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Abstract

We propose a simple, yet effective approach for real-time

hand pose estimation from single depth images using three-

dimensional Convolutional Neural Networks (3D CNNs).

Image based features extracted by 2D CNNs are not direct-

ly suitable for 3D hand pose estimation due to the lack of

3D spatial information. Our proposed 3D CNN taking a 3D

volumetric representation of the hand depth image as input

can capture the 3D spatial structure of the input and accu-

rately regress full 3D hand pose in a single pass. In order

to make the 3D CNN robust to variations in hand sizes and

global orientations, we perform 3D data augmentation on

the training data. Experiments show that our proposed 3D

CNN based approach outperforms state-of-the-art methods

on two challenging hand pose datasets, and is very efficient

as our implementation runs at over 215 fps on a standard

computer with a single GPU.

1. Introduction

Articulated hand pose estimation is one of the core tech-

nologies for human computer interaction in virtual reali-

ty and augmented reality applications, since this technol-

ogy provides a natural way for users to interact with virtu-

al environments and objects. Accurate real-time 3D hand

pose estimation has aroused a lot of research attention in

the past few years [7, 10, 15, 18, 21, 30, 32, 34, 39] with

the emergence of consumer depth cameras. However, it is

still challenging to achieve efficient and robust estimation

performance because of large variations in hand pose, high

dimensionality of hand motion, severe self-occlusion and

self-similarity of fingers in the depth image.

Many recent works on hand pose estimation have

achieved good performance due to the success of Convo-

lutional Neural Networks (CNNs) [4, 17, 23, 34, 40, 42]
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Figure 1: Overview of our proposed 3D CNN based hand

pose estimation method. We generate the 3D volumetric

representation of hand with projective D-TSDF from the 3D

point cloud. 3D CNN is trained in an end-to-end manner

to map the 3D volumetric representation to 3D hand joint

relative locations in the 3D volume.

and the availability of large hand pose datasets [28, 30, 34].

These methods directly take the depth image as input to

2D CNNs which output 3D joint locations [16, 17, 23, 40],

hand model parameters [42] or heat-maps [34]. Neverthe-

less, we argue that image based features extracted by 2D

CNNs are not directly suitable for 3D hand pose estima-

tion due to the lack of 3D spatial information. For example,

in [17], the initial result of 2D CNN is very poor, and it

is iteratively refined by a feedback loop to incorporate 3D

information from a generative model. Ge et al. [4] better

utilize the depth cues by projecting the depth image onto

three views and applying multi-view CNNs to regress three

views’ heat-maps. However, the multi-view CNNs still can-

not fully exploit 3D spatial information in the depth image,

since the projection from 3D to 2D will lose certain infor-

mation. Although increasing the number of views may im-

prove the performance, the computational complexity will

be increased when using more views.
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In this work, we propose a 3D CNN based hand pose

estimation approach that can capture the 3D spatial struc-

ture of the input and accurately regress full 3D hand pose

in a single pass, as illustrated in Figure 1. Specifically, hu-

man hand is first segmented from the depth image; the 3D

point cloud of the hand is encoded as 3D volumes storing

the projective Directional Truncated Signed Distance Func-

tion (D-TSDF) [24] values, which are then fed into a 3D

CNN containing three 3D convolutional layers and three

fully-connected layers. The output of this network is a set

of 3D hand joint relative locations in the 3D volume. By

applying simple coordinate transformations, we can finally

obtain the 3D hand joint locations in the camera’s coordi-

nate system. To our knowledge, this is the first work that

applies such a 3D CNN in hand pose estimation in order to

understand hand pose structure in 3D space and infer 3D

hand joint locations efficiently and robustly.

Compared to previous CNN based methods for hand

pose estimation, our proposed 3D CNN based method has

the following advantages:

• Our proposed 3D CNN has the ability to effectively learn

3D features from the 3D volumetric representation for

hand pose estimation. Compared to the 2D CNN regress-

ing 3D joint locations from 2D features [5, 16, 17, 40],

the 3D CNN can directly regress 3D joint locations from

3D features in a single pass without adopting any iterative

refinement process, and can achieve superior estimation

performance.

