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Abstract

This paper presents a general ConvNet architecture for

video action recognition based on multiplicative interac-

tions of spacetime features. Our model combines the ap-

pearance and motion pathways of a two-stream architec-

ture by motion gating and is trained end-to-end. We theo-

retically motivate multiplicative gating functions for resid-

ual networks and empirically study their effect on classi-

fication accuracy. To capture long-term dependencies we

inject identity mapping kernels for learning temporal rela-

tionships. Our architecture is fully convolutional in space-

time and able to evaluate a video in a single forward pass.

Empirical investigation reveals that our model produces

state-of-the-art results on two standard action recognition

datasets.

1. Introduction

Extremely deep representations have recently been

highly successful in numerous pattern recognition compe-

titions. Residual Networks (ResNets) [11] provide a struc-

tural concept for easing the training of deep architectures

by inserting skip-connections for direct propagation of gra-

dients from the loss layer at the end of the network to

early layers close to the input. Recently, spatiotemporal

ResNets (ST-ResNets) [8] have been presented as a com-

bination of two-stream networks [28] with ResNets. The

resulting architecture nontrivially extended the performance

of the original two-stream approach in application to action

recognition on standard datasets.

While the ST-ResNet [8] yielded state-of-the-art perfor-

mance in application to action recognition, it did not pro-

vide systematic justification for its design choices. Our cur-

rent work reconsiders the combination of the two-stream

and ResNet approaches in a more thorough fashion to in-

crease the understanding of how these techniques interact,
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Figure 1. Motion gating at the feature level requires feature cor-

respondence in the forward pass which is enforced through the

gradient update of multiplicative interaction in the backward pass.

with a resulting novel architecture that produces a new state-

of-the-art in action recognition.

More specifically, three main contributions are provided

in this work. First, we show that a multiplicative motion

gating of the appearance stream (Fig. 1) provides nontrivial

performance boost over an additive formulation. We discuss

the advantages of multiplicative interactions by the effect

on the gradient in a residual network. We also verify their

effectiveness in a series of ablation experiments where we

systematically explore various alternatives for connecting

the two streams, including bidirectional connections. Sec-

ond, we discuss several approaches to generalizing the ST-

ResNet architecture over long-term input. Here, we pro-

pose to inject temporal filters that are initialized as iden-

tity mapping kernels at the feature level. These temporal

filters inject new layers in an existing model, while pre-

serving the feature identity property of residual networks.

This approach allows injection of new temporal aggrega-

tion filters even into the skip path of the network. We pro-

vide ablation studies for where to inject these mappings and

how to initialize the temporal aggregation kernel. Third,

based on what is learned from our investigation of fus-

ing two-streams with residual connections and extending

temporal support, we propose a general ConvNet archi-

tecture for action recognition in video. We provide de-

tails for how to learn a deep two-stream architecture that

is fully convolutional in spacetime in an end-to-end fash-

ion. We empirically show how multiplicative motion gat-
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ing between the streams and injected temporal aggrega-

tion filters can enhance performance substantially, lead-

ing to state-of-the-art performance on two popular action

recognition datasets. Our code and models are available at

https://github.com/feichtenhofer/st-resnet

2. Related work

Historically, research on video-based action recognition

has mostly focused on crafting spatiotemporal features from

optical flow-based motion information, e.g. Histograms Of

Flow (HOF) [19], Motion Boundary Histograms (MBH)

[3] and trajectories [37], or spatiotemporal oriented filter-

ing e.g. HOG3D [16], Cuboids [5] and SOEs [4, 7].

More recently, researchers have focused on learning spa-

tiotemporal features in an end-to-end fashion. Some work

along these lines has concentrated on use of unsupervised

learning [20, 33]. Other work makes use of a combination

of hand-crafted and learned features [14]. In contrast, an

alternative 3D spatiotemporal ConvNet, directly learned all

of its filter kernels [35]. Interestingly, a work that compared

a variety of approaches to extending 2D spatial ConvNets

into time found little benefit of the temporal data [15].

Another relevant research direction for our concerns has

addressed aggregation of temporal information over ex-

tended time periods. Here, a comparison of pooling ap-

proaches suggested good performance for temporal pool-

ing of convolutional layers [25], as well as longer con-

volutions across time [36]. Perhaps the most straightfor-

ward approach comes from simple weighted averaging of

video frames across time [2]. Greater complexity can be

found in the various efforts that have incorporated LSTMs

into their architectures to extend their temporal support (e.g.

