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Abstract

We develop a unified framework for complex event re-

trieval, recognition and recounting. The framework is based

on a compact video representation that exploits the tempo-

ral correlations in image features. Our feature alignment

procedure identifies and removes the feature redundancies

across frames and outputs an intermediate tensor represen-

tation we call video imprint. The video imprint is then fed

into a reasoning network, whose attention mechanism par-

allels that of memory networks used in language modeling.

The reasoning network simultaneously recognizes the event

category and locates the key pieces of evidence for event

recounting. In event retrieval tasks, we show that the com-

pact video representation aggregated from the video imprint

achieves significantly better retrieval accuracy compared

with existing methods. We also set new state of the art

results in event recognition tasks with an additional bene-

fit: The latent structure in our reasoning network highlights

the areas of the video imprint and can be directly used for

event recounting. As video imprint maps back to locations

in the video frames, the network allows not only the iden-

tification of key frames but also specific areas inside each

frame which are most influential to the decision process.

1. Introduction

Analysis of event videos is a very challenging task. In

contrast with action recognition which is usually based on

video clips a few seconds long [4, 32], the event classifi-

cation is performed on videos which often last for several

minutes or even hours. These videos often capture multiple

human actions and may contain a variety of different ob-

jects across various scenes. For example, a “birthday party”

event may take place at home or in a restaurant, with multi-

ple objects coming into focus, e.g. a birthday cake, and may

include a variety of activities that span multiple frames, e.g.

singing the birthday song, or blowing out candles.
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Figure 1. Illustration of ER3 framework for event retrieval, recog-

nition and recounting. The compact video representation from fea-

ture aggregation can be used for large-scale event retrieval. With

supervised training, ER3 can also recognize the event category of

the input video. Event recounting falls directly out of the latent

structure of the model in form of statistics displayed as heat maps

for each frame indicating key areas related to the event.

In last decade, analysis of complex events in videos has

attracted significant attention in the computer vision com-

munity [10, 11, 17, 24, 29, 35]. Previous research was

pursued in both unsupervised and supervised settings. Un-

supervised models were typically used for event retrieval

[9, 29] where the goal is to retrieve all the related videos in

the database in some sense similar to the query video pro-

vided by a user. On the other hand, supervised learning has

been used in event recognition [3, 5] or detection [24, 47]

in similar ways as in action recognition [4, 32] and gen-

eral video classification [18, 46, 49]. In this latter case, a

classifier is learned from annotated training videos to detect

and recognize the event categories of the test videos, e.g.,

the multimedia event detection task of the TRECVID [26].

In practical applications, it is often important to qualify the

event category prediction by providing an explanation for it.
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In particular the system needs to localize the key pieces of

evidence that lead to the recognition decision. This is some

times referred to as event recounting.

One of the key issues in event video analysis is the con-

struction of appropriate video representations. For event re-

trieval and event recognition, the representation should be

discriminative yet compact so that it can efficiently disam-

biguate various events in videos. Usually, a global feature

vector is constructed based on frame-level appearance fea-

tures for each event video [9, 10, 29, 46, 47]. In recognition

tasks, this global video representation is then fed into either

a linear classifier [47] or a neural network [18, 46] to iden-

tify the event category. However, this representation makes

event recounting difficult, as tracing the decision back to in-

dividual image locations is intractable. Thus most existing

systems perform event recounting as a post-processing step

after recognition [10, 22, 40].

In this paper we propose a unified framework, named

ER3, for event retrieval, recognition and recounting. Fig-

ure 1 illustrates the framework and the input/output of our

ER3 system. In ER3, (i) we introduce a feature alignment

step which can significantly suppress the redundant infor-

mation and generate a more comprehensive and compact

video representation called video imprint. In addition, the

video imprint also preserves the local spatial layout among

video frames. (ii) Based on the video imprint, we further

employ a reasoning network, a modified version of the neu-

ral memory network [34], which can simultaneously recog-

nize the event category and locate the key pieces of evidence

for the event category. In fact, the recounting is so naturally

integrated in the framework that the experiments show that

the recounting step can assist the recognition task and im-

prove the recognition accuracy. (iii) In the recounting task,

not only do we predict the important frames related to the

event as was done previously [22, 40], but we also jointly

predict the important areas inside each frame since the local

spatial layout is preserved in the video imprint.