• Our proposed method can run fast at over 215 fps on a

single GPU. We design a relatively shallow architecture

for the 3D CNN which contains only three 3D convolu-

tional layers and three fully-connected layers. In addi-

tion, the number of parameters in fully-connected layers

is moderate. Thus, our proposed method can meet the

real-time requirement for hand pose estimation.

• Our proposed method is robust to variations in hand sizes

and global orientations, since we perform 3D data aug-

mentation on the training set. Different from traditional

data augmentation that performs 2D transformations on

2D images, our proposed 3D data augmentation applies

3D transformations on 3D point clouds, thus can better

enrich the training data in 3D space.

We evaluate our proposed method on two challeng-

ing hand pose datasets: MSRA dataset [28] and NYU

dataset [34]. Comprehensive experiments show that our

proposed 3D CNN based method for 3D hand pose estima-

tion outperforms state-of-the-art methods on both datasets,

with runtime speed of over 215 fps on a standard computer

with a single GPU.

2. Related Work

Hand pose estimation Methods for hand pose estima-

tion from depth images can be categorized into model-

driven approaches, data-driven approaches and hybrid ap-

proaches. Model-driven approaches fit an explicit de-

formable hand model to depth images by minimizing a

hand-crafted cost function. The commonly used optimiza-

tion methods are Particle Swarm Optimization (PSO) [18],

Iterative Closest Point (ICP) [29] and their combina-

tion [20]. The 3D hand model is represented by Linear

Blend Skinning (LBS) model [1, 8, 36], Gaussian mix-

ture model [25, 26], etc. Some models require to define

user-specific parameters and motion constraints. These ap-

proaches are sensitive to initialization, since they usually

take advantage of temporal information. The estimation er-

rors will be accumulated when previous frames’ estimations

are inaccurate.

Data-driven approaches learn a mapping from depth im-

age to hand pose from training data. Inspired by the pi-

oneering work in human pose estimation [22], [7, 9, 28,

30, 31, 37, 39] apply random forests and their variants as

the discriminative model. Limited by the hand-crafted fea-

tures, random forests based methods are difficult to outper-

form current CNN based methods in hand pose estimation.

Our work is related to the CNN based data-driven approach.

Tompson et al. [34] first propose to employ CNNs to predict

heat-maps representing the probability distribution of 2D

joint positions in the depth image. Ge et al. [4] improve this

method by predicting heat-maps on multiple views in order

to better utilize the depth information. Oberweger et al. [17]

train a feedback loop containing a discriminative network

for initial pose estimation, a generative network for pose

synthesizing and a pose update network for improving the

pose estimation. Zhou et al. [42] propose to predict hand

model parameters instead of the joint locations by adopt-

ing CNNs. Sinha et al. [23] extract activation features from

CNNs to synchronize hand poses in nearest neighbors by

using the matrix completion algorithm. Ye et al. [40] pro-

pose a spatial attention network with a hierarchical hybrid

method for hand pose estimation. All these methods use 2D

filters in 2D CNNs to extract 2D features which are lack of

3D spatial information. Thus, mapping from 2D features to

3D joint locations is difficult. In this work, we lift the 2D

CNN to 3D CNN which can understand 3D spatial informa-

tion and extract 3D features for 3D hand pose estimation.

Hybrid approaches combine a data-driven approach

based per-frame reinitialization with a model driven ap-

proach [21, 32]. These methods are usually applied for hand

tracking since they utilize temporal information to achieve

smooth results. However, in this work, we focus on hand

pose estimation from single depth images without using any

temporal information, which can be used for robust reini-

tialization in hybrid hand tracking approaches.
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Figure 2: Visualization of TSDF volumes. For comparison, we visualize accurate TSDF and projective D-TSDF. We only

visualize voxels of which values are less than 1 and larger than -1 by using color maps shown in the color bar. Positive value

(red or yellow) indicates that the voxel is in front of the visible surface; and negative value (blue or cyan) indicates that the

voxel is behind the visible surface. The volume resolution is 32×32×32. This figure is best viewed in color.

