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Abstract

Deep neural networks require a large amount of labeled

training data during supervised learning. However, collect-

ing and labeling so much data might be infeasible in many

cases. In this paper, we introduce a deep transfer learn-

ing scheme, called selective joint fine-tuning, for improv-

ing the performance of deep learning tasks with insufficient

training data. In this scheme, a target learning task with

insufficient training data is carried out simultaneously with

another source learning task with abundant training data.

However, the source learning task does not use all existing

training data. Our core idea is to identify and use a subset

of training images from the original source learning task

whose low-level characteristics are similar to those from

the target learning task, and jointly fine-tune shared con-

volutional layers for both tasks. Specifically, we compute

descriptors from linear or nonlinear filter bank responses

on training images from both tasks, and use such descrip-

tors to search for a desired subset of training samples for

the source learning task.

Experiments demonstrate that our deep transfer learn-

ing scheme achieves state-of-the-art performance on mul-

tiple visual classification tasks with insufficient training

data for deep learning. Such tasks include Caltech 256,

MIT Indoor 67, and fine-grained classification problems

(Oxford Flowers 102 and Stanford Dogs 120). In com-

parison to fine-tuning without a source domain, the pro-

posed method can improve the classification accuracy

by 2% - 10% using a single model. Codes and mod-

els are available at https://github.com/ZYYSzj/

Selective-Joint-Fine-tuning.

1. Introduction

Convolutional neural networks (CNNs) have become

deeper and larger to pursue increasingly better performance

on classification and recognition tasks [22, 18, 40, 12, 46].

Looking at the successes of deep learning in computer

vison, we find that a large amount of training or pre-

training data is essential in training deep neural networks.

Large-scale image datasets, such as the ImageNet ILSVRC

dataset [36], Places [50], and MS COCO [23], have led to

a series of breakthroughs in visual recognition, including

image classification [24], object detection [10], and seman-

tic segmentation [25]. Many other related visual tasks have

benefited from these breakthroughs.

Nonetheless, researchers face a dilemma when using

deep convolutional neural networks to perform visual tasks

that do not have sufficient training data. Training a deep

network with insufficient data might even give rise to infe-

rior performance in comparison to traditional classifiers fed

with handcrafted features. Fine-grained classification prob-

lems, such as Oxford Flowers 102 [29] and Stanford Dogs

120 [19], are such examples. The number of training sam-

ples in these datasets is far from being enough for training

large-scale deep neural networks, and the networks would

become overfit quickly.

Solving the overfitting problem for deep convolutional

neural networks on learning tasks without sufficient train-

ing data is challenging [39]. Transfer learning techniques

that apply knowledge learnt from one task to other related

tasks have been proven helpful [30]. In the context of deep

learning, fine-tuning a deep network pre-trained on the Im-

ageNet or Places dataset is a common strategy to learn task-

specific deep features.This strategy is considered a simple

transfer learning technique for deep learning. However,

since the ratio between the number of learnable parameters

and the number of training samples still remains the same,

fine-tuning needs to be terminated after a relatively small

number of iterations; otherwise, overfitting still occurs.

In this paper, we attempt to tackle the problem of training

deep neural networks for learning tasks that have insuffi-

cient training data. We adopt the source-target joint training

methodology [45] when fine-tuning deep neural networks.

The original learning task without sufficient training data

is called the target learning task, T t. To boost its perfor-

mance, the target learning task is teamed up with another

learning task with rich training data. The latter is called

the source learning task, T s. Suppose the source learning

task has a large-scale training set Ds, and the target learn-

ing task has a small-scale training set Dt. Since the target
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learning task is likely a specialized task, we envisage the

image signals in its dataset possess certain unique low-level

characteristics (e.g. fur textures in Stanford Dogs 120 [19]),

and the learned kernels in the convolutional layers of a deep

network need to grasp such characteristics in order to gen-

erate highly discriminative features. Thus supplying suffi-

cient training images with similar low-level characteristics

becomes the most important mission of the source learn-

ing task. Our core idea is to identify a subset of training

images from Ds whose low-level characteristics are simi-

lar to those from Dt, and then jointly fine-tune a shared set

of convolutional layers for both source and target learning

tasks. The source learning task is fine-tuned using the se-

lected training images only. Hence, this process is called

selective joint fine-tuning. The rationale behind this is that

the unique low-level characteristics of the images from Dt

might be overwhelmed if all images from Ds were taken as

training samples for the source learning task.

