereo matching where scene tex-

ture is augmented by an active light projector is proving com-

pelling for designing depth cameras, largely due to improved

robustness when compared to time of flight or traditional

structured light techniques. Our algorithm uses an unsu-

pervised greedy optimization scheme that learns features

that are discriminative for estimating correspondences in

infrared images. The proposed method optimizes a series of

sparse hyperplanes that are used at test time to remap all the

image patches into a compact binary representation in O(1).
The proposed algorithm is cast in a PatchMatch Stereo-like

framework, producing depth maps at 500Hz. In contrast to

standard structured light methods, our approach general-

izes to different scenes, does not require tedious per camera

calibration procedures and is not adversely affected by in-

terference from overlapping sensors. Extensive evaluations

show we surpass the quality and overcome the limitations of

current depth sensing technologies.

1. Introduction

Depth cameras have become key in tackling challeng-

ing computer vision tasks including human capture [10],

3D scene reconstruction [28], object recognition [51] and

robotics [13]. Many different depth sensing techniques and

technologies have been proposed: from gated [12, 2] or

continous wave (e.g. Kinect V2) time-of-flight (ToF), to

triangulation-based spatial [19, 52] or temporal [21] struc-

tured light (SL) systems.

ToF cameras have recently gained a lot of attention due to

wide spread commercial availability (e.g. products from In-

tel, Microsoft, PMD and Sony). ToF sensors capture multiple

images of the same scene under different active illumination.

∗Authors equally contributed to this work.

Using these images, a single depth map is estimated. For

instance, the Kinect V2 sensor captures raw infrared (IR)

frames at 300Hz in order to produce depth maps at 30Hz

[48]. This requires custom high-speed image sensors that

are expensive and low-resolution. The produced depth maps

can suffer from motion artifacts, as they are constructed over

a temporal window. Another significant limitation of ToF

cameras is multipath interference (MPI). This occurs when,

during a single camera exposure, emitted light is scattered

and reflected from multiple surfaces, and collected as a sin-

gle convolved sensor measurement. Despite the significant

efforts on MPI [29, 20, 5, 37], there are no commercially-

viable solutions for this problem if precise depth is required

for general scenes.

SL systems [43, 21], fall into two groups: spatial or tem-

poral. Temporal systems (e.g. Intel SR300) are computation-

ally efficient but require multiple captures across a temporal

window, causing motion artifacts. Moreover the maximum

range is very short (up to 120cm). Most systems also re-

quire custom MEMs-based illuminators to produce dynamic

rather than static patterns which can be costly and require

more power. Spatial SL systems are simpler and either

use a diffractive optical element (DOE) [19] or mask-based

[22] illuminators to generate pseudo-random patterns, and

off-the-shelf imaging sensors. These however suffer from

robustness concerns: the pattern needs to be known a-priori,

so any modifications of the pattern will cause issues. This

can be caused if the wavelength of the emitted light drifts,

e.g. if the laser is not thermally stabilized or if two or more

projectors overlap onto the same scene, causing interference

between sensors.

One way to overcome these challenges is to use an active

stereo setup [31]. These systems use two calibrated cameras

and project a pattern into the scene to provide texture for

matching. Although the technique has been described in

seminal work from the 1980s [38], widely available commer-

cial products leveraging this approach only recently emerged

[1]. Active stereo systems are compelling since: (1) they can

operate in texture-less regions, which is a major shortcom-

ing of passive stereo techniques [7]; (2) they mitigate the

challenge of multi-path reflections, inherent in ToF [20]; and
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(3) they offer more robustness over traditional triangulation-

based structured light systems, by removing the need to

project a known structured light pattern as well as avoiding

interference between sensors [8].

However, this type of depth sensing carries with it a key

challenge: the computational overhead to find correspon-

dences across stereo images for disparity (and hence depth)

estimation. Mainstream techniques usually take a matching

window around a given pixel in the left (or right) image and

given epipolar constraints find the most appropriate match-

ing patch in the other image. This requires a great deal of

computation to estimate depth for every pixel.