3D CNN 3D CNNs have been successfully applied in

video and dynamic hand gesture analysis for recognition

tasks [6, 35, 13], which regard time as the third dimen-

sion. 3D CNNs are also applied to extract 3D features

from 3D data, such as depth images and CAD models.

3D ShapeNets [38] learn powerful 3D features by using

the Convolutional Deep Belief Network for modeling 3D

shapes. Qi et al. [19] show that the 3D CNN with low in-

put volume resolution can still achieve good object classi-

fication accuracy by applying subvolume supervision and

anisotropic probing. Song and Xiao [24] propose to use

3D CNN for 3D object detection in RGB-D images. Matu-

rana and Scherer [12] propose VoxNet, a 3D CNN that can

process LiDAR, RGB-D and CAD data for object recogni-

tion. They also apply the 3D CNN for landing zone detec-

tion [11]. Yumer and Mitra [41] propose to use the 3D CNN

to learn deformation flows from CAD models for 3D shape

deformation. Although these works achieve state-of-the-art

results in their problems, none of them focuses on 3D hand

pose estimation that requires to localize a set of articulated

3D points from single depth images in real-time.

3. Methodology

Our method estimates 3D hand pose from single depth

images. Specifically, the input of this task is a depth image

containing a hand and the outputs are K hand joint locations

in 3D space, which represent the 3D hand pose. Let the K
objective hand joint locations be Φ = {φk}

K

k=1
∈ Λ, here

Λ is the 3×K dimensional hand joint space.

The hand depth image is encoded by a volumetric rep-

resentation which is the input of our proposed 3D CNN.

Through 3D convolution and 3D pooling operations in the

3D CNN, 3D features can be extracted from the volumet-

ric representation and are used for regressing 3D hand joint

relative locations in the 3D volume. To make the 3D CNN

robust to various hand sizes and global orientations, we also

perform 3D data augmentation on the training data.

3.1. Volumetric Representation

The objective for encoding volumetric representation is

to generate 3D volumes representing the hand in 3D space

as raw as possible from the depth image in real-time. These

3D volumes will be fed into the 3D CNN for learning 3D

features and regressing 3D hand joint locations.

If the input is a 3D CAD model where the 3D informa-

tion is fully known, we can use a binary grid to represent

occupied and unoccupied voxels in the 3D volume. How-

ever, in our problem, the input is a 2.5D depth image which

only captures the visible surface points from the view of

camera. 3D ShapeNets [38] classify voxels as free space,

surface and occluded space. The probability distribution

of occupancy in the occluded space is estimated for shape

classification. But this method requires to traverse multiple

camera views and different possible shapes, thus is hard to

achieve real-time performance. KinectFusion [14] applies

the Truncated Signed Distance Function (TSDF) based vol-

umetric representation for environment mapping and local-

ization with depth camera. In accurate TSDF, each voxel

stores the signed distance from the voxel center to the clos-

est surface point which is positive when the voxel is in front

of the visible surface and negative when the voxel is occlud-

ed by the visible surface. The distance is cut off at a trunca-

tion distance and is normalized between -1 and 1. However,

computing accurate TSDF is time consuming, because it re-

quires to search the closest point among all surface points

for all voxels in the 3D volume. For real-time considera-

tions, the projective TSDF, where the closest point is found

only on the line of sight in the camera frame, should be

used. It can be computed efficiently in parallel on a GPU.

Since the projective TSDF is an approximation of the ac-

curate TSDF, some information may be inaccurate or lost

in the projective TSDF. In order to encode more informa-

tion in the volumetric representation, in this work, we ap-

ply the projective Directional TSDF (D-TSDF) proposed in

[24] that replaces the Euclidean distance with a 3D vector
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(a) (b)

Figure 3: (a) Architecture of our proposed 3D convolutional neural network. The network contains three 3D convolutional

layers and three fully-connected layers. (b) Visualization of extracted 3D features output from layers L1, L2 and L3 during

the forward pass in a fully trained CNN model. For illustration purpose, we only draw 16, 32, 48 feature volumes output

from L1, L2, L3, respectively. For feature volumes output from L1, we only draw voxels of which values are larger than a

threshold. Voxels with large values are shown in bright color, and voxels with small values are shown in dark color. This

figure is best viewed in color.