[23, 25, 27, 40]). Alternatively, RNNs have been applied for

similar purposes [1, 22]. Other recent approaches rely on a

Siamese architecture to abstract the temporal transforma-

tion of features across a video [39] or identify key volumes

in the sequences [43].

The most closely related work to ours is the two-stream

ConvNet architecture [28], which initially processes colour

and optical flow information in parallel for subsequent late

fusion of their separate classification scores. Extensions

to that work that investigated convolutional fusion [9] and

residual connections [8] are of particular relevance for the

current work, as they serve as points of departure. In con-

trast to those previous efforts, the current work provides a

more systematic investigation of the design space that leads

to a novel architecture with improved performance.

3. Two-stream multiplier networks

3.1. Baseline architecture

We build our architecture on the two-stream approach

[28], which separately trains two ConvNet streams: One

stream exploits spatial appearance based on input of RGB

image frames; the second exploits motion based on an in-

put stack of L = 10 horizontal and vertical optical flow

frames. Each stream performs video recognition on its own

and prediction layer outputs are combined by late fusion for

final classification. We found that training a ConvNet on

both RGB and optical flow input is non-trivial, as such an

architecture severely overfits to appearance information.

For each stream we use ResNets [11, 12] as the base net-

work architecture. ResNets are fully convolutional archi-

tectures that, after an initial 7×7 filter, chain small spatial

3×3 convolutions with 1×1 dimensionality mapping filters

[32] followed by batch normalization [13] and ReLU [17]

non-linearities. The input is of size 224×224 and reduced

five times in the network by stride 2 convolutions followed

by global average pooling of the final 7×7 feature map.

ResNets are equipped with additive skip connections to di-

rectly propagate signals to all layers of the network. The

building blocks of the network are residual units defined as

[11, 12]:

xl+1 = f (xl + F(xl;Wl)) , (1)

where xl and xl+1 are input and output of the l-th layer,F is

a nonlinear residual mapping represented by convolutional

filter weights Wl = {Wl,k|1≤k≤K} with K ∈ {2, 3} and

f ≡ ReLU [12].

For both streams, we use the ResNet model [11] pre-

trained on the ImageNet CLSLOC dataset and replace the

last layer according to the number of classes in the tar-

get dataset. Since the motion stream receives a stack of

2L = 20 horizontal and vertical flow fields at the input, we

replicate the first layer filters to fit that dimensionality.

3.2. Connecting the two streams

The original two-stream architecture only allowed the

two processing paths to interact via late fusion of their re-

spective softmax predictions [28]. That design did not sup-

port the learning of truly spatiotemporal features, which re-

quire the appearance and motion paths to interact earlier on

during processing. This interaction, however, can be impor-

tant for the discrimination of actions that have similar mo-

tion or appearance patterns and can only be disentangled by

the combination of the two e.g. brushing teeth, applying a

lipstick or shaving a beard. To address this limitation, we in-

ject cross-stream residual connections. There are numerous

ways in which such connections can be embodied. In our

ablation studies we compare several variants (Fig. 2). We

show that simple cross-residual connections between iden-

tical layers of the two streams leads to inferior classification

performance compared to the (non-connected) two-stream

baseline. We conjecture that the decrease in performance is

due to the large change of the input distribution that the lay-

ers in one network stream undergo after injecting a fusion

signal from the other stream.
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Figure 2. Different types of motion interactions between the two streams enables the learning of local spatiotemporal features. (a)-(d)

show unidirectional connections from the motion into the appearance path and (e) illustrates bidirectional gating across streams.

3.2.1 Additive interaction

Recently, an approach has been presented that considers

adding motion residuals to the appearance stream [8], as

illustrated in Fig. 2(c) and formalized as

x̂
a
l+1 = f(xa

l) + F
(

x
a
l + f(xm

l ),W
a
l

)

, (2)

where x
a
l and x

m
l are the inputs of the l-th layers of the ap-

pearance and motion streams (resp.), while Wa
l holds the

weights of the l-th layer residual unit in the appearance

stream. Correspondingly, the gradient on the loss function,

L, in the backward pass is given via the chain rule as

∂L

∂xa
l

=
∂L

∂x̂a
l+1

∂x̂a
l+1

∂xa
l

(3)

=
∂L

∂x̂a
l+1

(

∂f(xa
l)

∂xa
l

+
∂

∂xa
l

F
(

x
a
l + f(xm

l ),W
a
l

)

)

for the appearance stream and similarly for the motion

stream as
∂L

∂xm
l

=
∂L

∂xm
l+1

∂xm
l+1

∂xm
l

+
∂L

∂x̂a
l+1

∂

∂xa
l

F
(

x
a
l + f(xm

l ),W
a
l

)

.

