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Abstract

This paper combines three contributions to establish a

new state-of-the-art in dynamic scene recognition. First,

we present a novel ConvNet architecture based on temporal

residual units that is fully convolutional in spacetime. Our

model augments spatial ResNets with convolutions across

time to hierarchically add temporal residuals as the depth

of the network increases. Second, existing approaches to

video-based recognition are categorized and a baseline of

seven previously top performing algorithms is selected for

comparative evaluation on dynamic scenes. Third, we in-

troduce a new and challenging video database of dynamic

scenes that more than doubles the size of those previously

available. This dataset is explicitly split into two subsets

of equal size that contain videos with and without camera

motion to allow for systematic study of how this variable in-

teracts with the defining dynamics of the scene per se. Our

evaluations verify the particular strengths and weaknesses

of the baseline algorithms with respect to various scene

classes and camera motion parameters. Finally, our tempo-

ral ResNet boosts recognition performance and establishes

a new state-of-the-art on dynamic scene recognition, as well

as on the complementary task of action recognition.

1. Introduction

Image-based scene recognition is a basic area of study

in visual information processing. Humans are capable of

recognizing scenes with great accuracy and speed [32]. Re-

liable automated approaches can serve to provide priors for

subsequent operations involving object and action recogni-

tion, e.g., [25, 43]. Moreover, scene recognition could serve

in browsing image databases, e.g. [45]. While early compu-

tational research in scene recognition was concerned with

operating on the basis of single images, e.g., [8, 23, 28],

more recently dynamic scene recognition from video has

emerged as a natural progression, e.g., [5, 11, 34].

Beyond dynamic scene recognition, considerable re-
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Figure 1: Temporal receptive field of a single neuron at the

third conv block of our spatiotemporal ConvNet architec-

ture. Our T-ResNet is fully convolutional in spacetime and

performs temporal filtering at residual units to hierarchi-

cally inject temporal information as depth increases.

search has addressed allied tasks in video-based recogni-

tion. Arguably, the most heavily researched has been action

recognition [25, 27, 35]; although, a variety of additional

video-based recognition tasks also have been considered,

e.g. [29, 30, 31]. In response to the challenges these tasks

pose, a wide variety of approaches have been developed.

Here, it is worth noting that recent extensions of Convolu-

tional Networks (ConvNets) to video have shown particu-

larly strong results, e.g. [26, 44, 50]. While many of these

approaches have potential to be generalized and applied to

dynamic scene recognition, that avenue has been under re-

searched to date. The current paper addresses this situa-

tion by applying a representative sampling of state-of-the-

art video recognition techniques to dynamic scenes, includ-

ing a novel ConvNet. This work extends our understanding

of not only the individual techniques under evaluation, but

also the nature of dynamic scenes as captured in video.

1.1. Related research

Currently, there are two standard databases to support

the study of scene recognition from videos [5, 34]. Both of

these databases capture a range of scene classes and natural

variations within class (seasonal and diurnal changes as well

as those of viewing parameters). A significant difference

between the two datasets is that one includes camera motion

[34], while the other does not [5]. Unfortunately, neither

14728

mailto:feichtenhofer@tugraz.at
mailto:axel.pinz@tugraz.at
mailto:wildes@cse.yorku.ca


database provides balanced scene samples acquired with

and without camera motion to support systematic study of

how scene dynamics can be disentangled from camera mo-

tion. Moreover, at this time performance on both datasets

is at saturation [12, 44]. Correspondingly, research in dy-

namic scene recognition is at risk of stagnation, unless new,

systematically constructed and challenging video databases

relevant to this task are introduced.

Video-based dynamic scene classification has been ap-

proached based on linear dynamical systems [7], chaotic in-

variants [34], local measures of spatiotemporal orientation

[5, 10, 11], slowly varying spatial orientations [42] and spa-

tiotemporal ConvNets [44], with spatiotemporal orientation

and ConvNets showing strongest recent performance [12].

Action recognition is a related task where scene context

plays an important role [25]. The state-of-the-art in action

recognition is currently dominated by ConvNets that learn

features in an end-to-end fashion either directly in the spa-

tiotemporal domain [18, 44], or in two streams of appear-

ance and motion information [9, 13, 27, 35].

The most closely related work to ours is a spatiotemporal

residual network, ST-ResNet [9] that is based on two-stream

[35] and residual networks [15]. The ST-ResNet [9] ar-

chitecture injects residual connections between the appear-

ance and motion pathways of a two-stream architecture and

transforms spatial filter kernels into spatiotemporal ones to

operate on adjacent feature maps in time. Our work instead

extends the spatial residual units with a temporal kernel that

is trained from scratch and hence is able to learn complex

temporal features as it is initialized to receive more infor-

mative temporal gradients.

1.2. Contributions

This paper makes the following contributions. First, a

novel spatiotemporal ConvNet architecture, T-ResNet, is in-

troduced that is based on transformation of a spatial net-

work to a spatiotemporal ConvNet; see Fig 1. This trans-

formation entails a particular form of transfer learning from

spatial image classification to spatiotemporal scene classi-

fication. Second, the superiority in scene recognition from

video of the newly developed T-ResNet is documented by

comparing it to a representative sampling of alternative ap-

proaches. Results show that our spatiotemporally trained

ConvNet greatly outperforms the alternatives, including ap-

proaches hand-crafted for dynamic scenes and other net-

works trained directly for large scale video classification.

