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Abstract

A human action can be seen as transitions between one’s

body poses over time, where the transition depicts a tempo-

ral relation between two poses. Recognizing actions thus

involves learning a classifier sensitive to these pose transi-

tions as well as to static poses. In this paper, we introduce a

novel method called transitions forests, an ensemble of de-

cision trees that both learn to discriminate static poses and

transitions between pairs of two independent frames. Dur-

ing training, node splitting is driven by alternating two cri-

teria: the standard classification objective that maximizes

the discrimination power in individual frames, and the pro-

posed one in pairwise frame transitions. Growing the trees

tends to group frames that have similar associated transi-

tions and share same action label incorporating temporal

information that was not available otherwise. Unlike con-

ventional decision trees where the best split in a node is de-

termined independently of other nodes, the transition forests

try to find the best split of nodes jointly (within a layer) for

incorporating distant node transitions. When inferring the

class label of a new frame, it is passed down the trees and

the prediction is made based on previous frame predictions

and the current one in an efficient and online manner. We

apply our method on varied skeleton action recognition and

online detection datasets showing its suitability over several

baselines and state-of-the-art approaches.

1. Introduction

Recognizing and localizing human actions is an impor-

tant and classic problem in computer vision [1, 7] with a

wide range of applications including pervasive health-care,

robotics, game control, etc. With recently introduced cost-

effective depth sensors and reliable real-time body pose

estimation [22], skeleton-based action recognition has be-

come popular because of the advantage of pose features

over raw RGB video approaches in both accuracy and ef-

ficiency [33].

Popular approaches for action recognition and localiza-

tion include using generative models such as state-space

models [14, 31]; or tackling it as a classification problem

of either the whole sequence [26, 40], a small chunk of

frames [10, 36] or deep recurrent models [9, 16]. The best

performing methods focus either on modelling the tempo-

ral dynamics using time-series models [37] or recognizing

key-poses [38], showing that both static and dynamic infor-

mation are important cues for actions. Motivated by this,

we consider decision forests [3], which have been widely

adopted in computer vision [22, 24, 33], owing to many de-

sired properties: clusters obtained in leaf nodes, scalability,

robustness to overfitting, multiclass learning and efficiency.

The main challenge of using decision forests for tem-

poral problems lies in dealing with temporal dependencies.

Previous approaches encode the temporal variable in the

feature space by stacking multiple frames [10], handcraft-

ing temporal features [34, 40] or creating codebooks [34].

However, these methods require the temporal cues to be ex-

plicitly given instead of automatically learning them. At-

tempting to relieve this, [11, 33] add a temporal regres-

sion term and frames individually vote for an action cen-

ter, breaking the temporal continuity and thus not fully cap-

turing the temporal dynamics. [14] proposed a generative

state-space without exploiting the benefit of having rich la-

belled data. [6] groups pairs of distant frames and grows

trees using handcrafted split functions to cover different

label transitions, with the difficulty of designing domain-

specific functions and making the model complexity to in-

crease with the number of labels.

In this work, we propose ‘transition forests’, an ensem-

ble of randomized tree classifiers that learns both static

pose information and temporal transitions in a discrimina-

tive way. Temporal dynamics are learned while training

the forest (besides any temporal dependencies in the feature

space) and predictions are made by taking into account pre-

vious predictions. Introducing previous predictions makes

the learning problem more challenging as a consequence

of the “chicken and egg” problem: making a decision in a

node that depends on the decision in other nodes and vice
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versa. To tackle this problem, we propose a training proce-

dure that iteratively groups pairs of frames that have similar

associated frame transitions and class label in a given level

of the tree. We combine both static and transition informa-

tion by randomly assigning nodes to be optimized by clas-

sification or transition criteria. In the end of tree growth,

training frames arriving at leaf nodes represent effectively a

class label and associated transitions. We found that adding

such temporal relation in training helped to obtain more ro-

bust single frame predictions. Using single frames helped

us in keeping the complexity low and being able to make

online predictions, two crucial conditions to make our ap-

proach applicable to real life scenarios.