Significant efforts from the community have been spent

on overcoming this computational bottleneck. Local stereo

matching techniques have proposed solutions that are in-

dependent of the matching window size e.g. [42, 34, 30]

or the range of disparities [7, 4]. However, these methods

are still computationally expensive, especially when consid-

ering commercial viability or comparing to look-up based

approaches used in ToF or temporal SL. Therefore, most

algorithms have to trade resolution and accuracy for speed in

order to reach real-time scenarios. Even then, these systems

barely reach 30Hz. Recent methods have been proposed that

can scale independently of the window size and the range

of disparities. However, these methods rely on expensive

steps such as computing superpixels [35, 33], making them

prohibitive for real-time scenarios.

In this paper, we solve this fundamental problem of stereo

matching under active illumination using a new learning-

based algorithmic framework called UltraStereo. Our core

contribution is an unsupervised machine learning algorithm

which makes the expensive matching cost computation

amenable to O(1) complexity. We show how we can learn

a compact and efficient representation that can generalize

to different sensors and which does not suffer from interfer-

ences when multiple active illuminators are present in the

scene. Finally, we show how to cast the proposed algorithm

in a PatchMatch Stereo-like framework [7] for propagating

matches efficiently across pixels.

To demonstrate the benefits of our approach, we built

a prototype system with off-the shelf hardware capable of

producing depth images at over 200Hz. We also prove that

the algorithm can be run on single camera-projector systems

such as Kinect V1, surpassing the quality of the depth estima-

tion algorithm used by this commercial system. Exhaustive

evaluations show that our algorithm delivers state of the art

results at high framerate and high image resolution. We show

how the learned representation can generalize to different

sensors and scenes.

In contrast to standard structured light methods, our ap-

proach does not require tedious camera-illuminator calibra-

tion and is not adversely affected by interference when mul-

tiple sensors are operating in the same space. Whilst related

learning-based algorithms such as HyperDepth [16] have

overcome quality and speed limitations in structured light

systems, these methods require tedious calibration and ex-

pensive data collection phases. More fundamentally these

cannot scale to the stereo (two or more) camera matching

case. This is because methods like HyperDepth makes the

assumption that the matching occurs across one camera ob-

servation and a fixed pattern that remains constant indepen-

dent of scene depth, whereas the problem of active stereo

inherently assumes that a pattern will be observed differently

across two cameras, and both observed patterns will change

based on depth.

2. Related Work

Depth estimation from stereo is one of the most active

topics in computer vision of the last 30 years. The simplest

setup involves two calibrated and rectified cameras, where

the problem is to establish correspondences for pixels be-

longing to the same scanline in both images. As described

in [45], the main steps of stereo algorithms are: matching

cost computation, cost aggregation, disparity optimization

followed by a disparity refinement step. Methods can be

categorized in local [54, 42, 7, 35], global [17, 4, 32, 33]

or semi-global [26, 6], depending on the techniques used to

solve each step of the pipeline.

The correspondence search problem is the most demand-

ing part of the system. Given a disparity space of L possible

labels, simple brute force methods (e.g. block matching)

have a complexity per pixel of O(LW ), where W is the

window size used to compute the correlation among patches

(typically 9 × 9 for a 1.3M resolution image). In order to

reduce this computational burden, most of the methods in

literature try to remove the linear dependency on the window

size W or on the number of disparities L.

Many correlation functions can be implemented as a filter

with a computational complexity independent of the filter

size. For instance, the sum of absolute differences (SAD)

corresponds to a simple box filter [45] that can be optimized

for computational performance. Recent real-time stereo ap-

proaches focus on filters that set a weight to each pixel inside

the correlation window based on image edges, e.g. based

on bilateral filtering [50, 40] or guided image filtering [24].

In addition, several methods have been proposed for guided

cost volume filtering [42, 34, 30]. Since their runtime cost is

O(L) per pixel, these approaches show good computational

performances only if the number of disparities is small.

Other recent work leverage the framework of PatchMatch

Stereo [7, 4]. PatchMatch Stereo alternates between ran-

dom depth generation and propagation of depth. However,

the runtime performance of the algorithm depends on the

correlation window size W , with a total runtime cost of

O(W logL). A recent attempt to remove the linear depen-

dency on both the window size and label space is presented
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in [35]. This method strongly relies on superpixels, which

require a non negligible amount of compute to estimate.