Third, a new dynamic scenes dataset is introduced. This

dataset more than doubles the size of the previous collec-

tions in common use in dynamic scene recognition [5, 34],

while including additional challenging scenarios. Signifi-

cantly, for each scene class that is represented an equal num-

ber of samples is included with and without camera motion

to support systematic investigation of this variable in scene

recognition. Finally, we also show that our model gener-

alizes for other tasks, by reporting results on two widely

used video action recognition datasets. Our Code uses the

MatConvNet toolbox [46] and is available at

https://github.com/feichtenhofer/temporal-resnet and our

novel dynamic scene recognition dataset is available at

http://vision.eecs.yorku.ca/research/dynamic-scenes/.

2. Temporal residual networks

Various paths have been followed to extend ConvNets

from the 2D spatial domain, (x, y), to the 3D spatiotem-

poral domain, (x, y, t), including building on optical flow

fields [31, 35], learning local spatiotemporal filters [18, 41,

44] and modeling as recurrent temporal sequences [1, 6,

37]. To date, however, these approaches have not triggered

the dramatic performance boost over hand-crafted represen-

tations (e.g. IDT [48]) that ConvNets brought to the spatial

domain e.g. in image classification [20, 36]. This relative

lack of impact has persisted even when large new datasets

supported training of 3D spatiotemporal filters [18, 44].

This section documents a novel approach that proceeds by

transforming a spatial ConvNet, ResNet [15], to a spa-

tiotemporal kindred, T-ResNet, as outlined in Fig. 1. In em-

pirical evaluation (Sec. 4) it will be shown that this approach

yields a network with state-of-the-art performance.

2.1. Spatiotemporal residual unit

The main building blocks of the ResNet architecture are

residual units [15]. Let the input to a residual unit be a fea-

ture map, xl ∈ R
H×W×T×C , where W and H are spatial

dimensions, C is the feature dimension and T is time. Such

maps can be thought of as stacking spatial maps of C di-

mensional features along the temporal dimension. At layer

l with input xl, a residual block is defined as [15, 16]

xl+1 = f (xl + F(xl;Wl)) , (1)

with f ≡ ReLU, Wl = {Wl,k|1≤k≤K} holding the K cor-

responding filters and biases in the unit, and F denoting

the residual function representing convolutional operations.

Formally, each of the K layers in the lth residual unit per-

forms the following filtering operation

xl,k+1 = Wl,kxl,k, (2)

where Wl,k|1≤k≤K are the convolutional filter kernels ar-

ranged as a matrix and batch normalization layers are omit-

ted for simplicity. We use the original ResNet architecture

[15] where K = 3, consisting of 1 × 1 dimensionality re-

duction, 3× 3 spatial aggregation and 1× 1 dimensionality

restoration filtering operations. These choices lead to the

residual unit

F = f(Wl,3f(Wl,2f(Wl,1xl))), (3)

4729

https://github.com/feichtenhofer/temporal-resnet
http://vision.eecs.yorku.ca/research/dynamic-scenes/


+

Wl-1,3 (1x1)

Wl,1 (1x1)

+

Wl,2 (3x3)

Wl,3 (1x1)

f (xl+1)

f (xl,2)

f (xl,3)

f (xl,1)

f (xl)

(a)

+

Wl-1,3 (1x1)

Wl,1 (1x1)

+

Wl,2 (3x3)

Wl,3 (1x1)

+

Wl,t (1x1x3)

sl

f (xl+1)

f (xl,2)

f (xl,3)

f (xl,1)

f (xl)

f (xl,t)

(b)

Figure 2: Comparison between the original residual units

(a) and our proposed spatiotemporal residual units (b),

which augment the “bottleneck structure” with an addi-

tional temporal conv block and an affine scaling layer sl©.

as illustrated in Fig. 2a.

Our proposed spatiotemporal residual unit F̂ injects tem-

poral information into residual blocks via 1D temporal fil-

tering. Building on the inception idea [39], our temporal

convolution block operates on the dimensionality reduced

input, xl,1, with a bank of spatiotemporal filters, Wl,t, and

by applying biases, b ∈ R
C , according to

xl,t = Wl,txl,1 + b, (4)

where biases b ∈ R
C are initialized to zero and the weights,

Wl,t, come as a 3-tap temporal filter bank. These filters

are initialized randomly for the same feature dimensionality

as the spatial 3 × 3 filters, Wl,2, working in parallel on

input xl,1. Wl,t is able to model the temporal structure of

the features from the previous layer. Moreover, by stacking

several such kernels through the hierarchy of the network

we are able to grow the temporal receptive field. See for

example Fig. 1, where the temporal receptive field for a unit

at the third convolutional layer is highlighted.