The paper is organized as follows. Section 2 discusses

related work about event videos analysis. Then, we present

the technical details of the ER3 in Section 3. Experimental

results are provided in Section 4. Finally, we conclude the

paper in Section 5.

2. Related work

In unsupervised event retrieval, the goal is to retrieve all

the related videos in the database associated with the query

video. The key problem is to construct compact video rep-

resentations. Previous methods [9, 29] often start building

the video representation at the frame level. First, the lo-

cal features, such as SIFT [23], are extracted from each

frame and aggregated together to form a frame-level fea-

ture description based on encoding methods such as Fisher

Vector [30, 28] or VLAD [16, 9]. Then, to form a video

level representation. the frame-level descriptors are simply

averaged across the video. Such sum-aggregation neglects

the strong temporal correlations among consecutive frames.

This may undesirably over-weight the information in cer-

tain long or recurrent shots in the video. We discuss this

problem in Section 3 and show that the redundant infor-

mation among frames can be effectively suppressed by the

feature alignment step.

Event recognition or detection has attracted wide atten-

tion in the last decade. In general, event video recogni-

tion system can be divided into three stages: feature extrac-

tion, feature aggregation/pooling, training/recognition. As

in event retrieval, the first two stages aim to build discrimi-

native video representations. Previous work focused mostly

on designing better video features or representations for

the classifier, such as hand-crafted visual features [8, 23],

motion features [41, 42], audio features [2], and mid-level

concept/attributes features [7, 39]. Recently, the develop-

ment of deep convolutional neural networks [20, 33] lead to

promising results in event recognition tasks [18, 47, 50].

The video representations are usually constructed by di-

rectly aggregating the frame-level CNN features. These fea-

tures vectors are typically used in conventional classifiers

such as Support Vector Machine (SVM) [6], because of lim-

ited training data. In addition, several work [18, 50, 46, 51]

also explore multiple features fusion strategies to further

improve the recognition performance.

Event recounting refers to localization of key pieces of

evidence in support of the recognition decision, a challeng-

ing task as only video-level annotations are provided. Event

recounting is usually a post-processing step, performed af-

ter the recognition [22, 40]. Sun et al. [36] introduce an ev-

idence localization model learned via a max-margin frame-

work, and Chang et al. [7] employ a joint optimization

framework with mid-level semantic concept representation

for event recognition and recounting. Lai et al. [21] apply

Multiple-Instance Learning (MIL) which can infer tempo-

ral instance labels as well as the video-level labels, since the

videos are treated as sets of shots or instances. These re-

counting procedures only reason through time and usually

at a coarse level. Gan et al. [10] train a deep event net-

work for event recognition. In addition, it can also predict

the key frames and the important areas inside the frames

related to the event by backward passing the classification

scores. This is still a post-processing method which does

not assist in recognition, but rather attempts to explain it.

In contrast with these methods, at a core of our system is

a generative model in which latent structure directly serves

as a set of pointers to image locations. The model is trained

in unsupervised way by jointly aligning the areas of differ-

ent frames and estimating a distribution over features in cor-

responding areas. The resulting representation is a grid of

distributions over features to which the frames are mapped,
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Video frames

Figure 2. Illustration of the frames related to “Dominique Strauss-

Kahn arrested”. The frames in green box denote the positive

frames related to the event. Red boxes show irrelevance frames.

much in a way image frames are mapped to panoramas in

pixel space (see the toy example in Figure 1). This grid,

along with the pointers back to the locations in the origi-

nal frames forms a video imprint allowing us to consider

image evidence in flexible ways. For example, the aggre-

gation can be performed to emphasize mere presence rather

than frequency of repetition of certain object or scene parts.