Moreover superpixels are well defined for RGB images, but

it is not straightforward to characterize in IR images.

Machine learning methods such as [56] use deep neu-

ral networks to compute the matching cost, increasing the

overall complexity. Furthermore, those methods still need

multiple disparity hypothesis to be evaluated. Others [11, 44]

try to predict depth from a single image, but their applica-

bility is limited to very specific scenes. [14] use diffuse

infrared light to learn a shape from shading mapping from

IR intensity to depth, but the technique works only for hands

and faces in a very limited range. More recently, [16] uses

machine learning to learn the reference pattern used in struc-

tured light system such as Kinect V1 and demonstrates state

of the art results. However, the method cannot be applied in

stereo setups as it requires per camera training and fails in

the presence of pattern interference (see Fig. 8).

In contrast to previous work, we use an unsupervised

machine learning technique to compute the matching cost

in O(1), removing the dependency on the window size W .

Leveraging the PatchMatch framework [3] to perform the

disparity optimization and refinement leads the proposed

method to have a total complexity of O(logL) per pixel. In

the experiments, we demonstrate that the method does not

require a per camera training, generalizes to multiple scenes

and does not suffer from interference.

3. UltraStereo Algorithm

Our method is designed to work with commercially avail-

able spatial structure light systems (e.g. Kinect V1) as well

as with active stereo camera setups. The Kinect V1 hard-

ware consists of a DOE projector and a single camera which

is a particular case of active stereo, where one camera is

a fixed reference image. This particular setup requires a

tedious calibration procedure, since the relative position be-

tween the reference pattern and the camera-projector needs

to be estimated (see [36] for details). To demonstrate the

full potential of our method, we built a hardware prototype

consisting of two IR cameras in a stereo configuration. We

use monochrome Ximea cameras with a 1280×1024 spatial

resolution, capable of capturing raw images at 210Hz. The

cameras are calibrated and rectified using a standard multi

view calibration approach [23].

In the remainder of the paper, we assume the pair of

images to be rectified. Therefore, each pixel p = (x, y) in

the left image L, has a correspondence match in the right

image R which lies on line y, but at a different coordinate

x̂. The difference d = x− x̂ is known as disparity and it is

inversely proportional to the depth Z = bf
d

, where b is the

baseline of the stereo system and f the focal length. The

main computational challenge is to solve the correspondence

problem (finding x̂) without any dependency on the window

size W and the size of the disparity label space L. The latter

can be removed using a variant of the PatchMatch framework

[41]. With UltraStereo, we show how the dependency on the

window size can be removed.

3.1. Compact Representation of Image Patches

In order to evaluate a single disparity hypothesis, tradi-

tional stereo algorithms compute the cost between image

patches of size W by analyzing all the per pixel differences.

Common correlation functions include sum of absolute dif-

ferences (SAD) and normalized cross evaluation (NCC).

Even when a small patch is used (e.g. W = 5 × 5), these

functions require a significant amount of operations to ob-

tain the matching cost [27] between two patches. The main

intuition behind UltraStereo is that standard correlation func-

tions such as SAD and NCC are unnecessarily expensive to

capture the discriminative data contained in the actively illu-

minated pattern. Indeed given a high frequency pattern such

as the one projected by a DOE, the information required for

establishing robust matches belongs to a space that is much

lower dimensional than the space of IR patches. Therefore,

we design a function y = f(x) that maps an image patch

x ∈ RW in a compact binary representation y ∈ {0, 1}b

with b << W . In particular, typical values are W = 11×11
and b = 32. For compute reasons, we propose to use a linear

mapping to transform the data from RW to {0, 1}b:

y = f(x) = sign(xT · Z− θ) (1)

with Z ∈ RW×b and θ ∈ Rb. In order to remove the de-

pendency on the window size W , only k << W non-zero

elements are allowed in each column of the mapping Z. In

practice, using dense hyperplanes has very little impact on

the final results. Similarly, using y ∈ Rb (by dropping the

sign in eq. 1) produces similar results compared to using

y ∈ {0, 1}b. Motivated by these observations and by the

fact that Hamming distances are computed in O(1) in many

modern GPUs, we naturally choose to perform the cost com-

putation in the feature space y ∈ {0, 1}b.