Our proposed spatiotemporal residual unit F̂ is now de-

fined as

F̂ = f

(

Wl,3

(

Slf(xl,t) + f(Wl,2f(xl,1))
)

)

, (5)

where Sl is a channel-wise affine scaling weight initialized

with a scaling of .01 and zero biases. We found adaptive

scaling of the temporal residuals to facilitate generalization

performance. The final unit is illustrated in Fig. 2b.

Discussion. Our design builds on two good practices for

designing image ConvNets: First, it builds on the inception

concept that dimensionality reduction should be performed

before spatially/temporally aggregating filters since outputs

of neighbouring filters are highly correlated and therefore

these activations can be reduced before aggregation [40].

Second, it exploits spatial factorization into asymmetric fil-

ters, which reduces computational cost and also has been

found to ease the learning problem [38].

Scaling down residuals also has been found important for

stabilizing training [38], where residuals are scaled down

by a constant factor before being added to the accumu-

lated layer activations. Activations also have been usefully

rescaled before combining them over several layers of the

network [3]. As an alternative to scaling has been used in

[15] where the network was first pre-conditioned by train-

ing with a very low learning rate, before the training with

higher learning rate proceeded.

2.2. Global pooling over spacetime

The “Network In Network” [24] architecture has shown

that the fully connected layers used in previous models

[20, 36] can be replaced by global average pooling after

the last convolutional layer and this replacement has been

adopted by recent ConvNet architectures [15, 39]. The gen-

eral idea behind global pooling of activations is that at the

last conv-layer the units see all pixels at the input due to

the growth of the receptive field; e.g. for the ResNet-50 ar-

chitecture that we use in this work, the last convolutional

layer theoretically has a receptive field that covers 483×483

pixels at the input, even though the input is only of size

224×224. Practically, however, the utilized receptive field

of a unit is postulated to be smaller [52].

Correspondingly, a temporal network can be expected to

capture similar spatial features across time. Therefore, it is

reasonable to develop a spatiotemporal network by global

pooling over the temporal support. We found in our experi-

ments that globally max pooling over time, i.e.

x(i, j, c) = max
1≤k′≤T ′

x(i, j, k′, c), (6)

works better (≈ 2% accuracy gain) than global averaging of

temporal activations. We conjecture that this result is due to

the derivative of the sum operation uniformly backpropa-

gating gradients to the temporal inputs. Thus, the network

is not able to focus on the most discriminating instance in

time when employing temporal averaging. Even though

max-pooling over time only backpropagates a single tem-

poral gradient map to the input, it can guide the learning

of long-term temporal features because the filter’s temporal

receptive field on the gradient maps grows from the output

to the input.

Discussion. We conducted several experiments using

max-pooling earlier in the network and it consistently led

to reduced performance with accuracy decreasing more, the

earlier pooling starts (≈1−6%). We also experimented with

a more natural decrease of frames by valid convolutions in

time. Typically, ConvNet architectures zero-pad the inputs
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before each spatial (e.g. 3×3) convolution such that the out-

put size is unchanged. A cleaner strategy is to use valid

convolutions (i.e. not filtering over the border pixels) to-

gether with lager sized inputs e.g. used in the early layers

of inception-v4 [38]. We investigated if there is any gain in

performance for having a temporal architecture with valid

filtering operations across time. For this experiment, we

increase the number of frames at the input and use tem-

poral residual blocks that do not pad the input in time.

Since the network now hierarchically downsamples the in-

put by two frames at each temporal residual block, the final

max-pooling layer now receives less frames (when keeping

GPU-memory constant compared to a padded design). In

our experiments this architectural change leads to an error

increase of 2.4%, in comparison to the padded architecture

equivalent. In conclusion, pooling as late as possible, to-

gether with padded convolutions across time, enables best

accuracy for our T-ResNet in dynamic scene classification.

2.3. Implementation details

We build on the ResNet-50 model pretrained on Ima-

geNet [15] and replace the last (prediction) layer. Next we

transform every first and third residual unit at each conv

stage (conv2 x to conv5 x) that hold residual units to our

proposed temporal residual units. For our temporal residual

blocks, we switch the order of batch normalization [17] and

ReLU from post-activation to pre-activation [16]. The tem-

poral filters are of dimension W ′ × H ′ × T ′ × C × C =
1×1×3×C×C and initialized randomly. We use 16 frame

inputs and temporal max-pooling is performed immediately

after the spatial global average pooling layer.

The training procedure follows standard ConvNet train-

ing [15, 20, 36], with some subtle differences. We set the

learning rate to 10−2 and decrease it by an order of magni-

tude after the validation error saturates. We use batch nor-

malization [17] and no dropout. To accelerate training, we

train the network in a two-stage process with a batchsize of

256: First, we train the network in a purely spatial manner

where we randomly sample a single frame from different

videos (ResNet); second, we transform the residual units

to spacetime and re-start the training process by sampling

16-frame stacks from 256/32 videos per batch (T-ResNet).