2. Related work

Skeleton-based action recognition. Generative mod-

els [14, 31, 32] such as Hidden Markov Models (HMM)

have been proposed with the disadvantages of being difficult

to estimate model parameters and time consuming learn-

ing and inference stages. Discriminative approaches have

been widely adopted due to their superior performance and

efficiency. For instance, [29] extracts local features from

body joints captures temporal dynamics using Fourier Tem-

poral Pyramids (FTP), further classifying the sequence us-

ing Support Vector Machines (SVM). Similarly, [26, 27]

represents the whole skeletons as points in a Lie group be-

fore temporally aligning sequences using Dynamic Time

Warping (DTW) and applying FTP. [36] proposes a Moving

Pose descriptor (MP) using both pose and atomic motion

information and then temporally mining key frames using

a k-NN aproach in contrast to [12] that uses DTW. Using

key frames or key motion units has been also studied by

[8, 28, 38] showing good performance revealing that static

information is important to recognize actions. Recently,

deep models using Recurrent Neural Networks (RNN) [9]

and Long-Short Term Memory (LSTM) [25, 39] have been

proposed to model temporal dependencies, but showed in-

ferior performance than recent (offline) models that explic-

itly exploit static information [28, 30] or well-suited time-

series mining [37]. Our forest learns bost static per-frame

and temporal information in a discriminative way.

Skeleton-based online action detection. Detecting ac-

tions on streaming data [7] has been less explored than rec-

ognizing segmented sequences, while being more interest-

ing in real scenarios. Early approaches [10] include using

short sequences of frames or short motion information [36]

to vote if an action is being performed. A similar approach

but adding multi-scale information was proposed by [20],

while [17] proposed a dynamic bag of features. Recently,

[16] introduced a more realistic dataset, baseline methods

and shown state-of-the-art performance with a classifica-

tion/regression RNN, later improved by [2] with the use of

RGB-D spatio-temporal contexts and decision forests.

Forests and temporal data. Standard forest approaches

for action recognition such as [10] directly stack frames and

grows forests to classify them. [19, 40] create bags of poses

and classified the whole sequences. Using the clustering

properties of trees, [34] construct codebooks with the help

of different heuristic rules capturing structural information.

These approaches require the temporal cues to be directly

encoded in the feature space. To relieve this, [4, 33, 35] add

a temporal regression term and maps appearance and pose

features to vote in an action Hough space. [11] proposes

Trajectory Hough Forest (THF) that computes histograms

of tree paths over consecutive color and flow trajectory

patches and uses them as weights for prediction. However,

in Hough frameworks, temporal information is captured as

temporal offsets with respect to a temporal center of inde-

pendent samples, breaking the temporal continuity and re-

quiring the whole sequence to be observed. On the contrary,

we explicitly capture the rich temporal dynamics and are

able to perform online predictions. [6] proposes Pairwise

Conditional Random Forests (PCRF) for facial expression

recognition consisting of trees of which handcrafted split

functions operate on pairs of frames. These pairs are formed

to cover different facial dynamics and fed into multiple sub-

sets of decision trees that are conditionally drawn based on

different label transitions, making the ensemble size propor-

tional to the number of labels. By contrast, our layer-wise

optimization tries to automatically learn the best node splits

based on single frames maximizing both static and transi-

tion information within the same tree and thus not needing

handcrafted split functions or to create different trees based

on different labels. Generative methods based on forests

include Dynamic Forest Models (DFM) [14], which are en-

sembles of autoregressive trees that store multivariate dis-

tributions at their leaf nodes. These distributions model

observation probabilities given short history of previous k
frames. Similar to HMM, a decision forest is trained for

each action label and inference is performed maximizing

likelihood of the observed sequence. Recently, [5] proposed

to learn smooth temporal regressors for real time camera

planning. We share with [5] the recurrent nature of making

online predictions conditioned on our own previous predic-

tions, however our approach differs in how the recurrency is

defined in both learning and inference stages. We compare

some relevant methods in Section 4.