3.2. Unsupervised Binary Representation

The mapping function f has to be data dependent in or-

der to learn the subspace of patches generated by the active

illuminator. Our goal is to find a mapping Z that preserves

the similarities of the input signal. To do so we resort to

a greedy method that computes, at each step, the best hy-

perplane z. This naturally leads to the optimization scheme

popularly used when training decision trees. Binary trees

are suitable models for making predictions that are both

sparse and binary and they have demonstrated state of the

art results for numerous problems including pixel-wise label-

ing [46, 14], regression tasks [47, 15] and correspondence

search problems [53] by using very simple and sparse split

functions. Each node in a decision tree contains a set of
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Figure 1. UltraStereo framework. We built an active stereo prototype (top left) capable of acquiring raw images at 210Hz. We use two

IR cameras and a Kinect DOE for active illumination. The algorithm also works in spatial structured light systems such as KinectV1 and

Primesense sensors. Given two rectified input images, we use an efficient O(1) mapping to transform image patches to a new binary space

y. The matching cost is then computed using this compact representation and a PatchMatch Stereo inference is used to infer disparities. See

text for details.

learned parameters δ = (z, θ) which define a binary split of

the data reaching that node. Based on the sign of xTz− θ,

samples are either routed to the left or the right child of the

current node. The total number of binary splits b is equal to

the number of nodes in the tree. In our case we set b = 32,

which is equivalent to a single tree of height 5.

In order to learn the split parameters of a tree, one must

define a suitable objective function. In [16], authors used a

classification based objective function aiming at minimizing

the entropy over all the labels. However, our goal is to be

as general as possible in order to avoid per-camera training,

therefore we rely on an unsupervised objective function,

similar to the one used in density forests [9]. Given N

unlabelled image patches xi collected in arbitrary scenes,

we aim at approxminating the underlying generative model

of infrared patches. Starting from the root node that contains

the set S of all the examples xi ∈ RW , we randomly sample

multiple split parameters proposals δ. In order to enforce

sparsity and remove the dependency on W , only k elements

in z are forced to be non-zero. For each candidate δ, we

evaluate the information gain:

I(δ) = H(S)−
∑

d∈L,R

|Sd(δ)|

|S|
H(Sd(δ)) (2)

where the set Sd(δ) is induced by the particular split func-

tion δ. The entropy H(S) is assumed to be the continuous

entropy of a W -dimensional Gaussian, which is equal to:

H(Sd) =
1

2
log((2πe)W |Λ(Sd)|) (3)

where Λ(S) is the W ×W covariance matrix of the current

set S and | · | indicates its determinant. The candidate δ that

maximizes Eq. 2 is selected for each node. The training

procedure continues greedily until depth 5 of the tree is

reached. Notice that we are not storing any model in the

leaves since we only want to exploit the binary splits induced

by the δ parameters. At the end of the training phase we

concatenate all the split parameters in order to form our

linear mapping Z = [z1, . . . , zb] and θ = [θ1, . . . , θb].

Note that other binary mappings schemes like Rank and

Census have been proposed in the past [55]. Others used ran-

dom sparse hyperplanes [25] to perform this binary mapping.

However, these methods are not data driven and they are

a particular case of the proposed framework, which learns

a more general mapping function. More importantly, due

to their hand-crafted or random nature, previous methods

require an output binary space to be of the same magnitude

or larger than the patch size W . On the contrary, our method

is also able to significantly reduce the dimensionality of

the data while retaining the discriminative information they

carry for the task of establishing robust correspondences.

Hence, UltraStereo encodes patches of size 11× 11 = 121
in 32 binary values which are efficiently stored in a single

integer.

3.3. Matching Framework

Once every patch in the left and right images is projected

in {0, 1}b, we use a variant of the PatchMatch Stereo frame-

work [41] to conduct the inference. The main steps of this

framework consist of initialization, propagation and post-

processing.

In the initialization step, 5 random disparities are sampled

per pixel and their matching cost is evaluated in parallel. In

order to achieve subpixel precision, these random disparities
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are real-valued. The candidate with the lowest matching

score is kept.