For data augmentation we obtain multiple frame-stacks

by randomly selecting the position of the first frame and

apply the same random crop to all samples. Instead of crop-

ping a fixed sized 224×224 input patch, we perform multi-

scale and aspect-ratio augmentation by randomly jittering

its width and height by ±25% and resizing it to obtain a

fixed sized 224 × 224 network input. We randomly crop

translated patches at a maximum of 25% distance from the

image borders (relative to the width and height). Compared

to training spatial ConvNets, training spatiotemporal Con-

vNets is even more prone to overfitting. In response, we

Beach BuildingCollapse Elevator Escalator FallingTrees

Fireworks ForestFire Fountain Highway LightningStorm

Marathon Ocean Railway RushingRiver SkyClouds

Snowing Street Waterfall WavingFlags WindmillFarm

Figure 3: Thumbnail examples of the YUP++ dataset.

use temporal frame jittering: In each training iteration we

sample the 16 frames from each of the training videos in

a batch by randomly sampling the starting frame, and then

randomly sampling the temporal stride ∈ [5, 15]. We do not

apply RGB colour jittering [20].

During testing, we take a sample of 16 equally spaced

frames from a video and propagate these through the net to

yield a single prediction for each video. Instead of crop-

ping the image corners, centre and their horizontal flips, we

apply a faster fully convolutional testing strategy [36] on

the original image and their horizontal flips and average the

predictions from all locations. Thus inference can be per-

formed in a single forward pass for the whole video.

3. Dynamic scenes dataset

As discussed in Sec. 1, the previously best performing al-

gorithms on dynamic scene recognition have saturated per-

formance on extant datasets [12, 44]. In response, this sec-

tion introduces a new dynamic scenes dataset to support the

current and future studies in this domain.

3.1. Specifications

The new dynamic scenes dataset samples 20 scene

classes, while encompassing a wide range of conditions,

including those arising from natural within scene category

differences, seasonal and diurnal variations as well as view-

ing parameters. Thumbnail examples of each class are

shown in Figs. 3 and 4; representative videos are available

in the supplemental material for this paper. Details of the

dataset are provided in the remainder of this section.

The new dataset builds on the earlier YUPenn dataset

[5]. This dataset is taken as a point of departure rather than

the Maryland dataset [34] as it includes one additional scene

class and three times as many videos for each class repre-

sented. To the original dataset, six additional classes have

been added for a total of twenty. The final set of classes rep-

resented in the dataset are as follows: beach, city street, ele-

vator, forest fire, fountain, highway, lightning storm, ocean,
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Figure 4: Variations within the new classes in the YUP++.

Top-to-bottom: Building Collapse, Escalator, Falling Trees,

Fireworks, Marathon and Waving Flags.

railway, rushing river, sky clouds, snowing, waterfall, wind-

mill farm, building collapse, escalator, falling trees, fire-

works, marathon, waving flags. The last six listed classes

are in addition to those available in the earlier YUPenn. Due

to its extended number of classes and addition of moving

camera videos this novel dataset is termed YUP++.

For each scene class in the dataset, there are 60 colour

videos, with no two samples for a given class taken from

the same physical scene. Half of the videos within each

class are acquired with a static camera and half are acquired

with a moving camera, with camera motions encompass-

ing pan, tilt, zoom and jitter. Having both static and mov-

ing camera instances for each class allows for systematic

consideration of the role this variable plays in scene cate-

gorization, something that was not supported in either of

the previous dynamic scenes datasets. Beyond camera mo-

tion and natural variation of individual scenes within a given

class, a wide range of additional acquisition parameters are

varied, including illumination (e.g. diurnal variations), sea-

sonal, scale and camera viewpoint.

The videos were acquired from online video repositories

(YouTube [51], BBC Motion Gallery [2] and Getty Images

[14]) or a handheld camcorder. All videos have been com-

pressed with H.264 codec using the ffmpeg video library.

Duration for each video is 5 seconds, with original frame

rates ranging between 24 and 30 frames per second. All

have been resized to a maximum width of 480 pixels, while

preserving their original aspect ratio.

Overall, the new dynamic scenes dataset more than dou-

bles the size of previous datasets for this task. All of the

videos are distinct from the earlier Maryland dataset. In

comparison to the YUPenn dataset, six new scene classes

have been added and all moving camera videos are new.

3.2. Experimental protocol

For the purpose of dynamic scene recognition, the

dataset has been divided into training and test sets. A ran-

dom split is employed to generate the two sets, by randomly

choosing for each class an equal number of static camera

and moving camera videos. This random split protocol is

in contrast to the previously used leave-one-out protocol

on the YUPenn and Maryland datasets. As documented

in Sec. 4, using a random split with such a train/test ratio

is better suited to providing a challenging benchmark pro-

tocol in a computationally tractable fashion. Moreover, a

random split protocol is common practice in other domains,

e.g. action recognition on HMDB51 [21] and UCF101 [19]

as well as indoor scene classification on MIT67 [33].

4. Empirical evaluation

To establish the state-of-the-art in dynamic scene recog-

nition, 7 representative algorithms for video-based recogni-

tion are evaluated along with T-ResNet introduced in Sec. 2.