Tree-based methods for structured prediction. A re-

lated line of work [13, 18, 21, 23] proposes decision forests

methods for image segmentation. The objective of these

approaches is to obtain coherent pixel labels and, in or-

der to connect multiple pixel predictions, decision forests

are linked with probabilistic graphical models. While these

methods focus on the spatial coherence of predictions in

an image space, our method tries to capture discriminative

changes of data/prediction in a temporal domain.
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3. Transition forests

Suppose we are given a training set S composed of tem-

poral sequences of input-output pairs {(x1, y1), ..., (xt, yt)}
where xt is a frame feature vector encoding pose informa-

tion and yt is its corresponding action label (or background

in detection setting). Our objective is to infer yt for every

given xt using decision trees. On a decision tree, an input

instance xt starts at the root and traverses different internal

nodes until it reaches a leaf node. Each internal node i ∈ N
contains a binary split function f with parameters θi decid-

ing whether the instance should be directed to the left or to

the right child nodes.

Consider the set of nodes Nl ⊂ N at a level l of a deci-

sion tree. Let Si denote the set of labeled training instances

(xt, yt) that reached node i (see Fig. 1). For each pair of

nodes i, j ∈ Nl, we can compute the set of pairs of frames

T j
i that travel from node i to node j in d time steps as:

T j
i = {{(xt−d, yt−d), (xt, yt)} |

(xt−d, yt−d) ∈ Si ∧ (xt, yt) ∈ Sj} , (1)

where we term the set of pairs of frames T j
i as transitions

from node i to j. Note that T j
i depends on frames that

reached nodes i and j and time distance d. In order to cap-

ture different temporal patterns, we vary the distance d from

one to a k-distant frame. In the following, we will refer to

parameter k as the temporal order of the transition forest.

In the example shown in Fig. 1 we observe that the de-

cision f(θ0, S0) is quite good as it separates S0 in two sets,

S1 and S2, in which one action label predominates. If we

examine the transitions associated to this split, we see that

we obtain two pure sets, T 1
1 and T 2

2 , one mixed set T 1
2 and

one empty set T 2
1 . Imagine now that we observe the ‘kick’

frame in S1 and we would have to make a decision based on

this split, we would certainly assign the wrong label ‘duck’

with an uncertainty of 2/3. Alternatively, if we check the

previous observed frame (in S2) and inspect its associated

transition T 1
2 , the uncertainty is now 1/2 and thus we would

be less inclined to make a wrong decision.

From the above example, we deduce that if we had ob-

tained a better split and both child nodes were pure, we

would certainly make a good decision by only looking at

child nodes. However, good splits are difficult to learn if

the temporal dynamics are not well captured on the fea-

ture space. On the other hand, if we had obtained a split

that made transitions pure, we could also make a good deci-

sion. These observations motivate us to study how learning

transitions between frames can help us to improve our pre-

dictions by introducing temporal information that was not

available otherwise.

T 1
1

S0

1 2

0

T 1
2

T 2
2

θ0

S1 S2

Figure 1: Consecutive frames representing two different ac-

tions (in purple ‘duck’, in orange ‘kick’) arrive at node 0.

These frames are split in two different subsets S1 and S2

corresponding to child nodes 1 and 2. We compute the tran-

sitions as pairs of d-distant frames (d = 1 in this example)

and we group them according to the route of each individual

frame. T 1
1 and T 2

2 present only one transition, while T 1
2 two

(one per class) and T 2
1 is empty. T j

i are determined by θ0.

3.1. Learning transition forests

Our method for training a transition tree works by grow-

ing a tree one level at a time similar to [23]. At each level,

we randomly assign one splitting criterion to each node,

choosing between classification and transition. The clas-

sification criterion maximizes the class separation of static

poses while the transition criterion groups frames that share

similar transitions. As mentioned above, in order to max-

imize the span of temporal information learned, we learn

transitions between d-distant pairs of frames (Eq. 1) from

previous frame up to the temporal order of the forest, k.

For each tree, we randomly assign a value of d in the men-

tioned range and we keep it constant during the growth of

this particular tree. For a total ensemble of M trees we

will have subsets of trees trained with different d value:

M =M1 ∪ ... ∪Mk.

Consider a node i ∈ Nl and a decision θi. According to

θi, the instances in Si are directed to its left or right child

nodes, 2i+1 and 2i+2 respectively, as S2i+1 = {(xt, yt) ∈
Si | f(θi, xt) ≤ 0} and S2i+2 = Si \ S2i+1. Note that

the split function f operates on a single frame, which will

be shown important in the inference stage. After splitting,

we can compute the sets of transitions between their child

nodes {2i+1, 2i+2} ⊆ Nl+1 as {T 2i+n
2i+m}m,n∈{1,2}. Note

that T i
i is split in four disjoints sets, each one related to

the combination of transitions associated to its child nodes.