[dx, dy, dz] representing three directions’ distances in the

camera’s coordinate system.

Figure 2 shows some examples of accurate TSDF vol-

umes and projective D-TSDF volumes with different hand

poses. As can be seen, in accurate TSDF, the value of TSDF

increases when moving from the visible surface, formed

by the point cloud, to the free space and decreases when

moving to the occluded space. But in projective D-TSDF,

the values of three directions vary continuously along their

corresponding directions and keep positive in front of the

surface, negative behind the surface. Experiments in Sec-

tion 4.1 will show that the projective D-TSDF is computa-

tionally efficient and can improve the estimation accuracy.

To create a 3D volume containing M×M×M voxels,

we first build an axis-aligned bounding box (AABB) for 3D

hand points. AABB is the minimum bounding box of which

x, y, z axes are respectively aligned with x, y, z axes of the

camera’s coordinate system. The 3D volume’s center is set

at the center of AABB, and its faces are set to be parallel to

those of AABB. The edge length of a voxel is set as:

lvoxel = max {lx, ly, lz}/M, (1)

where lx, ly , lz are AABB’s three edge lengths; M is the

volume resolution value. The truncation distance is set as

3× lvoxel. We balance the volume resolution value M with

computational cost. If the volume resolution is too large, it

will be time-consuming and memory intensive. If the vol-

ume resolution is too small, the volumetric representation

cannot give sufficient information for 3D hand pose estima-

tion. In this work, we choose the volume resolution val-

ue M as 32. Some experiments will be conducted in Sec-

tion 4.1 to show that this resolution is suitable for 3D hand

pose estimation when considering both estimation accuracy

and computational efficiency.

3.2. Network Architecture

Our proposed 3D CNN takes three volumes of the pro-

jective D-TSDF as inputs and outputs a column vector con-

taining 3×K elements corresponding to the K 3D hand

joint relative locations in the volume. Figure 3a shows our

proposed network architecture. For the three 3D convolu-

tional layers, the kernel sizes are 53, 33 and 33, all with

stride 1 and no padding. The first two 3D convolutional lay-

ers are followed by 3D max pooling layers with kernel size

23, stride 2 and no padding. After feature extraction by 3D

convolutional layers, three fully-connected layers are used

to map 3D features to 3D hand joint locations. In the first

two fully-connected layers, we apply dropout layers with

dropout rate 0.5 in order to prevent the neural network from

overfitting [27].

We denote a training sample as (Xn,Φn), where Xn is

the depth image, Φn is corresponding joint locations in the

camera’s coordinate system, n = 1, . . . , N . The depth im-

age Xn is converted to the volumetric representation Vn as

described in Section 3.1. Ground truth Φn is transformed

to coordinates in the volume’s coordinate system and nor-
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malized between 0 and 1, denoted as Yn:

Yn = T
volume
camera (Φn)

/

(M · lvoxel) + 0.5, (2)

where T
volume
camera (·) is a coordinate transformation operation

converting joint locations Φ in camera’s coordinate system

to those in volume’s coordinate system. Since the origin

of the volume’s coordinate system is at the center of the

3D volume, coordinate values in the volume divided by the

volume’s edge length are between -0.5 and 0.5 (assume that

all joints are within the 3D volume). Thus, we add 0.5 in

Equation 2 to make values in Yn between 0 and 1. Dur-

ing the training stage, we minimize the following objective

function using stochastic gradient descent (SGD) algorithm:

w∗ = argmin
w

∑N

n=1

‖Yn −F (Vn,w)‖
2
, (3)

where w denotes network weights, F represents the 3D

CNN regressor.

In Figure 3b, we visualize some extracted 3D features

output from layers L1, L2 and L3 during the forward pass

using a fully trained 3D CNN model. The corresponding

input is the example shown in Figure 1. As can be seen,

from low layer to high layer, the size of feature volume de-

creases and features are more and more abstract. For each

layer, different parts (e.g., finger tips and hand palm) are ex-

aggerated in different 3D feature volumes. In addition, the

receptive field size of the third convolutional layer (L3) is

20, which can cover a large region in the 3D volume. With

such a large receptive field size, the network can capture

spatial dependencies of 3D hand joints and embed the 3D

joint constraints in an implicit way without using any ex-

plicit hand model or post-processing.