Three of the evaluated algorithms, C3D [44], BoSE [11] and

SFA [42], have shown the first, second and fourth best per-

formance in previous dynamic scenes evaluations. The third

best performer, [10], is an ancestor of BoSE and is not con-

sidered here. The remaining algorithms, while not previ-

ously evaluated on dynamic scene recognition, are selected

to provide a balanced coverage of contemporary strong per-

formers on image-based classification tasks. To see how

well a strong performer on single image classification can

perform on video-based scene classification, very deep con-

volutional networks with Fisher vector encoded features are

considered (S-CNN) [4]. To see how well an approach that

serves as the basis for a variety of strong performing action

recognition algorithms can be adapted to scene recognition,

(improved) dense trajectories (IDTs) are considered [47].

Also, to test further temporal ConvNets (in addition to spa-

tiotemporal C3D), a representative based on optical flow is

considered (T-CNN) [35]. Finally, to judge the improve-

ments that the spatiotemporal T-ResNet offers over the spa-

tial ResNet [15], we report results for the fine-tuned ResNet.

Details of how these approaches are applied to dynamic

scene recogntion are supplied in the supplemental material.

4.1. Is there a need for a new dataset?

The first question investigated is if a new dynamic scenes

dataset is truly needed to challenge the available algorithms

or if only the existing evaluation protocols need an im-

provement. To answer this question, the largest previously

available dataset, YUP [5], was explored in the follow-

ing fashion with three of the best performing algorithms

to date (C3D, BoSE, and SFA): Instead of using the leave-

one-video-out (LOO) protocol, as in previous evaluations

[5, 11, 34, 42], fixed train/test splits are used, as it is com-

mon practice in action recognition tasks [19, 21]. Splits

were generated by randomly choosing training and testing

clips from each class. Three splits are employed for any

given ratio; final recognition accuracy is taken as the aver-
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age across the three. This experiment was performed for

several train/test ratios. The results for the three considered

algorithms are reported in Table 1, left. Surprisingly, perfor-

mance can remain on par with the leave-one-out results on

this dataset [11, 42, 44]; it is also surprising that even very

low train/test ratios can still score high. It is concluded that

simply changing the relative sizes of the training and testing

sets does not have a significant enough impact on recogni-

tion rates to continue using this dataset in evaluations.

In comparing results for various 10/90 splits we find little

difference, even for the most difficult moving camera com-

ponent of the new dataset, YUP++ moving camera; see Ta-

ble 1, right. This finding suggests that the 10/90 split sup-

ports stable algorithm performance evaluation, even while

being most challenging. Moreover, since there is little vari-

ation between random splits it justifies using just a sin-

gle split in evaluation, as it provides for less overhead in

evaluation, especially for cases involving ConvNet training.

Therefore, in all subsequent experiments a single 10/90 split

is employed. In particular, we employ split #1 of Table 1.

4.2. Does adding new classes solve the problem?

The next question investigated is if adding additional

classes would lead to a sufficiently more challenging dy-

namic scene benchmark. Table 2 (left) lists the results for

including six additional classes BuildingCollapse, Escala-

tor, FallingTrees, Fireworks, Marathon and WavingFlags to

the previously existing YUPenn. Note that still all videos

are taken from a static camera and thereby this subset is

called the YUP++ static camera. While all algorithms de-

crease in performance compared to the original YUP, the

best performers suffer only negligible deficits. It is desir-

able to further increase the challenge.

4.3. Does more challenging data help?

Since adding more classes has too limited an effect on

performance, this section presents a way of increasing the

difficulty of the data. The challenge is increased by includ-

ing camera motion during acquisition of videos. The overall

size of the datasets is thereby doubled, as each class con-

tains an equal number of videos captured with and without

camera motion. Details are provided in Sec. 3. The results

for just the new videos are reported in Table 2 (right), with

this subset referred to as YUP++ moving camera. Here it

is seen that the challenge has increased so that even the top

performing algorithm scores at 81.5% accuracy and there is

spread between algorithms that allows for interesting com-

parisons, as discussed next.

4.4. Detailed algorithm comparisons

Consistent with previous results (e.g. [5]), top perform-

ers on the static (Table 2, left) and moving (Table 2, right)

camera subsets as well as the entirety (Table 3, left) of

YUP++ are dominated by algorithms that include both spa-

tial and temporal measurements, i.e. our novel T-ResNet,

C3D, IDT and BoSE. Interestingly, algorithms based on

purely spatial features, S-CNN and ResNet, also show rea-

sonable performance. Apparently, even for dynamic scenes

defining features can be abstracted on a spatial basis. In

contrast, basing feature abstraction on motion alone (T-

CNN) apparently loses too much information.

The top performing algorithm on the static, moving and

entire YUP++ is the newly proposed T-ResNet. It is par-

ticularly interesting to compare it to ResNet, as T-ResNet

is initialized with ResNet and transformed from the spa-

tial to spatiotemporal domain; see Sec. 2. Surprisingly, this

transformation succeeds on the basis of a very small training

set, i.e. a mere 10% of the dynamic scenes dataset. These

results show that well initialized spatial networks can be

transformed very efficiently to extract discriminating spa-

tiotemporal information. Indeed, this discrimination tops

that of a rival spatiotemporal network, C3D, as well as the

best hand-crafted spatiotemporal performer IDT.