(4)

3.2.2 Multiplicative interaction

An interesting variation on the between stream interaction

relates to multiplicative motion models (e.g. [24, 26, 34])

and treats the motion signal as gated modulation of the ap-

pearance features, illustrated in Fig. 2(d), and formalized

as

x̂
a
l+1 = f(xa

l) + F
(

x
a
l ⊙ f(xm

l ),Wl

)

, (5)

where ⊙ corresponds to elementwise multiplication. A

more detailed schematic is shown in Fig. 3. In this case,

the gradient on the loss function, L, during the backward

pass can be expressed as

∂L

∂xa
l

=
∂L

∂x̂a
l+1

∂x̂a
l+1

∂xa
l

(6)

=
∂L
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(

∂f(xa
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l

+
∂
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l
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Figure 3. Illustration of multiplicative residual gating between the

two streams (detailing Fig. 2(d)). During backpropagation the gra-

dient is factored with the opposing stream’s forward signal.

where the gradient flowing through the appearance stream’s

residual unit is modulated by the motion signal, f(xm
l ). Mu-

tually, the residual unit’s gradient is modulated by the for-

warded appearance signal xa
l ,

∂L

∂xm
l

=
∂L

∂xm
l+1

∂xm
l+1

∂xm
l

+
∂L

∂x̂a
l+1

∂

∂xa
l

F
(

x
a
l⊙f(x

m
l ),W

a
l

)

x
a
l ,

(7)

before addition to the motion stream gradient ∂L
∂xm

l+1

∂xm
l+1

∂xm
l

.

Thus, during backpropagation the current inputs of the mo-

tion x
m
l and appearance x

a
l streams are explicitly involved,

acting as a gating mechanism on the gradient. This formula-

tion makes the architecture particularly capable of learning

spatiotemporal feature correspondences.

3.2.3 Discussion

Inclusion of the multiplicative interaction increases the

order of the network fusion from first to second order

[10]. Here, this multiplicative interaction between the two

streams implies a much stronger signal change based on
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spatiotemporal feature correspondence compared to the ad-

ditive interaction (2): In the former case, (5), the mo-

tion information directly scales the appearance information

through the term x
a
l ⊙ f(xm

l ), rather than via a more sub-

tle bias, x
a
l + f(xm

l ), as in the additive case, (2). Dur-

ing backpropagation, instead of the fusion gradient flow-

ing through the appearance, (3), and motion, (4), streams

being distributed uniformly due to additive forward inter-

action (2), it now is multiplicatively scaled by the oppos-

ing stream’s current inputs, f(xm
l ) and x

a
l in equations (6)

and (7), respectively. This latter type of interaction allows

the streams to more effectively interact during the learning

process and corresponding spatiotemporal features thereby

ultimately are captured (cf. similar discussion in the context

of recurrent networks [41]).

Finally, rather than asymmetrically injecting the motion

information into the appearance stream, bidirectional con-

nections could be employed. Such processing could be re-

alized for either additive or multiplicative interactions and

is illustrated for the multiplicative case in Fig. 2(e). In em-

pirical evaluation, we show that such interactions yield infe-

rior performance to the asymmetric case of injecting motion

into appearance. We conjecture that this result comes about

because the spatial stream comes to dominate the motion

stream during training.

3.3. Temporal filtering with feature identity

Beyond very limited means for interaction between its

processing paths, the original two-stream network also em-

ployed only a small temporal window (10 frames) in mak-

ing its predictions, which subsequently were averaged over

the video [28]. In contrast, many real world actions required

larger intervals of time to be defined unambiguously (e.g.

consider a “lay-up” in basketball). Thus, the second way

that we improve on the two-stream architecture is to provide

it with greater temporal support (cf. [8, 9, 36] for previous

work with similar motivations).