The decision θi is chosen based on the minimization of an

objective function.

Objective function. The objective function has two as-

sociated terms: one for single frame classification Ec and

one for transitions between child nodes denoted as Et. The
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classification term Ec is the weighted Shannon entropy of

the class distributions over the set of samples that reach the

child nodes {S2i+m}m∈{1,2} as in standard classification

forests. Willing to decrease the uncertainty of transitions

while growing the tree, the transition term aims to learn

node decisions in a way that subsets of transitions are more

pure in the next level. For a node j ∈ Nl, the transition term

is a function of the transitions between its child nodes and

it is defined as:

Et(θj) =
∑

m,n∈{1,2}

|T 2j+n
2j+m|H(T 2j+n

2j+m) , (2)

where T
(·)
(·) is defined in Eq. (1) and H(T

(·)
(·) ) is the Shan-

non entropy computed over the different label transitions.

These two terms could be alternated or weighted-summed

as single node optimizations. However, in order to reflect

transitions between more distant nodes and capture further

temporal information, we extend Et to consider the set of

all available nodes in a given level of a tree (as shown in

Fig. 2 (a)). For this, we randomly assign a subset of parent

nodes Nc and Nt to be optimized by Ec and Et respectively.

Given that transitions between nodes depend on the split de-

cisions at different nodes, the task of learning a level can be

formulated as the joint minimization of an objective func-

tion over the split parameters associated to the level nodes

as:

min
{θi}

Ec({θi}i∈Nc
) + Et({θi}i∈Nc∪Nt

) . (3)

Optimization. The problem of minimizing the objective

function (Eq. 3) is hard to solve. One could think of ran-

domly assign values to {θi} and pick the values that mini-

mize the objective in a similar way to standard greedy opti-

mization in decision trees. However, the search space grows

exponentially with the depth of the tree and evaluating Et

for all nodes and samples at the same time is computation-

ally expensive. Our strategy to relieve these problems is

presented in Algorithm 1. Given that Ec only depends on

decisions in Nc nodes, we can optimize these nodes using

the standard greedy procedure. Once optimized and fixed

all nodes in Nc, we iterate over every node in Nt to find the

split function that minimizes a local version of Et, denoted

as E′
t, that keeps all the split parameters fixed except the one

of the considered node. It is defined for a node j ∈ Nt and

it depends on the transitions between its child nodes and all

the transitions from and to these child nodes:

E′
t(θj |{θi}i 6=j∈Nc∪Nt

) =
∑

m,n∈{1,2}

between j’s child nodes (c.n.)
︷ ︸︸ ︷

|T 2j+n
2j+m|H(T 2j+n

2j+m)

+
∑

i
m,n∈{1,2}

|T 2i+n
2j+m|H(T 2i+n

2j+m)
︸ ︷︷ ︸

from j’s c.n. to i’s c.n.

+ |T 2j+n
2i+m|H(T 2j+n

2i+m)
︸ ︷︷ ︸

to j’s c.n. from i’s c.n.

.

(4)

Algorithm 1 Learning level l of a transition tree

Input: Set of nodes Nl at level l and temporal order d
Output: Set of split function parameters {θi}

1: procedure LEARNLEVEL(Nl)

2: randomly assign nodes in Nl to Nc and Nt

3: for all i ∈ Nc do

4: optimize Nc using Ec

5: save and fix θi
6: end for

7: initialize {θj} for j ∈ Nt

8: while something changes do

9: for all j ∈ Nt do

10: Θ← random feature/threshold selection

11: θj ← argminθ′∈Θ E′
t(θj |{θi}i 6=j∈Nc∪Nt

)
12: end for

13: end while

14: end procedure

The value of E′
t decreases (or does not change) at each itera-

tion, thus indirectly minimizing Et. Following this strategy

it is not likely to reach a global minimum, but in practice

we found that is effective to our problem. Note that com-

puting Eq. 4 needs the split parameters in other nodes to

be available, forcing us to initialize them before the first it-

eration. We found that an initialization of nodes using Ec

helped the algorithm to converge faster than using a random

initialization relieving us of computational cost.