Comparing performance on the static (Table 2, left) vs.

moving (Table 2, right) camera subsets, it is seen that all al-

gorithms show a decrement in performance in the presence

of camera motion. Apparently, the algorithms have diffi-

culty disentangling image dynamics that arise from scene

intrinsics vs. camera motion and this is an area where future

research should be focused. As it stands, the greatest perfor-

mance loss is suffered by T-CNN, which suggests that build-

ing representations purely on motion information makes ex-

traction of scene intrinsic dynamics especially difficult in

the presence of camera motion. The smallest decrease in

performance is seen by C3D, which, once again, shows

that combined spatial and temporal information provides

the strongest basis for dynamic scene characterization, even

in the presence of camera motion. Here, it is worth noting

that because no previous dynamic scenes dataset contained

both static and moving camera examples for each class, it

was more difficult to draw such conclusions.

No single algorithm is the top performer across all scene

categories (Table 3). It is particularly interesting to com-

pare the two approaches based on hand-crafted features

(BoSE and IDT), as the nature of what they are extracting is

most explicitly defined. Trajectory-based IDT excels where

scenes can be characterized by motion of features across

time, e.g. the operation of an elevator or the falling of a tree.

In complement, spatiotemporal orientation-based BoSE ex-

cels where scenes can be characterized by dynamic texture,

e.g. flickering of forest fires and turbulence of waterfalls.

Along similar lines, while T-ResNet is the overall better per-

former than IDT, it seems that T-ResNet exhibits weaker

performance for scene dynamics with rather irregular or

mixed defining motion patterns as snowing or fireworks,

both categories being resolved quite well by IDT. It also is
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Train/Test: LOO 90/10 70/30 50/50 30/70 10/90

C3D Acc: 98.1 97.6 96.8 94.8 94.2 86.0

BoSE Acc: 96.2 95.3 95.1 94.8 94.1 82.54

SFA Acc: 85.5 84.7 83.4 81.0 80.0 70.0

#split SFA BoSE T-CNN S-CNN IDT C3D

1 51.1 61.9 36.3 68.1 70.4 76.3

2 49.3 60.2 38.8 72.2 69.4 77.6

3 44.8 60.0 36.5 72.8 69.3 78.3

Table 1: Left: Performance of 3 of the previously best approaches for dynamic scene recognition on on the YUP [5] dataset.

Different train/test ratios have no significant effect on the classification accuracy, except for a very aggressive ratio of 10/90

(i.e. using 3 videos for training and 27 videos for testing per class). Right: Comparison of different algorithms on the YUP++

moving camera dataset using a 10/90 train test ratio. Performance levels are consistent across different random splits.