We employ 1D temporal convolutions combined with

feature space transformations initialized as identity map-

pings to achieve our goal. 1D convolutions provide a

learning-efficient way to capture temporal dependencies,

e.g. with far less overhead than LSTMs. Initialization of

the feature transformations as identity mappings is appro-

priate when injecting into deep architectures, as any sig-

nificant change in the network path would distort the (pre-

trained) model and thereby remove most of its representa-

tional power. Furthermore, preserving the feature identity

is essential to preserve the design principles of residual net-

works. The corresponding kernels can be injected at any

point in the network since they do not impact the informa-

tion flow at initialization; however, during training they can

adapt their representation under the gradient flow.

Formally, we inject temporal convolutional layers into

+

+
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Figure 4. Injection of identity mapping kernels as temporal filters,

Ŵl, into the skip path (a) or into the residual unit (b). Symbols

†, ‡ and § are used in upcoming presentation to distinguish these

cases.

the network that operate across Cl feature channels

xl+1 = xl ∗ Ŵl + bl, (8)

where the biases bl are initialized as 0 and Ŵl ∈
R

1×1×T×Cl×Cl are temporal filters with weights initialized

by stacking identity mappings between feature channels,

1 ∈ R
1×1×1×Cl×Cl , across time t = 1 . . . T . Specifically,

Ŵl = 1⊗ f , (9)

where⊗ denotes the tensor outer product and f is a 1D tem-

poral filter of length T . Notably, eq. (9) initializes temporal

kernels to perform identity transforms at feature level.

Since our kernels preserve the feature identity, we can

place them after any layer in the network without affecting

its representational ability (at initialization). During train-

ing, however, the newly added temporal conv layers affect

the overall model. Here we distinguish two main variants,

either inserting the layers in the shortcut path which directly

affects all other layers in the network, or into the residual

units which locally affects the surrounding blocks. These

two variants for learning temporal relationships are illus-

trated in Fig. 4 and evaluated in our experiments (Sect. 5.2).

Recent ConvNet architectures [11, 31] are fully convo-

lutional and use a global average pooling after the last conv

layer. Generally global pooling is reasonable, since the ex-

ponentially expanding receptive field for deeper units typ-

ically spans the whole input, e.g. for the ResNet-50 the

last convolutional layer has a theoretical receptive field of

483×483 pixels on the 224×224 sized input.

By design, our temporal convolutional layers, (8), pro-

vide broad temporal support, analogous to the broad spa-

tial support that motivates global spatial pooling. Therefore,

it is equally motivated to employ global temporal pooling.
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Layers conv1 pool1 conv2 x conv3 x conv4 x conv5 x pool5

Blocks
7×

7, 64

3×
3

m
ax





1×1, 64
3×3, 64
1×1, 256









1×1, 128
3×3, 128
1×1, 512









1×1, 256
3×3, 256

1×1, 1024









1×1, 512
3×3, 512
1×1, 2048





7×
7

avgstride 2

⊙ ⊙ ⊙ ⊙




1×1, 64
3×3, 64 ‡
1×1, 256









1×1, 128
3×3, 128 ‡
1×1, 512









1×1, 256
3×3, 256 ‡
1×1, 1024









1×1, 512
3×3, 512 ‡, §

1×1, 2048









1×1, 64
3×3, 64
1×1, 256









1×1, 128
3×3, 128
1×1, 512



×N





1×1, 256
3×3, 256

1×1, 1024



×M





1×1, 512
3×3, 512
1×1, 2048





† † † †

Table 1. ResNet architecture used in our ConvNet streams. The layers are shown in the columns with brackets indicating residual units

with skip connections. The filter dimensions are shown as (W ×H,C) in brackets. ⊙ denotes a multiplicative gate from the motion into

the appearance stream, and the symbols ‡, § and † denote three alternatives for injecting the temporal filters. Notably for ‡ and § filters

are injected only in the residual units (after a 3×3 convolution), whereas for † temporal filters also are injected into the shortcut path of the

network. N = 2, M = 4 for a ResNet-50 and N = 6,M = 32 for a ResNet-152.

Here, our intial investigations showed that global max pool-

ing over time led to superior results compared to average

pooling, presumably because it allowed the network to cap-

italize on the most discriminative temporal sample. There-

fore, given x(i, j, t, c) observed over 1 ≤ t ≤ T we pool

according to

x(i, j, c) = max
1≤t≤T

x(i, j, t, c). (10)

During preliminary experiments, we also considered appli-

cation of temporal max-pooling earlier in the network; how-

ever, it always produced inferior results to pooling after the

last convolutional layer.