3.2. Inference

Restricting ourselves to the set of leaf nodesL, we assign

each transition subset {T j
i }i,j∈L a conditional probability

distribution over label transitions denoted πj
i (yt|yt−d). This

is different from classification forests where the classifica-

tion probability πi(yt) is estimated over all the set of train-

ing instances Si that reached the leaf node i. Instead, we

focus on subsets of transitions that depend on the leaf node

(prediction) that previous d-distant frame reached. Note

that the split function f is defined for a single frame, en-

abling us to perform individual frame predictions. For an

ensemble of Md transition trees, we define a prediction

function given two d-distant frames:

pd(yt|xt, xt−d, yt−d) =
1

|Md|

∑

m∈Md

(π
ℓ(xt−d)

ℓ(xt)
(yt|yt−d))

(m) ,

(5)

where ℓ(xt) and ℓ(xt−d) are the leaf nodes reached by xt

and xt−d at m-th tree respectively. We name this proba-

bility as transition probability. We combine the transition

probability for different previous pairs of frames up to k
with the classification probability (see Fig. 2 (b)). Com-

bining the static classification probability with the temporal

transition probability defines our final prediction equation
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i

Ec(θi)

j

f(θj)

Nl

Nl+1

2i + 2 2j + 22i + 1 2j + 1

T i
i

T
j
i

T i
j

T
j
j

f(θi)

Et(θi, θj)

T i
i

T
j
j

T
j
i

T i
j

yt−2 yt−1 yt

xt−2 xt−1 xt

(a) (b)

d = 1
d = 2

Figure 2: (a) Growing a level l of a transition tree depends on all the node decisions θi and θj at the same time. Each T j
i

divides in four disjoint sets according to the different routes that a pair of samples can follow. (b) In inference, each individual

frame is passed down the forest and static pose classification is combined with transition probability. Transition probability is

computed using the trees trained for specific d-distant frames (shown in different color). In this example k = 2 and |M| = 2.

for a transition forest of temporal order k:

p(yt|xt, xt−1, ..., xt−k, yt−1, ..., yt−k) =

1

|M|

∑

m

(πℓ(xt)(yt))
(m) 1

k

∑

1≤d≤k

pd(yt|xt, xt−d, yt−d) .

(6)

For each frame xt we obtain a probability of the frame

belonging to one action (plus background in detection set-

ting) based on k previous predictions. In the action recog-

nition setting we average the per-frame results to predict the

whole sequence. On the other hand, for online action detec-

tion, we define two thresholds, βs and βe, to locate the start

and the end frame of the action. When the score for one ac-

tion exceeds βs, we aggregate the results since the start of

the action and we do not allow any action change until the

score is less than βe.

3.3. Implementation details

If the training data is not enough, we may encounter

empty transition subsets at low levels of the tree. For this

reason, we set a minimum number of instances needed to es-

timate their probability distribution and we empirically set

this parameter to ten in our experiments. This parameter is

conceptually the same as the stopping criterion of requiring

a minimum number of samples to keep splitting a node.

4. Experimental evaluation

In the following we present experiments to evaluate the

effectiveness of our approach. We start evaluating our ap-

proach for action recognition and we follow with online ac-

tion detection. In all experiments we performed standard

pre-processing on given joint positions similar to [26] mak-

ing them invariant to scale, rotation and point of view.

4.1. Baselines

We compare our approach with five different forest-

based baselines detailed next. For fair comparison, we al-

ways use the same number of trees in all methods and we

adjust the maximum depth for best performance.

Random Forest [3] (RF). To assess how well performs

a decision forest while only using static information, we im-

plement a single frame-based random forest only using Ec.

Sliding Window Forest [10] (SW). To compare our

learning of temporal dynamics with the strategy of stack-

ing multiple frames, we implement a forest using the sliding

window setting in which the temporal order k the number

of previous frames in the window.

Trajectory Hough Forest [11] (THF). To compare with

a temporal regression method, we implement [11] and adapt

their color trajectories to poses and their histograms to deal

with a temporal order of k.