3.3. 3D Data Augmentation

One challenge of hand pose estimation is that hand pose

has large variations in global orientations and hand sizes. In

order to make the 3D CNN model robust to different orien-

tations and sizes, we propose to perform 3D data augmen-

tation on the training data. Different from existing 2D im-

age data augmentation, our method can directly rotate and

stretch the hand point cloud in 3D space.

We first stretch the point cloud along x, y, z axes of the

camera’s coordinate system by stretch factors sx, sy and

sz , respectively. Then, the point cloud is rotated around x,

y, z axes of the camera’s coordinate system with rotation

angles θx, θy and θz , respectively. For a 3D point p, after

stretching and rotation, the point p is transformed into p′:

p′ = R · S · p

R = Rx (θx) · Ry (θy) · Rz (θz)

S = Diag (sx, sy, sz) ,

(4)

where Rx, Ry and Rz are 3×3 rotation matrices around x,

y, z axes, respectively; Diag (sx, sy, sz) is a 3×3 diagonal

Figure 4: An example of 3D data augmentation. Top-

left: original point cloud, ground truth and TSDF volume.

Bottom-left: point cloud, ground truth and TSDF volume

after 3D stretching. Top-right: point cloud, ground truth

and TSDF volume after 3D rotation. Bottom-right: point

cloud, ground truth and TSDF volume after 3D stretching

and rotation. For illustration purpose, we only draw the pro-

jective D-TSDF volume on z direction.

matrix whose diagonal entries starting in the upper left cor-

ner are sx, sy and sz . Figure 4 shows an example of 3D data

augmentation. 3D stretching and rotation are performed on

hand point cloud and corresponding ground truth. TSDF

volumes are generated from the transformed point cloud.

In this work, a transformed training set is generated by

randomly stretching and rotating original training samples.

The rotation angles θx and θy are chosen uniformly at ran-

dom from the interval [−45◦, 45◦]. The rotation angle θz is

chosen uniformly at random from the interval [−90◦, 90◦].
The stretch factors sx and sy are chosen log-uniformly at

random from the interval [1/1.3, 1.3]. Since it is the rela-

tive size rather than the absolute size that affects the TSDF

volume, we can set the stretch factor sz as 1. During the

training stage, both the original training set and the trans-

formed training set are used for training.

4. Experiments

We evaluate our proposed method on two public hand

pose datasets: MSRA dataset [28] and NYU dataset [34].

Three metrics are employed to evaluate the hand pose esti-

mation performance in our experiments. The first metric is

the per-joint mean error distance over all test frames. The

second metric is the proportion of good frames in which the

worst joint error is below a threshold [33], which is a strict

measure. The third metric is the proportion of joints within

an error threshold [21].

All experiments are conducted on a computer with two
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Figure 5: Self-comparison of different methods on MSRA dataset [28]. Left: the impact of different volume resolutions on

the proportion of good frames. Middle: the impact of different TSDF types and data augmentation on the proportion of good

frames. Right: the impact of different TSDF types and data augmentation on the per-joint mean error distance (R:root, T:tip).

Intel Core i7 5930K 3.50GHz, 64GB of RAM and an Nvidia

Quadro K5200 GPU. The 3D CNN model is implemented

within the Torch7 [3] framework. For network training pa-

rameters, we choose the batch size as 16, the learning rate as

0.01, the momentum as 0.9 and the weight decay as 0.0005.

The networks are trained for 50 epochs. Training the 3D

CNN proposed in Section 3.2 with 3D data augmentation

takes about 12 hours on the MSRA dataset and 13 hours on

the NYU dataset.

4.1. MSRA Hand Pose Dataset

The MSRA hand pose dataset [28] contains 9 subjects,

each subject contains 17 gestures and each gesture contains

about 500 frames. In the experiment, we train on 8 sub-

jects and test on the remaining subject. This experiment is

repeated 9 times for all subjects. The ground truth for each

frame contains 21 3D hand joint locations including 4 joints

for each finger and one joint for the wrist.