4. Architecture details

In our experiments we use 50 and 152 layer ResNets

[11], pretrained on ImageNet. The building blocks of our

50-layer architecture are shown in Table 1 which reads from

left to right, top to bottom. The operations at each block are

convolution or pooling with dimensions (W×H,C), denot-

ing width, height and number of feature channels, respec-

tively. Each conv block is accompanied by batch normal-

ization [13] and ReLU nonlinearities. The brackets indicate

conv blocks that are grouped to residual units as outlined in

equation (1). ⊙ indicates the point of multiplicative motion

gating into the appearance stream (Section 3.2.2) and the

symbols ‡, § and † denote three variants of where to inject

temporal convolutions (Sec. 3.3). In our ablation experi-

ments we compare injecting temporal kernels into the skip

path of every conv block (†), into a residual unit at every

conv block (‡), or only into a residual unit at the last conv

block (§); locally these variants are shown in Fig. 4.

4.1. Training procedure

We first separately train the two streams as described in

[9, 28]. We start with a learning rate of 10−2 and lower it

two times after the validation error saturates. Our motion

network uses optical flow stacks with L = 10 frames and is

trained with dropout of 0.8 after the final classification layer.

Optical flow [42] is precomputed prior to training and stored

as JPEG images (with displacement vectors > 20 pixels

clipped). During training, we use the same augmentations

as in [1, 39]; i.e. randomly cropping from the borders and

centre of the flow stack and sampling the width and height

of each crop randomly as W,H ∈ {256, 224, 192, 168},
followed by resizing to 224 × 224. We use a batch size

of 128 by randomly sampling a single optical flow stack

from a video. The effective batch size during each for-

ward and backward pass is reduced to fit GPU memory con-

straints and the gradient update is applied after aggregating

gradients for all 128 samples. Notably, for batch normal-

ization [13] (which is applied at every forward/backward

computation), the batch-size is smaller. We found this fact

facilitates generalization performance of our model, be-

cause smaller batches increase the regularization effect of

the noisy bias/variance estimates in batch normalization.

The appearance stream is trained analogously with a

batch size of 256 RGB frames. Here, we apply a less ag-

gressive scale augmentation than for the motion network:

We randomly jitter the width and height of the 224×224 in-

put frame by ±25% and also randomly crop it from a max-

imum of 25% distance from the image borders. The crop is

rescaled to 224× 224 and passed as input to the network.

The same rescaling and cropping technique is chosen

to train our proposed model. Here, we sample 5 inputs

from a video with random temporal stride between 5 and

35 frames (i.e. temporal jittering for the injected temporal

conv-layers). The batch size is set to 128 videos where 5
temporal chunks are extracted from each one. Importantly,

batch-normalization again uses a smaller batch size to fit

GPU memory. The learning rate starts at 10−3 and is re-

duced by a factor of 10 after 20 epochs and again reduced

by an order of magnitude after 10 epochs more.
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case into Fig. UCF101 HMDB51

direct +© ← Fig. 2(a) 24.78 54.85

direct
⊙

← Fig. 2(b) 81.98 77.89

residual +© ←
Fig. 2(c) 9.38 41.89

Sect. 3.2.1

residual
⊙

← Fig. 2(d) 8.72 37.23
Sect. 3.2.2

residual +© → Fig. 2(c) 16.76 49.54

residual
⊙

→ Fig. 2(d) 16.68 48.43

residual
⊙

↔ Fig. 2(e) 15.15 48.56

Table 2. Classification error (%) on the first split of UCF101 and

HMDB51 under different cross-stream connections.

4.2. Fully convolutional testing

We follow the evaluation procedure of the original two-

stream work [28] by sampling 25 frames (and their hori-

zontal flips). However, we apply fully convolutional test-

ing both spatially (smallest side rescaled to 256) and tem-

porally (the 25 frame-chunks) by classifying the video in

a single forward pass. For inference, we average the pre-

dictions of the classification layers over all spatiotemporal

locations. Despite our slightly better results with 10-crop

testing, we prefer fully convolutional testing in spacetime

as this method greatly increases inference speed (a video

can be tested in ≈250ms on a single Nvidia Titan X GPU).