Our experiments show that video imprint aggregation

yields better performance both in supervised and unsuper-

vised cases compared with previously published work. The

video imprint also allows us to reason over the local spa-

tial layout of features found across frames. In order to

predict the event class, our reasoning network analyzes the

evidence present in different spatial locations of the com-

pact video imprint much the way the attention mechanism

in Memory Network [34] reasons over sentences in prim-

ing text. Recent work [48] also explored similar idea at

video face recognition. In the process, the reasoning net-

work highlights the areas of the imprint, which in turn map

back to video frames and their corresponding spatial loca-

tions. In this way, recounting is an integral part of decision

making, not merely a post processing step.

3. The details of ER3

In this section, we present the details of each module

shown in Figure 1 and demonstrate how this framework per-

form event retrieval, recognition and recounting tasks.

3.1. Feature extraction

Recently, image descriptors based on the activations

within deep convolutional neural networks (CNN) have

emerged as state of the art generic descriptors for visual

recognition [13, 31, 50]. Different from previous event

video analysis methods [18, 50] which usually extract fully

connected layers as the frame-level descriptors, we chose

the activations of the last convolutional layers as the frame-

level representation. Since the convolutional layer contains

the spatial information of the input frame, we can perform

more accurate recounting results beyond the frame level.

…

Feature map of each frame

TCG

Counting grid

��� ���=4x4
Location k

Video frames

Ex

Ey

Z

CNN models

Figure 3. Illustration of tessellated counting grid (TCG). The right

tensor block represents the counting grid with E = 24×24,W =

8 × 8,S = 4 × 4. Similar frames are usually represented in the

same or nearby windows, e.g., the anchor who we frequently see

in the video.

3.2. Feature alignment

Usually, the video representation is directly aggregated

from the frame descriptors [9, 18, 47, 50]. However, this

may undesirably over-weight the information in certain

long or recurrent shots in the video, which can dominate the

final representation. For instance, as shown in Figure 2, the

shots of the anchor dominate in the event video related to

the event “Dominique Strauss-Kahn arrested”. Since those

frames share similar content, simply averaging frame de-

scriptors may lead to over-emphasis of these descriptors and

reduce the discriminative power of the video representation.

To mitigate this problem, we use feature alignment to bal-

ance the influence of frame features after feature extraction.

The idea of feature alignment comes from panoramic

stitching [37, 38], which can stitch images into a full view

panorama, removing the overlap among the input images.

If we could generate an equivalent panoramic representa-

tion from video frames of an event, the redundancy across

frames would be removed and the video representation

would be less sensitive to the frequency of the repetition

of the less discriminating features.

Obviously, the dynamic and complex event videos, are

not a convenient target for frame stitching. Alignment at

pixel level is difficult, and the frames are not mappable to a

single panorama at any rate. To deal with geometric varia-

tion in objects or entire scenes in video frames, we first fea-

turize the images using the activations of last convolutional

layer extracted from each frame. Then, we employ the tes-

sellated counting grid (TCG) model [27] to train a panorama

in a generalized sense. The resulting grid of feature distri-

butions contains multiple panoramas to which frames from

different shots are automatically mapped. Thus the model

captures spatial interdependence of the convolutional layer

features in related frames, and also serves as the clustering

grounds for different shots. The following is a brief intro-

duction of TCG, please refer to [27] for detailed description.

Tessellated counting grid (TCG) [27] is designed to

capture the spatial interdependence among image features.

Given a set of images or a video sequence, it assumes that
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each image/frame is represented by a set of l1−normalized

non-negative feature vectors {cs}s∈S plugged in a tessella-

tion S = Sx × Sy
1. Formally, the counting grid πi,z is a

set of normalized features indexed by z (dimension of im-

age feature) on the 2D discrete grid i = (ix, iy) ∈ E =
Ex × Ey , where i is the location on the grid.