Class SFA BoSE T-CNN S-CNN IDT C3D ResNet T-ResNet

Beach 74.1 88.9 85.2 74.1 100.0 92.6 74.1 96.3

BuildingCollapse 74.1 92.6 74.1 96.3 100.0 92.6 100.0 100.0

Elevator 81.5 96.3 100.0 100.0 96.3 100.0 100.0 100.0

Escalator 40.7 66.7 22.2 81.5 51.9 70.4 81.5 88.9

FallingTrees 63.0 63.0 29.6 74.1 96.3 92.6 88.9 77.8

Fireworks 63.0 85.2 44.4 77.8 92.6 85.2 88.9 96.3

ForestFire 25.9 85.2 25.9 96.3 74.1 92.6 92.6 92.6

Fountain 14.8 55.6 22.2 44.4 74.1 33.3 77.8 92.6

Highway 66.7 63.0 55.6 63.0 85.2 70.4 81.5 88.9

LightningStorm 33.3 59.3 88.9 77.8 96.3 81.5 74.1 92.6

Marathon 48.1 85.2 92.6 96.3 88.9 100.0 96.3 100.0

Ocean 96.3 85.2 88.9 100.0 100.0 100.0 100.0 100.0

Railway 33.3 48.1 51.9 88.9 74.1 59.3 81.5 96.3

RushingRiver 66.7 92.6 44.4 96.3 74.1 100.0 100.0 85.2

SkyClouds 85.2 100.0 63.0 96.3 96.3 100.0 96.3 100.0

Snowing 44.4 77.8 63.0 66.7 85.2 51.9 37.0 77.8

Street 96.3 92.6 63.0 100.0 96.3 96.3 100.0 96.3

Waterfall 74.1 66.7 25.9 70.4 33.3 96.3 59.3 70.4

WavingFlags 48.1 81.5 55.6 88.9 100.0 96.3 100.0 96.3

WindmillFarm 92.6 85.2 81.5 96.3 100.0 96.3 100.0 100.0

Average 61.1 78.5 58.9 84.3 85.7 85.4 86.5 92.41

Class SFA BoSE T-CNN S-CNN IDT C3D ResNet T-ResNet

Beach 77.8 77.8 18.5 70.4 66.7 81.5 96.3 96.3

BuildingCollapse 44.4 33.3 0.0 40.7 44.4 44.4 40.7 51.9

Elevator 81.5 100.0 77.8 100.0 100.0 100.0 100.0 100.0

Escalator 51.9 74.1 29.6 88.9 59.3 85.2 92.6 96.3

FallingTrees 55.6 77.8 63.0 77.8 96.3 88.9 85.2 96.3

Fireworks 48.1 74.1 25.9 33.3 85.2 77.8 59.3 81.5

ForestFire 29.6 66.7 14.8 88.9 59.3 55.6 88.9 96.3

Fountain 29.6 11.1 18.5 18.5 37.0 25.9 55.6 74.1

Highway 14.8 22.2 29.6 37.0 44.4 48.1 25.9 55.6

LightningStorm 25.9 59.3 59.3 85.2 81.5 85.2 88.9 92.6

Marathon 74.1 77.8 92.6 96.3 100.0 100.0 100.0 100.0

Ocean 40.7 37.0 33.3 51.9 55.6 85.2 22.2 48.1

Railway 18.5 66.7 25.9 92.6 59.3 88.9 100.0 100.0

RushingRiver 55.6 59.3 66.7 81.5 77.8 96. 85.2 85.2

SkyClouds 63.0 70.4 63.0 77.8 55.6 96.3 92.6 92.6

Snowing 14.8 40.7 14.8 22.2 77.8 40.7 25.9 37.0

Street 70.4 85.2 3.7 77.8 85.2 96.3 77.8 92.6

Waterfall 77.8 66.7 18.5 77.8 77.8 88.9 66.7 63.0

WavingFlags 70.4 70.4 51.9 77.8 81.5 74.1 92.6 96.3

WindmillFarm 77.8 66.7 18.5 66.7 63.0 66.7 74.1 74.1

Average 51.1 61.9 36.3 68.1 70.4 76.3 73.5 81.5

Table 2: Performance of different algorithms on the YUP++ static camera (left) and YUP++ moving camera (right) subsets.

Class SFA BoSE T-CNN S-CNN IDT C3D ResNet T-ResNet

Beach 92.6 83.3 72.2 75.9 87.0 83.3 90.7 74.1

BuildingCollapse 66.7 66.7 37.0 81.5 87.0 83.3 83.3 94.4

Elevator 85.2 98.1 79.6 100.0 100.0 98.1 100.0 100.0

Escalator 48.1 74.1 37.0 90.7 66.7 87.0 88.9 92.6

FallingTrees 42.6 79.6 53.7 88.9 98.1 88.9 92.6 88.9

Fireworks 51.9 83.3 38.9 66.7 98.1 81.5 87.0 96.3

ForestFire 29.6 77.8 9.3 92.6 72.2 79.6 96.3 100.0

Fountain 18.5 44.4 11.1 38.9 57.4 35.2 83.3 75.9

Highway 55.6 50.0 50.0 63.0 68.5 64.8 74.1 79.6

LightningStorm 42.6 79.6 77.8 81.5 94.4 87.0 90.7 90.7

Marathon 66.7 88.9 92.6 96.3 98.1 100.0 100.0 100.0

Ocean 64.8 70.4 51.9 83.3 74.1 96.3 66.7 85.2

Railway 29.6 83.3 53.7 96.3 88.9 88.9 100.0 100.0

RushingRiver 55.6 81.5 72.2 87.0 87.0 100.0 88.9 85.2

SkyClouds 83.3 94.4 74.1 90.7 88.9 98.1 96.3 96.3

Snowing 14.8 57.4 33.3 51.9 90.7 46.3 33.3 53.7

Street 79.6 90.7 44.4 92.6 96.3 98.1 100.0 98.1

Waterfall 77.8 85.2 13.0 88.9 66.7 90.7 57.4 75.9

WavingFlags 53.7 81.5 61.1 87.0 98.1 88.9 96.3 98.1

WindmillFarm 79.6 70.4 50.0 87.0 92.6 83.3 94.4 94.4

Average 56.9 77.0 50.6 82.0 85.6 84.0 85.9 89.0

Table 3: Performance comparison of different algorithms

on the entire YUP++ dataset (static and moving camera).

interesting to note that the most challenging classes for the

spatially-based approaches, S-CNN and ResNet, are those

where motion is particularly important, e.g. with snowing

being the most or second most difficult for each. More gen-

erally, classes that are most strongly defined by motion tend

to be the most difficult for most algorithms considered, sug-

gesting that capturing differences between scenes based on

their dynamics remains an area for additional research.

4.5. Impact of the new dataset

The new YUP++ dataset has allowed for empirical study

of the state-of-the-art in visual recognition approaches ap-

plied to dynamic scenes in ways not previously possible.

First, by providing increased overall difficulty in compar-

ison to previous datasets, it has allowed for clear perfor-

mance distinctions to be drawn across a range of algorithms.

Second, it has documented that even the strongest extant

approaches suffer non-negligible performance decrements

when operating in the presence of camera motion in com-

parison to a stabilized camera scenario. For example, the

top overall performer, T-ResNet, has an overall decrement

of over 10% in moving from static to moving camera sce-

narios. Third, the dataset has been shown to have adequate

diversity to support ConvNet training on as little as 10% of

its total, e.g. with T-ResNet transformed from ResNet for

great performance improvements on that basis. Fourth, the

dataset has provided insight into how different scene char-

acteristics can impact algorithm performance, e.g. the rela-

tive impact of regular vs. irregular motion patterns.