5. Experimental results

We validate our approach on two popular action recog-

nition datasets: UCF101 [29], which consists of 13320 ac-

tion videos in 101 categories and HMDB51 [18], consisting

of 6766 videos in 51 categories. UCF101 provides videos

with a fixed resolution of 320×240 showing large diversity

in terms of action classes, variations in background, illu-

mination, camera motion and viewpoint, as well as object

appearance, scale and pose. HMDB51 [18] is a more chal-

lenging dateset with higher intra-class variations leading to

larger errors during training and testing. For both datasets,

we use the provided evaluation protocol and report the mean

average accuracy over the three splits into training and test

data. Our experiments are structured into four sections.

First, we present ablation experiments on how to connect

the two streams (Sect. 5.1). Second, we compare differ-

ent strategies to inject identity mapping kernels for learning

long temporal relationships (Sect. 5.2). Third, we investi-

gate the impact of network depth (Sect. 5.3). Finally, we

provide a comparison with the state-of-the-art (Sect. 5.4).

5.1. Analysis of TwoStream connections

In Sect. 3.2 we discuss two specific ways of how to con-

nect the two streams of our architecture. More generally,

there are numerous ways how one could insert cross-stream

connections. The goal here is to fuse the two networks (at a

particular convolutional layer) such that channel responses

at the same pixel position are put in correspondence. In

previous work, different fusion functions have been dis-

cussed [9] where it has been shown that additive fusion

performed better than maxout or concatenation of feature

channels from the two paths. Additive fusion of ResNets

has been used in [8], but was not compared to alternatives.

In this section, we provide a more systematic analysis on

cross-stream connections between the streams.

In Fig. 2 we illustrate the various possible flows of in-

formation through the network and in Table 2 we compare

their performance as error on the first splits of UCF101 and

HMDB51. Note that Fig. 2 only illustrates the connection

structure for a single layer; the cross-stream connections are

inserted at every conv block (as marked in Table 1). Table 2

lists the type of connection (direct or into residual units), the

fusion function (additive +© or multiplicative
⊙

), the direc-

tion (from the motion into the appearance stream ←, con-

versely → or bidirectional ↔). Note that we do not show

schematic figures for fusing from the appearance into the

motion stream (→), as these simply are horizontal reflec-

tions of the converse ones (←).

We first focus on straightforward connection of the

streams with an additive shortcut connection, Fig. 2(a), di-

rectly enabling forward and backward signal flow between

the two paths. This strategy produces inferior results be-

cause it induces too large a change in the propagated sig-

nals, thereby disturbing the network’s representation abili-

ties. This overly aggressive change is induced in two ways:

via the forwarded signal as it passes through the deep lay-

ers; via the backpropagated signal in all preceding layers

that emit the fusion signal. Not surprisingly, the detriment

is exacerbated when directly multiplying the shortcut paths

of the two streams (Fig. 2(b) and second row of Table 2),

because the change induced by multiplication is stronger

than that from addition. More generally, injecting into the

skip path breaks the identity shortcut of residual networks,

thereby producing optimization difficulties [12] and signif-

icantly increased test error, as verified by our results.

Next, we compare the additive and multiplicative motion

gating into the residual units, as presented in Sect. 3.2.1

and Sect. 3.2.2, resp. Injection of residuals from the mo-

tion stream has been employed previously in [8] and pro-

duces test errors of 9.38% and 41.89% on the first splits

of UCF101 and HMDB51, resp. In comparison, merely

changing the interaction to multiplicative gating reduces

that error to 8.72% and 37.23%. The impact of multiplica-

tive motion interaction is twofold: First, it directly gates
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corresponding appearance residual units; second, it modu-

lates the gradient in the appearance and the motion stream

by each other’s current input features, thereby enforcing

spatiotemporal feature correspondences.

As a further experiment, we invert the direction of the

connection to fuse from the appearance into the motion

stream. This variation again leads to inferior results, both

for additive and multiplicative residual fusion. These re-

sults can be explained by a severe overfitting of the network

to appearance information. In fact, when fusing from the

appearance into the motion stream (→), the training loss of

the motion stream decreases much faster and ends up at a

much lower value. The fast training error reduction is due

to the networks’ focus on appearance information, which is

a much stronger modality for discriminating different train-

ing frames. This effect is not only the reason for fusing

from the motion stream into the appearance stream, but also

supports the design of having two loss layers at the end of

the network. Finally, we performed an experiment for bidi-

rectional connections Fig. 2(e), which also suffers under the

effect of appearance dominating training.

Having verified the superior performance of multiplica-

tive cross-stream residual connections, Fig. 2(d), compared

to the alternatives considered, we build on that design for

the remainder of the experiments, unless otherwise noted.