As a generative model, the probability of generating the

image features {cs}s∈S from the window Wk in the loca-

tion k of the grid is

p({cs}s∈S|l = k) = µ
∏

z

∏

s





∑

i∈Ws
k

πi,z





csz

, (1)

where µ is the normalization constant. Thus, the joint distri-

bution over the set of image features {cs,t}s∈S,t∈T , indexed

by t, and their corresponding latent window locations {lt}
in the grid can be derived as

P ({cs,t}, {lt}) ∝
∏

t

∑

k

∏

z

∏

s





∑

i∈Ws
k

πi,z





cs,tz

. (2)

The counting grid π is estimated by maximizing the log

likelihood of the joint distribution with an EM algorithm,

E step : q(lt = k) ∝ exp





∑

s

∑

z

cs,tz log
∑

i∈Ws
k

πi,z



 ,

M step : πi,z ∝ πold
i,z

∑

t

∑

s

cs,tz

∑

k|i∈Ws
k

q(lt = k)
∑

i∈Ws
k

πold
i,z

,

(3)

where q(lt = k) denotes the posterior probability p(lt =
k|{cs,t}s∈S) and πold

i,z is the counting grid at the previous

iteration.

The iterative process of TCG will jointly estimate the

counting grid π and align all training frame features to it.

Thus, π summarizes the entire video, serving as a video im-

print: Each of its locations corresponds to equivalent re-

gions in a variety of frames, with this correspondence cap-

tured in q distribution above. See Figure 3 2 for illustration.

3.3. Feature aggregation

In this section, we will demonstrate how to aggregate

the video imprint into a compact video representation for

unsupervised event retrieval. We refer each πi on the video

imprint as a counting grid descriptor. As shown in Figure 3,

some counting descriptors are meaningless since no frames

1With l1−normalization and appropriate down-sampling, the feature

maps (after ReLU) from convolutional layer of CNN model naturally sat-

isfy this assumption.
2We cannot directly visualize the counting grid of the frame features.

For ease of illustration, we accumulate the frames on the location with the

maximum posterior probability q(lt = k) and draw the mean image.

Weighted sum

Inner product

Embedding B

Embedding M

Video imprint

Softmax

Avg-pooling

Weights map P

Output vectors ��

Memory vectors ��

�� �� ��+�

��
Decision NN

P��
Weights map P

Recounting results

Figure 4. Illustration of reasoning network for event recognition

and event recounting.

are aligned to their locations. The first step is to generate

an active map for the video imprint to filter out the noisy

counting grid descriptors associated with the location that

aligned with few or no frames. Formally, the binary active

map, A = {ai|i ∈ E}, ai ∈ {0, 1}, is computed as

ai =















1

{

i ∈ Wk| k :

N
∑

t=1

q(lt = k) > τ

}

0 otherwise

, (4)

where τ is the threshold of the active map.

After generating the active map, the second step is quite

simple: We apply sum-aggregation over the whole activated

counting grid descriptors to produce the final video repre-

sentation. Formally, the aggregation step can be written as

φFA(π,A) =
∑

i∈E

aiπi. (5)

The obtained φFA(π,A) is subsequently l2-normalized

and the cosine similarity is computed for event retrieval.

3.4. Reasoning over the imprint

Once the imprint is computed for a video, instead of rea-

soning over individual frame features, we can now reason

in this compact representation in which each location corre-

sponds to a recurring scene/object part, with the spatial lay-

out of these locations mirroring the spatial layout of parts in

the frames where they were seen. We treat locations in the

imprint in a similar way the sentences are treated in a mem-

ory network [43, 34]. Our reasoning network makes the

decision regarding the event category in stages which turn

attention from one set of imprint location to the next (Figure

4). In the process, the imprint locations of importance are

highlighted, and we can trace these highlights back to the

locations in images that mapped to these areas of the im-

print, as discussed above, using the q distributions and the
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fact that the spatial layout of nearby locations in the imprint

matches the layout in the original frames.