Dynamic Forest Model [14] (DFM). To compare our

discriminative forest approach with a generative one, our

third baseline is the a generative forest where k is the order

of their non-linear Markov model. With no public imple-

mentation available, we directly report results in [14].

Pairwise Conditional Random Forest [6] (PCRF). To

assess the discriminative pairwise information, we imple-

ment a pairwise forest similar to the one used for expression

recognition [6]. We grow and combine classification trees

for different pairwise temporal distance up to k.
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Figure 3: Temporal order k for different baselines and our

approach on MSRC-12 dataset.
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Figure 4: (a) Ec vs. Ec + Et and terms in Eq. 6. (b) con-

tribution of different d order trees to transition probability

shown in (a) and defined in Eq. 5 on MSRC-12.

4.2. Action recognition experiments

We evaluate the proposed algorithm on three differ-

ent action recognition benchmarks: MSRC-12 [10], MSR-

Action3D [15] and Florence-3D [19]. First, we perform

detailed control experiments and parameter evaluation on

MSRC-12 dataset. Next, we evaluate our approach compar-

ing with baselines and state-of-the-art on all datasets.

4.2.1 MSRC-12 experiments

The MSRC-12 [10] dataset consists of 12 iconic and

metaphoric gestures performed by 30 different actors. We

follow the experimental protocol in [14]: only the 6 iconic

gestures are used, making a total of 296 sequences and we

perform 5-fold leave-person-out cross-validation, i.e., 24

actors for training and 6 actors for testing per fold.

Temporal order k and comparison with baselines. In

Fig. 3 we show experimental results varying the temporal

order parameter k for all approaches. We observe that using

only static information on single frames (RF) to recognize

action is limited and it can be improved by stacking multi-

ple frames (SW). Adding a regression term as in THF helps

to increase the accuracy. DFM uses the same exact input

window as SW, while being more robust as a result of their

explicit modeling of time. Better than the rest of baselines,

PCRF shows that capturing pairwise information is effec-

tive to model the temporal dynamics of the actions. On the

Method Year Real-time Online Acc (%)

DFM [14] 2014 X X 90.90

ESM [12] 2014 ✗ ✗ 96.76

Riemann [8] 2015 ✗ ✗ 91.50

PCRF (our result) [6] 2015 X X 91.77

Bag-of-poses [38] 2016 ✗ ✗ 94.04

Ours (JP) 2016 X X 94.22

Ours (RJP) 2016 X X 97.54

Ours (MP) 2016 X X 98.25

Table 1: MSRC-12: Comparison with state-of-the-art using

different frame representations.

other hand, our approach shows the best performance for all

temporal orders. This shows that both combining static and

temporal information in a discriminative way is very effec-

tive. In the next two paragraphs we analyze the contribution

of both sources of information.

Discriminative power of learned transitions. We

measure the impact of our transition training procedure pre-

sented in Section 3.1. For this, we train two different tran-

sition forests, one using only Ec and one using Ec and Et.

For each forest, we show the performance by breaking down

the terms of Eq. 6: (i) using only the classification proba-

bility; (ii) using only the transition probability (Eq. 5); (iii)

combining both terms (Eq. 6).

Results are shown in Fig. 4 (a). We observe that our pro-

posed training algorithm increases the performance of both

static and transition terms, leading to an important overall

improvement. The static classification term improves sub-

stantially, meaning that Et helps to separate categories on

the feature space by introducing temporal information that

was not available otherwise. In Fig. 4 (b) we show the con-

tribution of each temporal distance to the overall transition

probability in Eq. 5.

Frame representation. In addition to joint positions

(JP) from above experiments, we experimented with two

different frame representations: one static and one dynamic.

The static one consists of pairwise relative distance of joints

(RJP), proven to be more robust than JP while being very

simple [26]. The dynamic one, named Moving Pose (MP)

[36] incorporates temporal information by adding velocity

and acceleration of joints using nearby frames. In Table 1

we observe that RJP and MP perform similarly well per-

forming better than JP, showing that our approach can ben-

efit of different static and dynamic feature representations.

Initialization. We initialized the transition nodes Nt in

two ways: randomly and using Ec. We found that the lat-

ter initialization provided slightly better results by 0.35%
after ten iterations. However, after doubling the number of

iterations, the difference was reduced to 0.07%, leading to

the conclusion that our algorithm is robust to initialization,

but correctly initializing reduces the training time. Based
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on this, we limited the number of iterations to ten.