5.2. Experiments on temporal aggregation

This section provides experiments for our injection of

temporal filter kernels that preserve feature identity at ini-

tialization. We explore several choices for injecting such

kernels within the hierarchy of the network. Table 3 again

reports the error on the first split of UCF101 and HMDB51,

as we vary operations in three ways. First, we vary where

the temporal kernel is injected into overall architecture (see

Table 1, §, †, ‡). Second, we vary the initialization of the

temporal filter kernels, which is the same for all feature

channels, by setting them to perform either averaging, [1⁄3,
1⁄3, 1⁄3], or centering, [0, 1, 0], in time. Third, we vary

whether or not max-pooling in time is employed. Signifi-

cantly, during training the network inputs consist up to 11

chunks that are temporally strided in the range between 5

and 35 frames; thus, these kernels are able to learn long-

term temporal relationships between the features.

The results show a clear benefit of adding temporal ker-

nels that are able to learn longer temporal relationships.

Compared to the multiplicative cross-stream gating base-

line, benefit is had even if just a single temporal layer is

injected into each stream (§). Further, when comparing the

temporal initialization of the filters, the results indicate par-

ticular benefit of a centre initialization on HMDB51. We

conjecture this is due to the temporal nature of HMDB51 in

comparison to UCF101: HMDB51 exhibits a higher degree

of inter-video diversity e.g. due to camera motion, whereas

case temporal init. pool time UCF101 HMDB51

- - ✗ 8.72 37.23

§ [1⁄3, 1⁄3, 1⁄3] ✗ 7.85 35.29

† [1⁄3, 1⁄3, 1⁄3] ✗ 7.72 35.96

‡ [1⁄3, 1⁄3, 1⁄3] ✗ 7.45 35.94

† [0, 1, 0] ✗ 7.61 34.72

§ [0, 1, 0] ✗ 7.74 34.90

‡ [0, 1, 0] ✗ 7.79 34.38

† [0, 1, 0] X 6.74 34.05

‡ [0, 1, 0] X 6.00 30.98

Table 3. Classification error (%) on the first split of UCF101 and

HMDB51 under different temporal filtering layers. The symbols

in the first column, §, †, ‡, denote where the new layers are placed

within the overall architecture (see Table 1), temporal init indicates

how the temporal filter taps are initialized (i.e. averaging or centre

frame) and pool time indicates whether max-pooling in time is

used during training and testing.

UCF101 HMDB51

Model ResNet-50 ResNet-152 ResNet-50 ResNet-152

Appearance 82.3% 83.4% 48.9% 46.7%

Motion 87.0% 87.2% 55.8% 60.0%

Late Fusion 91.7% 91.8% 61.2% 63.8%

Table 4. Classification accuracy for 50 layer deep (ResNet-50), and

extremely deep (ResNet-152) two-stream ConvNets on UCF101

and HMDB51. Using deeper networks boosts performance, ex-

cept for the spatial network on HMDB51, which might be due to

overfitting of the 152 layer model.

videos in UCF101 typically capture temporally consistent

scenes.

Finally, we investigate the impact of temporal max pool-

ing of features before the classification layer. We notice

a further decrease in error rates to 6.00% and 30.98% on

UCF101 and HMDB51, respectively. Here, the relative

gains again can be explained by the temporal natures of

the datasets. Notably, even if max-pooling is performed

after the last convolutional layer, the network will use in-

formation from all frames that are within the span of the

temporal kernels. Therefore, max-pooling conceptually is a

meaningful operation, because it allows the network to set

the focus on a particularly discriminating instance in time,

even while considering long-term information captured by

stacked temporal conv-layers. This property also holds dur-

ing backpropagation. Here, max-pooling only backpropa-

gates a single temporal gradient map, even while the stacked

temporal convolutions expand their receptive field on the

gradient inversely from the output to the input. Therefore,

long-range information is also used for gradient updates.
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5.3. Going deeper

So far, all our ablation studies were conducted with a 50

layer deep ResNet model. We now switch from reporting

classification error (that has been used in the ablation stud-

ies above) to accuracy, as this is the common measure in

the action recognition literature. In Table 4 we report the

accuracy for our two-stream baseline networks (no connec-

tions across streams or time) on all three splits the UCF101

and HMDB51 datasets. We train 50 and 152 layer models

[11]. Classification is performed by averaging the predic-

tion layer outputs from 25 uniformly sampled input video

frames. Late fusion is implemented by averaging the pre-

diction layer outputs. On HMDB51 we weight the temporal

network scores by a factor of three before averaging. By

comparing the performance we observe that the deeper ap-

pearance network degrades performance on HMDB51 (we

were not able to ameliorate this effect with stronger regular-

ization), while producing slightly better results on UCF101.