Our reasoning network differs from the memory net-

works in two ways. First, since there is no query ques-

tion for event recognition, we initialize the input vector u1

with Equation 5, i.e., sum-aggregation of video imprint.

Second, because the spatial organization in the imprint is

meaningful, we add an average spatial pooling layer after

the softmax layer in the original memory network architec-

ture. The experiments show that, with the average pooling

layer added, we can obtain smoother and more reasonable

recounting results. The model details are as follows.

Memory layers in the reasoning network. As shown in

Figure 4, the video imprint (the non-activated locations are

ignored during the whole procedure) is processed via mul-

tiple memory layers (hops). In each layer, the counting grid

descriptors πi from video imprint are first embedded to out-

put vector space and memory vector space with embedding

matrices B and M, respectively.

bi = Bπi, mi = Mπi, (6)

where bi denotes the output vector and mi denotes mem-

ory vector. The memory vector mi is used to compute the

weights map P = {pi|i ∈ E} with the internal state u.

pi = avgpooling
(

softmax
(

uTmi

))

. (7)

The average pooling is performed with 3×3 windows, stride

1. The output vector o is then computed by a weighted sum

over the output vectors bi.

o =
∑

i

pibi. (8)

For the internal state vector u, the initial u1 computed with

Equation 5, and the uk+1 in k + 1 layer is computed as

uk+1 = uk + ok. (9)

The final output vector is then fed into a decision net-

work to predict the event category. It can be a simple soft-

max layer or have multiple fully connect layers. The re-

counting map of each frame shown in Figure 4 is generated

via the sum of all weights maps, Psum =
∑

k P
k, and the

posterior probabilities q(lt = i) (More complex recounting

inferences can also be made by showing conditional heat

maps based on individual memory layers as we trace the

reasoning engine through the layers). We use Psum
Wi

denotes

the weights map cropped from P
sum in the window Wi.

Then the recounting map R
t of frame t is

R
t =

∑

i∈E

q(lt = i)Psum
Wi

. (10)

The importance score of each frame is obtained with the

sum of the recounting map.

4. Experiments

4.1. Datasets and evaluation protocol

In terms of event retrieval, we evaluated our method on

a large-scale benchmark EVVE dataset [29]. It contains

2, 995 videos (620 videos are set as queries) related to 13

specific event classes. Given a single video of an event,

the task is to retrieve videos related to the same event from

the dataset. The methods are evaluated based on the mean

AP (mAP) computed per event. The overall performance

is evaluated by averaging the mAPs over the 13 events.

In addition, a large distractors dataset (100, 000 vedios) is

also provided to evaluate the retrieval performance on large-

scale data.

To evalaute the event recognition and recounting, we

used three datasets: EVVE, Columbia Consumer Videos

(CCV) [19] and TRECVID MEDTest 14 (MED14) [26].

In addition to using it in the event retrieval evaluation, we

also configured the EVVE as a small recognition dataset.

As such, it contains 13 events. For each event, we set

the query video as the test data (620 videos), and treat the

groundtruth in the dataset as the training data. We report

the top-1 classification accuracy to evaluate the recognition

performance.

The CCV dataset [19] contains 9, 317 YouTube videos

belonging to 20 classes. We follow the protocol defined in

[19] to use a traing set of 4, 659 and a test set of 4, 658
videos. The TRECVID MEDTest 14 [26] is one of the

most challenging datasets for event recognition containing

20 complex events. In the training section, there are 100
positive exemplars per event, and all events share negative

exemplars with about 5, 000 videos. The test data has ap-

proximately 23, 000 videos.

For these two datasets, mAP is used to evaluate the per-

formance of event recognition according to the NIST stan-

dard [26]. Since there is no ground truth information for

the recounting task, we only provide qualitative analysis for

event recounting results.