Due to its inherently iterative nature, the propagation

proposed in [7] can not directly leverage the full potential

of massively parallel architectures like GPUs. In order to

speedup this step, in our reimplementation we subdivide the

image in 64× 64 blocks. We run the PatchMatch propaga-

tions inside these local blocks, where rows and column are

processed in parallel and independently on dedicated GPU

threads. In total we run 4 propagations: left to right, top to

bottom, right to left, bottom to top. Every time a disparity

gets propagated we also use a standard parabola interpolation

on the matching cost to further improve subpixel accuracy.

In our GPU post-processing step, we invalidate disparities

which are associated with large hamming distances (bigger

than 5) and we run connected components followed by a

minimum region check to remove outliers. Finally a median

filter is run on 3 × 3 patches to further reduce noise while

preserving edges.

3.4. Computational Analysis

We consider an image with N pixels, L possible dis-

crete disparities and images patches of size W . Note

that the PatchMatch stereo framework has a complexity of

O(NW logL) [35]. We now study the complexity of Ultra-

Stereo. The mapping to the binary space as described in Eq.

1 is independent of the window size W , since each column

of Z has only k non-zero elements. In practice, we opti-

mized for k = 4 due to our computational budget, however

empirically we noticed that the number of non-zero elements

is not a crucial parameter. The complexity of this mapping

is therefore O(1). Similarly to [41], we don’t perform the

‘bisection search’ over the label space. This further reduces

the complexity and removes the dependency on L. The com-

plexity of UltraStereo is then linear with respect to the image

size N , and it has only two small constants involved: k

non-zero pixels for the mapping computation and the binary

space b for the hamming distance. We can count the number

of different bits between two binary strings in O(1), thanks

to the popc() function implemented in most of the latest

GPU architectures.

To give more concrete evidence on the speed of the pro-

posed algorithm, we used 1280 × 1024 images, a window

size W = 11 × 11, where only 4 non-zero pixels are sam-

pled per column of Z, and a binary space of size b = 32.

We tested UltraStereo on a Nvidia Titan X GPU. The initial-

ization step is performed in 130µs, each disparity propaga-

tion requires 350µs, and the post-processing takes 400µs.

The total algorithm runs in 2.03ms per frame, correspond-

ing to 492Hz. From a memory perspective, our method

requires to store only the left and right image. As compar-

ison, the method presented in [16] requires around 1.5GB

of GPU memory. This makes their computation memory

Figure 2. Synthetic Data. Representative examples of our syn-

thetic dataset which comprises several indoor environments and a

hand sequence.

bound, which slows down the overall speed of the system:

as reported in [16] the most accurate configuration requires

2.5ms per frame, which is slightly more than the proposed

method.

4. Evaluation

In an effort to provide for rigorous and extensive experi-

ments that allow to appreciate the different trade-offs present

in depth algorithms, we developed and implemented a syn-

thetic rendering pipeline and we designed a wide variety of

experiments using both real and artificially generated data.

We first show that our method performs very favorably com-

pared to state-of-the-art techniques, not only in terms of

average error but also using other useful metrics such as

edge fattening and invalidation. Then, we qualitatively show

that our algorithm also surpasses other approaches like Cen-

sus and LSH. Note that for all the experiments, we set the

parameters of our method to be W = 11× 11 and b = 32,

the active range of depths is [500, 4000] mm.

4.1. Quantitative Evaluation

Our synthetic dataset is composed of 2500 training im-

ages and 900 test images (500 articulated hand images, 400
interior images from 5 different environments). We esti-

mated the structured light reference pattern from a Kinect

sensor using the technique presented in [36]. The extracted

pattern is then defined as an ideal emitter in Blender and

projected in hand-crafted indoor scenes. Similarly to our pro-

totype, the virtual stereo system uses a baseline of 9cm be-

tween the virtual infrared cameras, and the emitter is placed

between the two sensors. During rendering, the light fall-off

is estimated based on the inverse-square law and (read +

shot) noise [18] is added. For all the interior sequences, the

6 d.o.f. camera pose associated to each frame is randomly

sampled from an uniform distribution. Fig. 2 contains rep-

resentative examples of the rendered images. Note that for
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Figure 3. Quantitative results on synthetic data. (A) captures the

average error that the different methods are making as a function of

depth; lower is better. Note how UltraStereo provides estimates that

are on par with HyperDepth. (B) quantifies the percentages of pixels

that are fattened as a function of the distance to the edge of the

foreground; lower is better. UltraStereo significantly outperforms

the baselines on that metric as it provides at least two times less

edge fattening compared to the competing baselines in the 1-6

pixels range. (C) and (D) respectively illustrate that UltraStereo

offers the best trade-off in terms of validating invalid pixels (C;

lower is better) and invalidation of valid pixels (D; lower is better).