In contrast, for the deeper motion network we see quite a

sizable gain on HMDB51. These results motivate us to use

a ResNet50 for the appearance and a ResNet-152 for the

motion stream of our final architecture.

Method UCF101 HMDB51

IDT [37] 86.4% 61.7%

Spatiotemporal ConvNet [15] 65.4% -

Two-Stream ConvNet [28] 88.0% 59.4%

Long-term recurrent ConvNet [6] 82.9% -

Composite LSTM Model [30] 84.3% 44.0

Two-Stream+LSTM [25] 88.6% -

C3D [35] 85.2% -

C3D + IDT [35] 90.4% -

Dynamic Image Nets [2] 76.9% 42.8 %

Dynamic Image Nets [2] + IDT 89.1% 65.2%

Transformations[39] 92.4% 62.0%

Two-Stream Fusion[9] 92.5% 65.4%

Two-Stream Fusion[9] + IDT 93.5% 69.2%

Long-term ConvNets [36] 91.7% 64.8%

Long-term ConvNets [36] + IDT 92.7% 67.2%

VideoLSTM + IDT [22] 92.2% 64.9%

Hierarchical Attention Nets [40] 92.7% 64.3%

Key Volume Mining [43] 93.1% 63.3%

RNN-FV [21] + C3D [35] + IDT 94.1% 67.7%

Spatiotemporal ResNets [8] 93.4% 66.4%

TSN [38] + IDT flow 94.2% 69.0%

Spatiotemporal ResNets [8] + IDT 94.6% 70.3%

Ours 94.2% 68.9%

Ours + IDT 94.9% 72.2%

Table 5. Mean classification accuracy of the state-of-the-art on

HMDB51 and UCF101.

5.4. Comparison with the stateoftheart

In comparison to the current state-of-the-art in video ac-

tion recognition (Table 5), we consistently improve clas-

sification accuracy when comparing to the spatiotemporal

ResNet presented in [8] and other competitors.

As a final experiment, we are interested if there is

still something to gain from a fusion with hand-crafted

IDT features [37]. We simply average the L2 normalized

SVM scores of Fisher vector encoded IDT features (i.e.

HOG, HOF, MBH) with the prediction layer output of our

ConvNet model. The resulting performance is shown in

the final row of Table 5. We achieve 94.9% on UCF101

and 72.2% on HMDB51. These results indicate that the

degree of complementary between hand-crafted representa-

tions and our end-to-end learned ConvNet approach is van-

ishing for UCF101, given the fact that other representations

see much larger gains by fusion with IDT. Nevertheless,

there is still a 3.7% increase on HMDB51, which we think

is mainly due to dominant camera motion in HMDB51 that

is explicitly compensated by IDT’s warped flow.

An alternative approach that performs competitively to

ours is TSN [38]. Notably, however, TSN relies on 2 more

input modalities for training than does our approach: It pre-

trains the motion stream on TVL1 optical flow [42], IDT-

flow [37] (termed warped flow in [38]) and difference im-

ages. This extra data yields much higher accuracy of their

baseline two-stream net (e.g. 87.2% on UCF101’s most dif-

ficult split1 in the motion stream where we have 84.9%).

Thus, due to the implicit use of IDT during training, TSN

[38] is not directly comparable to our results without IDT.

Significantly, even given the advantage of using multiple in-

put modalities for training a stronger baseline, the final TSN

performance is merely equal to our results (without IDT).

6. Conclusion

This paper has addressed the challenging problem of

learning multiscale spacetime representations for discrimi-

native video recognition. We have presented a novel spa-

tiotemporal architecture for video action recognition that

builds on multiplicative interaction of appearance and mo-

tion features coupled with injected identity mapping kernels

for learning long-term relationships. Our model is trained

end-to-end and fully convolutional in spacetime to enable

video classification in a single forward pass. In our system-

atic ablation studies we have underlined the importance of

learning correspondences between highly abstract ConvNet

features both spatially and temporally. Our results are in

line with our derivations and suggest that our architecture

should be applicable to related tasks such as localization

and detection in video.
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