Self-comparisons For self-comparison, we experiment

with different volume resolutions and different types of

TSDF. We also evaluate the effect of 3D data augmenta-

tion. Experimental results are shown in Figure 5.

We experiment with projective D-TSDF volumes with

different resolution values: 16, 32 and 64. Note that when

the volume resolution is 16×16×16 or 64×64×64, the net-

work architecture is different with that in Figure 3a. We

modify the architectures according to different volume res-

olutions and present them in the supplementary material.

Since training the network with 64×64×64 volume res-

olution will consume large amounts of memory, we only

train and test these three networks with different volume

resolutions on a small subset of the MSRA dataset with-

out data augmentation in this experiment. As shown in

Figure 5 (left), the estimation accuracy of 16×16×16 res-

olution is slightly inferior to those with 32×32×32 and

64×64×64 resolutions. The estimation accuracy of the

latter two resolutions is almost the same. But computing

TSDF volume with 64×64×64 resolution is more time con-

suming and memory intensive. Thus, the volume resolution

32×32×32 is most suitable for hand pose estimation. This

result also shows that our method is robust to relatively low

volume resolution, since the estimation accuracy does not

decrease a lot when the resolution value is 16.

We evaluate the impact of different TSDF types and da-

ta augmentation on the estimation accuracy on the whole

MSRA dataset with volume resolution 32×32×32. Note

that, in this experiment, when the input volume is accu-

rate/projective TSDF which has only one channel, the pa-

rameters of the network architecture in Figure 3a should be

modified. We present the modified architecture in the sup-

plementary material. As can be seen in Figure 5 (middle and

right), the estimation accuracy of accurate TSDF and pro-

jective TSDF is almost the same, which indicates that using

an approximation of the accurate TSDF to speed up compu-

tation will not reduce the estimation accuracy of hand pose

estimation. In addition, the estimation accuracy of projec-

tive D-TSDF is better than that of projective TSDF. When

using 3D data augmentation in the training stage, the esti-

mation accuracy will be further improved. For the real-time

performance, the average computation time for generating

accurate TSDF, projective TSDF and projective D-TSDF

on the same GPU are 30.2ms, 1.9ms and 2.9ms, respec-

tively. Thus, considering both the estimation accuracy and

the real-time performance, the projective D-TSDF is overall

better than accurate TSDF and projective TSDF. In the fol-

lowing experiments, we apply the projective D-TSDF with

32×32×32 volume resolution as the network input and ap-

ply 3D data augmentation for training.

Comparison with state-of-the-art We compare our 3D

CNN based hand pose estimation method with four state-

of-the-art methods: the hierarchical regression method [28],

the collaborative filtering method [2], the multi-view CNN
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Figure 6: Comparison with state-of-the-art methods [28, 2, 4, 37] on MSRA dataset [28]. Left: the proportion of good frames

over different error thresholds. Middle & right: the mean error distance over different yaw and pitch viewpoint angles with

respect to the camera frame. Some curves are cropped from corresponding figures reported in [28, 2, 4, 37].
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Figure 7: Comparison with state-of-the-art methods [34, 16, 17, 42, 23, 40] on NYU dataset [34]. Left: the proportion of

good frames over different error thresholds. Right: the proportion of joints within different error thresholds. Some curves

are cropped from corresponding figures reported in [16, 17, 42, 23, 40].

based method [4] and the local surface normals based

method [37] on the whole MSRA dataset. Note that since

the hierarchical regression method [28] has been shown su-

perior to the methods in [22, 30, 39], we indirectly compare

our method with [22, 30, 39].

As shown in Figure 6, our 3D CNN based method out-

performs state-of-the-art methods by large margin on the

MSRA dataset. The proportion of good frames over differ-

ent error thresholds is shown in Figure 6 (left). Our method

achieves the best performance when the error threshold is

larger than 10mm. For example, when the error threshold

is 30mm, the proportion of good frames of our method is

about 10%, 12%, 25% and 30% higher than those of the

methods in [4], [37] (pose classification), [28] and [2], re-

spectively. When the error threshold is 5mm, the proportion

of good frames of our method is slightly worse than those

of the methods in [28] and [2]. This may be caused by the

relatively large edge length of the voxel, which is 5.5mm

in average when the volume resolution is 32×32×32. In

Figure 6 (middle and right), we compare the mean error

distance over different yaw and pitch viewpoint angles with

the methods in [28, 4]. As can be seen, the mean errors over

different viewpoint angles of our method are about 5.5mm

and 3mm smaller than those of the methods in [28] and [4],

respectively. Our method exhibits less variance to the pitch

viewpoint angle changes with a smaller standard deviation

(0.48mm) than those of the methods in [28] (0.79mm) and

[4] (0.64mm).