Ensemble size. A single tree of maximum depth 10 gave

us an accuracy of 86.42%, six trees 93.10% and twelve

94.22%. As a tree-based algorithm, adding more trees is

expected to increase the performance (up to saturation) at

the cost of computational time.

Comparison with the state-of-the-art. In Table 1 we

compare our approach with the state-of-the-art. We observe

that using the simple JP representation, we achieve the best

with the exception of ESM [12]. However, ESM uses a

slow variant of DTW and MP representation. Using both

RJP and MP representation our approach achieves the best

performance while being able to run in real time (1778 fps).

4.2.2 MSR-Action3D experiments.

The MSR-Action3D [15] dataset is composed of 20 actions

performed by 10 different actors. Each actor performed ev-

ery action two or three times for a total of 557 sequences.

We perform our main experiments following the setting pro-

posed by [15]. In this protocol, the dataset is divided into

three subsets of eight actions, named AS1, AS2 and AS3.

The classification is performed on each subset separately

and the final classification accuracy is the average over the

three subsets. We perform a cross-subject validation in

which half of the actors are used for training and the rest

for testing using ten different splits. We use RJP frame rep-

resentation, k = 4 and 50 trees of maximum depth 8.

Baselines and state-of-the-art comparison are shown in

Tables 2 and 3 respectively. Our approach achieves bet-

ter performance than all baselines. Offline state-of-the-art

methods [28, 37] achieve the best performance. Focusing

on methods that are both real-time and online, the best per-

formance is achieved by HURNN-L [9], which uses a deep

architecture to learn an end-to-end classifier. We obtain bet-

ter results than [9] on both their online and offline flavors.

Some authors [25, 36] show results using a different

protocol [29] in which all 20 actions are considered. For

comparison, using this protocol we achieved an accuracy

of 92.8%, which is superior to state-of-the-art online ap-

proaches of MP [36], 91.7%, and dLSTM [25], 92.0%,

but inferior to the offline approach of Gram matrix [37],

94.7%. It is important to note that the inference complexity

of both [36, 37] increases with the number of different ac-

tions, which is not the case of our approach, making it more

suitable for realistic scenarios. [37] reported a testing time

(ten runs over whole testing set) of 1523 seconds, for the

same setting we report a significant lower time of 289 s.

4.2.3 Florence-3D experiments

The Florence-3D dataset [19] consists of 9 different actions

performed by 10 subjects. Each subject performed every

Method MSRC-12 MSR-Action3D Florence-3D

RF [3] 86.83 87.77 85.46

SW [10] 87.81 90.48 88.44

THF [11] 89.46 91.31 89.06

DFM [14] 90.90 - -

PCRF [6] 91.77 92.09 91.23

Ours 94.22 94.57 94.16

Table 2: Comparison with forest-based baselines.

Method Year Real-time Online Acc (%)

Bag of poses [19] 2013 ✗ ✗ 82.15

Lie group [26] 2014 ✗ ✗ 90.88

PCRF (our result) [6] 2015 X X 91.23

Rolling rot. [27] 2016 ✗ ✗ 91.40

Graph-based [30] 2016 ✗ ✗ 91.63

Key-poses [28] 2016 X ✗ 92.25

Ours 2016 X X 94.16

Table 4: Florence-3D: Comparison with state-of-the-art.

action two or three times making a total of 215 action se-

quences. Following previous work [28, 30], we adopt a

leave-one-subject-out protocol, e.g. nine subjects are used

for training and one for testing for ten times. We used the

same parameters as in the previous experiment.

We compare the proposed approach with baselines and

state-of-the-art in Tables 2 and 4 respectively. We can see

that our approach achieves the best performance over all

baselines and state-of-the-art. Note that on this dataset

we outperform the recent Key-poses approach [28], which

achieved the best performance on MSR-Action3D dataset.