4.2. Implementation details

Frame-level descriptor. Given an input video, we sam-

ple 5 frames per second (5 fps) to extract the CNN fea-

tures. We exlpore various pre-trained CNN models, i.e.,

AlexNet [20], VGG [33] and ResNet-50 [14] to evaluate

our method. We adopt the output from the last convolutional

layer (after ReLU) of these models as the frame descriptors.

The CNN feature maps are down-sampled to 4×4 with lin-

ear interpolation to fit the TCG (we set S =4 × 4 in TCG

for computation efficiency). In addition, we also average all

the frame descriptors over the video (sum-aggregation), as

the baseline to evaluate our framework.

Post-processing. For the baseline video representa-

tion, we apply the same post-processing strategy as in [1,
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Figure 5. (a) The influence of the threshold τ of active map. (b)

Counting grid aggregation with different counting grid sizes E.

12], i.e., the representation vector of a video is first l2-

normalized, and then whitened using PCA [15] and l2-

normalized again. For the counting grid descriptors on the

video imprint, power normalization (α = 0.2) shows bet-

ter results than l2-normalization in our experiments. There-

fore, after feature alignment, the counting grid descrip-

tors are first power normalized, then PCA-whitened and l2-

normalized.

Re-ranking methods for event retrieval. For the event

retrieval task on the EVVE dataset, we also employ two

variants of query expansion methods presented by Douze et

al. [9]: Average Query Expansion (AQE) and Difference of

Neighborhood (DoN). In our experiments, we set N1 = 10
for AQE and N1 = 10, N2 = 2000 for DoN.

Training details for the reasoning network. The rea-

soning network (RNet) was trained with stochastic gradi-

ent descent (SGD) method. The initial learning rate was

β = 0.025, which then annealed every 5 epochs by β/2 un-

til 20 epoches were finished. All weights were initialized

randomly from a Gaussian distribution with zero mean and

σ = 0.05. The weights were shared among different mem-

ory layers. The batch size was 128 and the gradients with

an l2 norm larger than 20 were rescaled to norm 20 during

the training step.

Computational complexity. The most time consuming

step is constructing video imprint for input video. As dis-

cussed in [27], with efficient use of cumulative sums, the

computational complexity of learning CG with EM algo-

rithm grows at most linearly with the product of counting

grid size and video length. In our experiments, the aver-

age running time of TCG (with ResNet features) for EVVE

(about 1200 frames per video) implemented on the GPU

platform (K40 with MATLAB parallel computing toolbox)

is about 15 seconds.

4.3. Evaluation results on event retrieval

4.3.1 Parameter analysis

Threshold of the active map. Figure 5(a) shows the re-

trieval performance with different thresholds used for the

active map construction. We can observe that increasing

τ helps filter out some very short shots (with only sev-

Representation Dim. mAP

Sum-alex 256 38.3

Sum-res 1024 46.6

Sum-(alex+res) 1280 47.3

CGA-alex 256 42.6

CGA-res 1024 51.2

CGA-(alex+res) 1280 52.3

Table 1. Comparison with sum-aggregation on EVVE dataset.

Sum- and CGA- denote sum-aggregation and counting grid ag-

gregation, respectively. alex and res denote two CNN mod-

els, AlexNet and ResNet-50. For ResNet based representation,

the vectors dimension are reduced to 1024 with PCA-whitening.

(alex+res) denotes the concatenated vector.

eral frames) which are usually not that meaningful. We set

τ = 8 in the subsequent experiments.

Counting grid size. To evaluate the influence of count-

ing grid size, we first fix the window size (W = 8× 8) and

tessellation size (S = 4× 4) of the counting grid. Then we

chose 7 different counting grid size to perform the feature

alignment. The performance for each size is presented in

Figure 5(b). No further improvement can be obtained when

E > 24. Therefore, the size of counting grid is fixed to 24

for the following experiments.