Moving forward the dataset can continue to support ad-

vances in dynamic scene research. First, algorithmic ad-

4734



UCF101 HMDB51

State of the art
92.4% [49] 62.0% [49]

92.5% [13] 65.4% [13]

93.4% [9] 66.4% [9]

Ours
ResNet T-ResNet ResNet T-ResNet

50 layer model (ResNet-50 [15])

Appearance 82.3% 85.4% 48.9% 51.3%

Flow 87.0% 89.1% 55.8% 62.0%

Fusion 91.7% 93.9% 61.2% 67.2%

+ IDT [48] 94.6% 70.6%

Table 4: Classification accuracy for our two-stream Con-

vNets on UCF101 and HMDB51 without (ResNet) and with

our temporal residual (T-ResNet) architecture.

vances focused on discounting camera motion can be de-

veloped relative to a dataset that controls exactly for this

variable. For example, the impact of image stabilization

preprocessing can be studied. Similarly, the development

of feature representations that aim for invariance with re-

spect to camera motion can be supported. Second, from

a learning perspective the impact of training on stabilized

and testing on moving camera scenarios (and vice versa)

can be studied. Third, and more generally, given that top

performance of the evaluated algorithms exhibits less than

90% accuracy on the entire dataset and less than 82% on

the moving camera subset, there is ample room for further

benchmarking of improved algorithms using YUP++.

4.6. Does TResNet generalize to other tasks?

In Table 4 we report the accuracy for our T-ResNet ar-

chitecture when it is evaluated for action recognition on the

popular UCF101 [19] and HMDB51 [21] datasets. In con-

trast to dynamic scene classification, optical flow is a partic-

ularly discriminative input modality for action recognition

[22, 35, 47]; so, we apply our temporal residual units to

the appearance and flow networks of a two-stream architec-

ture [35]. Our T-ResNet is trained as outlined in Sec. 2.3.

For comparison to previous work, testing is done as in

[35], by using 25 uniformly sampled input frames/optical

flow stacks and their horizontal flips. For T-ResNet a max-

pooling layer, Sec. 2.2, pools over the temporal dimension

and the network produces a single prediction for the input

(instead of averaging the 25 frame predictions as in [35]).

Fusion of the two streams is implemented by averaging their

prediction layer outputs (without applying softmax as in

[35]). For HMDB51 we weight the temporal network scores

by a factor of three before averaging scores [35].

In Table 4 we observe that ResNet on its own does

not perform much better than a VGG-16 two-stream net-

work (which produces 91.4% and 58.5% on UCF101 and

HMDB51 [49], resp.), but enjoys the advantage of less pa-

rameters and being around twice as fast (ResNet-50 has 3.8

billion FLOPs vs. 19.6 in VGG-16).

A more interesting comparison comes with our proposed

T-ResNet architecture, which provides a healthy perfor-

mance boost to both appearance and flow streams. The

large gains of 91.7% vs. 93.9% on UCF101 and 61.2% vs.

67.2% on HMDB51 can be explained by the temporal resid-

ual units operating over long temporal extents on the input,

which the two-stream baseline is not capable of providing.

More generally, T-ResNet clearly outperforms state-of-the-

art approaches [13, 49] and benefits further from simple ad-

dition of SVM scores from IDT-FV [48] trajectory features.

The most competitive approach, ST-ResNet [9] uses tem-

poral convolution kernels that are initialized by replicating

pre-trained spatial 1×1 kernels over time; i.e. the averaging

of feature maps over time. We conjecture that this sum-

initialization is suboptimal for capturing characteristic tem-

poral patterns. Our approach, however, uses temporal filters

that are trained from scratch and therefore are able to re-

ceive more informative gradients. Another conceptual ad-

vantage of our proposed spatiotemporal residual unit over

[9] is that it can effectively ignore or enhance temporal in-

formation by an extra non-linearity packed into the temporal

residual path.

The performance boost provided by T-ResNet comes at

a very low cost, since each of our temporal filters is 1×1 in

the spatial dimensions and only spans 3 instances in time.

In fact, our T-ResNet is much faster in evaluation than the

two-stream baseline (which averages the predictions for the

25 frames), as T-ResNet is fully convolutional in space-

time. During testing we propagate the 25 inputs through

T-ResNet, globally pool in time after the last conv-layer and

end up with a single prediction for the whole video in less

than a second.

5. Summary

We have presented a general spatiotemporal ConvNet,

T-ResNet, based on transforming a purely spatial network to

one that can encompass spacetime via hierarchical injection

of temporal residuals. In comparison to a representative set

of strong performing alternative approaches to video-based

recognition, our approach has produced the best overall per-

formance on a novel dynamic scene recognition dataset. We

have also shown that T-ResNet can perform competitively

on the complementary task of action recognition, opening

potential applications to other areas.

Our new database extends previous dynamic scenes eval-

uation sets in both diversity and size: It adds new scene

classes and provides balanced samples with and without

camera motion. Significantly, all algorithms show a decre-

ment in performance when confronted with camera motion,

suggesting that a promising research direction for future

studies is the development of approaches that are robust to

this variable.
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