4.3. Online action detection experiments

We end our experimental evaluation in a more realistic

scenario. We test our approach for online action detec-

tion on the very recently proposed Online Action Detection

(OAD) dataset [16]. The dataset consists of 59 long se-

quences containing 10 different daily-life actions performed

by different actors. Each sequence contains different ac-

tion/background periods of variable length in arbitrary or-

der annotated with start/end frames. We use the same splits

and evaluation protocol as [16]. Previous work [16] fixed

the number of considered previous frames to 10, in conse-

quence we set k = 10. We use RJP representation and 50

trees of maximum depth 20. Thresholds βs and βe were

empirically set to 0.79 and 0.16 respectively.

In Table 5 we report class-wise and overall F1-score for

baselines, state-of-the-art and our approach. We also report

the accuracy of start and end frame detection ‘SL’ and ‘EL’

respectively. We observe that our approach outperforms all

baselines. PCRF forest shown the best results among the
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Method Year Real-time Online AS1 (%) AS2 (%) AS3 (%) Average (%)

BoF forest [40] 2013 ✗ ✗ - - - 90.90

Lie group [26] 2014 ✗ ✗ 95.29 83.87 98.22 92.46

HBRNN-L [9] 2015 X ✗ 93.33 94.64 95.50 94.49

Graph-based [30] 2016 ✗ ✗ 93.75 95.45 95.10 94.77

Gram matrix [37] 2016 X ✗ 98.66 94.11 98.13 96.97

Key-poses [28] 2016 X ✗ - - - 97.44

PCRF (our result) [6] 2015 X X 94.51 85.58 96.18 92.09

HURNN-L [9] 2015 X X 92.38 93.75 94.59 93.57

Ours 2016 X X 96.10 90.54 97.06 94.57

Table 3: MSR-Action3D: Comparison with state-of-the-art.

Baselines State-of-the-art

Action RF SW PCRF RNN [39] JCR-RNN [16] Ours

drinking 0.598 0.387 0.468 0.441 0.574 0.705

eating 0.683 0.590 0.550 0.550 0.523 0.700

writing 0.640 0.678 0.703 0.859 0.822 0.758

opening cupboard 0.367 0.317 0.303 0.321 0.495 0.473

washing hands 0.698 0.792 0.613 0.668 0.718 0.740

opening microwave 0.525 0.717 0.717 0.665 0.703 0.717

sweeping 0.539 0.583 0.635 0.590 0.643 0.645

gargling 0.298 0.414 0.464 0.550 0.623 0.633

throwing trash 0.340 0.205 0.350 0.674 0.459 0.518

wiping 0.823 0.765 0.823 0.747 0.780 0.823

Overall 0.578 0.556 0.607 0.600 0.653 0.712

SL 0.361 0.366 0.378 0.366 0.418 0.514

EL 0.391 0.326 0.412 0.376 0.443 0.527

Inference time (s) 0.59 0.61 3.58 3.14 2.60 1.84

Table 5: Performance comparison on Online Action Detection (OAD) dataset.

baselines with a performance comparable to RNN, show-

ing that temporal pairwise information is important. On the

other hand, RF performs particularly well on this dataset,

revealing that distinguishing static poses is important in ad-

dition to temporal information. Combining both static and

temporal information in our approach led us to better per-

formance than the current state-of-the-art JCR-RNN [16],

which added a regression term on a LSTM to predict both

start and end frames of actions.

Efficiency. We measure the average inference time on 9

long sequences of 3200 frames in average. We present the

results at the bottom of Table 5 with a C++ implementation

on a Intel Core i7 (2.6 GHz) and 16 GB RAM. All compared

approaches are real-time, with JCR-RNN achieving 1230

fps for 1778 fps of our approach, showing that we can obtain

high performance while keeping the complexity low.

5. Summary and conclusion

We proposed a new forest based classifier that is able to

learn both static poses and transitions in a discriminative

way. Our proposed training procedure helps to capture tem-

poral dynamics in a more effective way than other strong

forest baselines. Introducing temporal relationships while

growing the trees and also using them in inference helped

to obtain more robust frame-wise predictions, leading us to

show state-of-the-art performance in both challenging prob-

lems of action recognition and online action detection.

Currently, our learning stage is limited to pairwise tran-

sitions and we believe that it would be interesting to incor-

porate different time orders within the same tree learning.

Also, given the generality of our work, it would be interest-

ing to test its performance using other data modalities (such

as RGB/depth frame features) or applied to other temporal

problems requiring efficient and online classification.
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