4.3.2 Comparison with sum-aggregation

We refer to our unsupervised flow (combining the feature

alignment and aggregation steps) on ER3 as counting grid

aggregation (CGA). Table 4.3.2 shows the retrieval perfor-

mance compared with baseline. We evaluate the CGA on

two different CNN models, AlexNet [20] and ResNet-50

[14]. Our aggregation method obtains better retrieval per-

formance, mAP = 52.3, with the benefits from feature

alignment step that can suppress the redundancy among

frames. In addition, consistent improvement can be ob-

served for different CNN models, i.e., 11.2% gain with

AlexNet and 9.9% with ResNet-50.

4.3.3 Comparison with state of the arts

In Table 4.3.3, we can see that the sum-aggregation with

CNN features already achieves better results compared with

previous work [29, 9]. After merging with 100K distrac-

tors, the mAP of CGA-(alex+res) achieves 42.9 which is

also better than the baseline (mAP = 38.7) and Hyper-

pooling [9] (mAP = 26.5). In addition, the query expan-

sion can further boost the performance. We achieve 36.6%
and 8.9% improvement compared with previous result

(mAP = 44.0) and the baseline (mAP = 55.2) on EVVE,

respectively. Consistent improvement is also observed with

query expansion on the large dataset (EVVE+100K).
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EVVE EVVE+100K

Method Dim. AQE DoN AQE DoN

MMV [29] 512 33.4 – – 22.0 – –

CTE [29] – 35.2 – – 20.2 – –

MMV+CTE – 37.6 – – 25.4 – –

SSC [9] 16384 36.3 38.9 44.0 26.5 30.1 33.1

Sum-(alex+res) 1280 47.3 53.1 55.2 38.7 45.8 47.1

CGA-(alex+res) 1280 52.3 58.5 60.1 42.9 50.4 52.7

Table 2. Retrieval performance compared with other methods.

AQE and DoN denote the two Re-ranking methods.
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Figure 6. The influence of RNet with increased hops on EVVE

dataset (Best viewed in color).

4.4. Evaluation results on event recognition

4.4.1 Parameter analysis

Structure of the reasoning network. For the EVVE

dataset, we set a softmax layer as the decision network.

The video imprint is generated based on the ResNet-50 [14]

model and its counting grid descriptors are first reduced to

256 dimension with PCA-whitening before feeding to rea-

soning network (RNet). For CCV and MED14 datasets, we

add a fully connected layer in front of the softmax layer

as the decision network for better performance. Besides

the ResNet-50 model, we also evaluate the framework with

VGG (16 layers) [33] model for these two datasets. The

dimension of the counting grid descriptors is set to 1024

and 512 for ResNet-50 and VGG, respectively. For all the

datasets, the internal vectors bi and mi have the same di-

mension with the input counting grid descriptors.

Number of memory layers. Figure 6 illustrates the in-

fluence of RNet with increased hops on the EVVE dataset.

Method vgg res (vgg+res)

C
C

V

Sum- 74.3 75.3 78.1

CGA- 75.7 76.6 79.1

RNet- 76.7 78.5 79.9

M
E

D
1

4 Sum- 26.0 30.4 32.8

CGA- 30.5 32.2 33.7

RNet- 32.8 34.2 36.9

Table 3. Comparison with sum-aggregation and CGA. Sum- and

CGA- denote sum-aggregation and counting grid aggregation, re-

spectively. RNet- denote the reasoning network. vgg and res de-

note two CNN model, VGG and ResNet-50. (vgg+res) denotes the

later fusion result.

To be fair comparison, we employ the same decision net-

work as classifier for the baselines and the output from

RNet. We compare with two representations, the video rep-

resentations with sum-aggregation and counting grid aggre-

gation (CGA). In fact, if we fix the value of the weights map

equal to the active map, the RNet will reduce to the CGA,

i.e., the unsupervised flow in Figure 1. We can see that CGA

provides better performance than sum-aggregation and the

RNet can further refine the video representation and leads to

better recognition accuracy than the two baselines. In addi-

tion, the gain is also increased with more hops. Consistent

gains are observed on both CCV and MED14 datasets. We

set the hops = 3 in the following experiments for CCV and

MED14 datasets.