4.2. NYU Hand Pose Dataset

The NYU hand pose dataset [34] contains 72,757 train-

ing frames and 8,252 testing frames with continuous hand

poses. The ground truth for each frame contains 36 3D hand

joint locations. In our experiments, the 3D CNN is trained

to estimate a subset of 14 hand joints, following previous

work in [34, 17]. Since the NYU dataset provides the orig-

inal depth image containing human body and background,

we segment the hand from the depth image by using the

Random Decision Forest (RDF) [22] similar to [34].

We first compare our 3D CNN based hand pose estima-

1997



Figure 8: Qualitative results for MSRA dataset [28] and NYU dataset [34]. We compare our 3D CNN based method (in

the second line) with the multi-view CNN based method in [4] (in the first line). The ground truth hand joint locations are

presented in the last line. We show hand joint locations on the depth image. Different hand joints and bones are visualized

using different colors. This figure is best viewed in color.

tion method with five state-of-the-art methods: the 2D CNN

based heatmap regression method [34], the 2D CNN based

direct regression method with a prior [16], the 2D CNN

based regression method using feedback loop [17], the 2D

CNN based hand model parameters regression method [42]

and the deep feature based matrix completion method [23]

on the NYU dataset. This evaluation is performed on the 14

hand joints. As shown in Figure 7 (left), our method signif-

icantly outperforms these five state-of-the-art methods over

all the error thresholds. For example, the proportion of good

frames of our method is about 10% more than that of the

method in [17] when the error threshold is between 20mm

and 40mm.

In order to make a fair comparison with the spatial at-

tention network based hierarchical hybrid method in [40],

we evaluate the proportion of joints within in different er-

ror thresholds on the subset of 11 hand joints following the

experiment in [40] (removing palm joints except the root

joint of thumb). As shown in Figure 7 (right), our method

is superior to the methods in [16, 17, 40] over all the error

thresholds. For example, the proportion of joints within er-

ror threshold 20mm of our method is about 10% more than

that of the method in [40].

4.3. Runtime and Qualitative Results

Runtime The runtime of our method using the projec-

tive D-TSDF with 32×32×32 volume resolution as network

input is 4.6ms in average, including 2.9ms for the projec-

tive D-TSDF volume generation, 1.5ms for the 3D CNN

forward propagation and 0.18ms for coordinate transforma-

tion. Thus, our method runs in real-time at over 215fps.

The processes of volume generation and 3D CNN forward

propagation are performed on GPU. The coordinate trans-

formation that converts CNN output values to 3D locations

in the camera’s coordinate system is performed on CPU. In

addition, our 3D CNN model takes about 500 MB of GPU

memory during testing, while the multi-view CNNs in [4]

take about 1.5 GB of GPU memory during testing.

Qualitative results Some qualitative results for MSRA

dataset and NYU dataset are shown in Figure 8. As can

be seen, compared with the multi-view CNN based method

in [4], our 3D CNN based method can better utilize the

depth information and provide more accurate estimation.

5. Conclusion

We present a novel 3D CNN based hand pose estimation

method in this paper. By adopting the projective D-TSDF,

we encode the hand depth image as a 3D volumetric repre-

sentation which is then fed into the 3D CNN. We show that

the 3D CNN mapping the 3D volumes to 3D joint locations

in a single pass is easy to train. We also perform 3D da-

ta augmentation on the training data to make the 3D CNN

robust to various hand sizes and global orientations. Exper-

imental results indicate that our proposed 3D CNN based

approach achieves state-of-the-art performance for 3D hand

pose estimation in real-time on two challenging datasets.
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