each image, the red channel corresponds to regions that are

visible from the other camera, the green channel contains the

projected pattern and the blue channel encodes regions that

are visible for the illuminator. Using these different channels,

we can define in advance which pixels should be invalidated

(either not visible by the emitter and/or one camera) and

those which should be validated (visible by the emitter and

both cameras).

Bias It is easy to prove [49] that the expected depth error

ǫ follows ǫ = ∆dZ2

bf
, where ∆d is the disparity error, Z the

current depth, b the baseline and f the focal length of the

system. The bias is defined as the average absolute depth

error present in the whole test set. Fig. 3 reports results on

synthetic data demonstrating that UltraStereo is better than

PatchMatch Stereo and on par with HyperDepth in terms of

bias. Achieving superior results compared to PatchMatch

Stereo indicates that the learned sparse representation is

effective and it is more robust against outliers and noise when

we use a Kinect DOE which contains only 10% of bright

spots. Indeed dark spots have a lower SNR which could

adversely affect the matching cost, whereas the UltraStereo

binary mapping is more robust. This is aligned with the

findings in [27].

To quantify the bias in real data, we recorded images

of a flat wall at multiple known distances: from 50cm up

to 350cm. We repeated this test for different algorithms

and sensors, in particular we selected those technologies

which use active illumination and those algorithms that are

triangulation based such as: Kinect V1, RealSense R200,

PatchMatch Stereo [7], HyperDepth [16] and UltraStereo.

For PatchMatch Stereo and HyperDepth we reimplemented

the methods following the original papers [7, 16], whereas

for commercially available sensors we use the depthmaps

generated by the cameras. In Fig. 4 we report the results,

which are aligned to the ones showed in [16]. Notice that

UltraStereo is again on par with HyperDepth and achieves

state of the art results with very low quantization errors.

Some methods degrade very quickly after 100cm due to

higher noise (R200) or high quantization artifacts (Kinect

V1). The R200 is an active stereo algorithm like ours, how-

ever it shows very high error after 100cm, this is probably

due to the compromises made between accuracy and speed.

Additional qualitative results of UltraStereo on real data are

shown in Fig. 5 and Fig. 6. Notice how our method exhibits

low quantization effects, low jitter and very complete depth

maps.

Invalidation The percentage of invalidated pixels defines

the number of pixels for which the final depth image won’t

contain any estimations. Ideally, depth would be estimated

for all the pixels, but unfortunately occlusions, saturation of

the infrared sensors and low SNR can make the disparity es-

timation quite ambiguous, often resulting in gross errors. To

limit these errors, an invalidation pass is usually performed

during the post-processing step. As described in Sec. 3.3,

our invalidation scheme relies on pruning unlikely matches

(large hamming distances) followed by a minimum region

check. Figure 3 illustrates that our algorithm outperforms

the baselines by invalidating less valid pixels, but also invali-

dating more invalid pixels. Similarly to the results obtained

on synthetic data, HyperDepth [16] and PatchMatch Stereo
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Figure 4. Quantitative Results. We computed the depth bias and

jitter at multiple distances comparing UltraStereo with many state

of the art technologies. Results show the accuracy of the proposed

algorithm with respect to the competitors.

Figure 5. Qualitative Evaluation. Examples of depth-maps pro-

duced with UltraStereo and state of the art competitors. Notice

how the method in [16] shows high invalidation in regions where

the texture changes, the method in [7] is offline and still it fails

delivering complete depth-maps especially in thin structures like

the the plant.

[7] wrongly invalidate much more than UltraStereo on real

data. This can be observed in Fig. 5. Notice how bound-

aries between two different textures are always invalidated

by [16], whereas UltraStereo provides more complete depth

maps. This especially clear for thin structures like plants (c.f.

third row).