4.4.2 Performance on CCV and MED14

Table 4.4.2 shows the recognition performance (mAP) of

RNet and baseline methods. With the benefit from re-

weighting the video imprint, the RNet achieves better re-

sults on the CCV (mAP = 79.9) and MED14 (mAP = 36.9)

datasets compared with sum-aggregation and CGA. In ad-

dition, on the CCV dataset, we also employ the same strat-

egy as [45] to combine motion and audio features with our

appearance-based representation. As shown in Table 4.5,

the fusion result (MA+RNet-(vgg+res)) can further boost

the recognition performance (mAP = 87.1) and outperforms

previous work. On MED14 dataset, we achieve comparable

result (mAP = 36.9) with recent CNN model based meth-

ods. Our advantage is that we can simultaneously provide

recounting results for event analysis.

4.5. Evaluation results on event recounting

Influence of average pooling. In contrast to the original

memory network [34], we add a average pooling layer in-

side the memory layer, which takes advantage of the spatial

organization of the information in the video imprint. Figure

7 demonstrates the influence of adding the average pooling
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Method mAP Recounting

C
C

V

Lai et al. [21] 43.6
√

Jiang et al. [19] 59.5 ×
Wu et al. [44] 70.6 ×
Nagel et al. [25] 71.7 ×
Wu et al. [45] 84.9 ×
RNet-(vgg+res) 79.9

√

MA+RNet-(vgg+res) 87.1
√

M
E

D
1

4

IDT [42, 26] 27.6 ×
Gan et al. [10] 33.3

√

Xu et al. [47] 36.8 ×
Zha et al. [50]3 38.7 ×
RNet-(vgg+res) 36.9

√

Table 4. Comparison with other methods. MA+RNet-(vgg+res)

denotes the result fused with audio and motion information using

adaptive fusion method [45].

Figure 7. Influence of the average pooling layer in RNet. The mid-

dle column shows the recounting map of RNet. The right column

shows the recounting map with avg-pooling layer removed.

layer. We can see that the recounting maps are smoother

and more reasonable.

Recounting map. Figure 8 illustrates some examples

of the recounting results. The heat map is used to visu-

alize the recounting map (the map is rescaled to the same

size with the frame). Since no ground truth recounting is

available, we can only provide some examples as shown in

Figure 8. We can see that our recounting process can not

only provide the importance score of each frame, but also

indicate the most relevant areas inside each frame. How-

ever, due to the coarse resolution of the input feature maps

(S = 4 × 4), the spatial-level recounting results are also

very coarse. Nevertheless, the recounting heat map may be

treat as a good prior for other post-processing methods, e.g.,

object segmentation.

3Zha et al. achieve state of the art result by fusing motion features

(IDT) with their CNN based results (mAP = 34.9).

……

… …

Dominique Strauss-Kahn arrested

Wedding of Prince William and Kate Middleton

Figure 8. Examples of event recounting results. We use heat map

to indicate the recounting map. The key areas related to the event

in each frame is painted with red color. The importance score

which is computed by the sum of recounting map is shown with

color bar (red for important frames) upon the video frame flow.

5. Conclusion and future work

In this paper, we propose a unified framework for com-

plex event retrieval, recognition and recounting. In contrast

to previous work, we introduce a feature alignment step to

generate the video imprint based on the frame-level fea-

tures. The feature alignment step can automatically iden-

tify and suppress the redundancy across different frames.

The experiments show that the video representation gen-

erated from the video imprint outperforms previous work

both in supervised and unsupervised cases. In addition,

with the video imprint, we can further localize the key ev-

idence using the reasoning network. As the followup re-

search, we plan to explore alternative alignment methods

which can efficiently handle multiple features and further

enhance the video representation. In addition, beyond the

content-based video analysis problems, extending the pro-

posed framework to some cross-domain tasks such as video

captioning is also a very promising direction.
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