Figure 6. Example of pointcloud produced with our algorithm.

Notice the absence of quantization and flying pixels.

Edge fattening Edge fattening is a common problem for

most local methods and it is particularly visible for thin struc-

tures (e.g. fingers). To define the amount of edge fattening

among the various baselines and our method, we synthesized

images of an articulated hand in front of a wall, making

it simple to define the edges of the hand in the depth im-

age. Hands are very complex objects with high variability

along the boundaries, making them a perfect candidate to

evaluate edge fattening. To generate realistic sequences,

we defined key hand poses and interpolation between them

was performed to provide for a different hand pose every

single frame. The hand has been placed at approximately

100cm from the sensor. Figure 3 depicts how our method

outperforms the baselines and is less prone to fatten objects.

4.2. Binary representation

We provide here evidence for the quality of the infor-

mation captured by the learned representation. We tested

UltraStereo against Census [55] and more recent work that

use Locality Sensitive Hashing (LSH) [25] which are other

binary representations used for depth estimations. We trained

our sparse hyperplanes by collecting one thousand images

coming from a Kinect sensor. Fig. 7 shows qualitative re-

sults for the three methods. LSH and Census show more

incomplete and noisier depth-maps compared to UltraStereo.

Note that here Census uses 121bits (equal to the window

size W ), where LSH and UltraStereo only use 32 bits.

To further assess the performances of the different binary

representations, we use ground-truth depth coming from our

synthetic pipeline and perform an exhaustive discrete search

over the disparity labels. We compute the error as percent-

age of pixels with less than 1 disparity distance from the

ground-truth. LSH achieves an overall precision of 51%,
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Figure 7. Binary Representations. We show qualitative results using LSH [25], Census [55] and our data-driven representation. Notice

how UltraStereo provides a more complete and less noisy depthmap.

Figure 8. Interference and Generalization. UltraStereo does not

suffer from interference (top row) and the learned binary mapping

can generalize to different sensors (bottom row). On the contrary,

the current state of the art [16] needs per-camera training and it is

not robust to interference.

Census 61%, UltraStereo reaches an accuracy of 72%, show-

ing again the effectiveness of the learned representation.

We also assessed the impact of the number of non-zero

components k in the hyperplanes Z. When using 8 non-zero

elements we reached an accuracy of 74%, increasing this

number to k = 32 we start to saturate with 76% accuracy,

and finally using dense hyperplanes leads to a precision of

78%. This shows that this parameter is not crucial and it can

be tuned according to the computational resources available.

4.3. Interference and Generalization

An important issue usually overlooked in the literature

is the problem of interference caused by multiple sensors.

Complex volumetric reconstruction systems such as [39]

may require the use of multiple sensors with different view-

points. Spatial Structured light systems like Kinect V1 suffer

from interference, and the same limitation is present in [16].

In Fig. 8, we show how [16] is severely impacted when

multiple active illuminators are present in the scene, where

UltraStereo, implemented on our prototype active stereo

setup, still produces high quality results.

Another important property of our method is its gener-

alization capabilities. Since our learning algorithm is com-

pletely unsupervised, the resulting hyperplanes can be trans-

fered from one sensor to another one without affecting pre-

cision. In Fig. 8, we show results when we use the learned

binary hyperplanes applied to a different camera. Note how

the HyperDepth algorithm [16] does not generalize at all and

needs to be calibrated for each individual camera in order to

provide high quality depth estimates.

5. Conclusion

In this paper we have presented UltraStereo, a break-

through in the field of active stereo depth estimation. We

showed how the stereo problem can be formulated to have

a complexity that does not depend on the window size nor

the size of the disparity space. To reach such a low complex-

ity, we used an unsupervised machine learning technique

that learns a set of sparse hyperplanes that projects image

patches to a compact binary representation which preserves

the discriminative information required for estimating robust

correspondences. To perform the inference in the disparity

space, we use a variant of the PatchMatch framework for

which we described modifications to efficiently run on GPU.

Through extensive experiments, we showed that UltraStereo

outperforms the state of the art, not only in terms of speed

but also in accuracy. Additionally UltraStereo does not suf-

fer from per-camera calibrations nor interference problems

which can prove problematic for some of the state-of-the-art

techniques.
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