How do we select images from Ds that share similar

low-level characteristics as those from Dt? Since kernels

followed with nonlinear activation in a deep convolutional

neural network (CNN) are actually nonlinear spatial filters,

to find sufficient data for training high-quality kernels, we

use the responses from existing linear or nonlinear filter

banks to define similarity in low-level characteristics. Ga-

bor filters [28] form an example of a linear filter bank, and

the complete set of kernels from certain layers of a pre-

trained CNN form an example of a nonlinear filter bank. We

use histograms of filter bank responses as image descriptors

to search for images with similar low-level characteristics.

The motivation behind selecting images according to

their low-level characteristics is two fold. First, low-level

characteristics are extracted by kernels in the lower con-

volutional layers of a deep network. These lower convo-

lutional layers form the foundation of an entire network,

and the quality of features extracted by these layers deter-

mines the quality of features at higher levels of the deep net-

work. Sufficient training images sharing similar low-level

characteristics could strength the kernels in these layers.

Second, images with similar low-level characteristics could

have very different high-level semantic contents. Therefore,

searching for images using low-level characteristics has less

restrictions and can return much more training images than

using high-level semantic contents.

The above source-target selective joint fine-tuning

scheme is expected to benefit the target learning task in two

different ways. First, since convolutional layers are shared

between the two learning tasks, the selected training sam-

ples for the source learning task prevent the deep network

from overfitting quickly. Second, since the selected train-

ing samples for the source learning task share similar low-

level characteristics as those from the target learning task,

kernels in their shared convolutional layers can be trained

more robustly to generate highly discriminative features for

the target learning task.

The proposed source-target selective joint fine-tuning

scheme is easy to implement. Experimental results demon-

strate state-of-the-art performance on multiple visual clas-

sification tasks with many fewer training samples than what

is required by recent deep learning architectures. These vi-

sual classification tasks include fine-grained classification

on Stanford Dogs 120 [19] and Oxford Flowers 102 [29],

image classification on Caltech 256 [11], and scene classi-

fication on MIT Indoor 67 [33].

In summary, this paper has the following contributions:

• We introduce a new deep transfer learning scheme, called

selective joint fine-tuning, for improving the performance of

deep learning tasks with insufficient training data. It is an

important step forward in the context of the widely adopted

strategy of fine-tuning a pre-trained deep neural network.

• We develop a novel pipeline for implementing this deep

transfer learning scheme. Specifically, we compute descrip-

tors from linear or nonlinear filter bank responses on train-

ing images from both tasks, and use such descriptors to

search for a desired subset of training samples for the source

learning task.

• Experiments demonstrate that our deep transfer learning

scheme achieves state-of-the-art performance on multiple

visual classification tasks with insufficient training data for

deep learning.

2. Related Work

Multi-Task Learning. Multi-task learning (MTL) ob-

tains shared feature representations or classifiers for related

tasks [3]. In comparison to learning individual tasks in-

dependently, features and classifiers learned with MTL of-

ten have better generalization capability. In deep learning,

faster RCNN [34] jointly learns object locations and labels

using shared convolutional layers but different loss func-

tions for these two tasks. In [7], the same multi-scale con-

volutional architecture was used to predict depth, surface

normals and semantic labels. This indicates that convolu-

tional neural networks can be adapted to different tasks eas-

ily. While previous work [8, 34] attempts to find a shared

feature space that benefits multiple learning tasks, the pro-

posed joint training scheme in this paper focuses on learning

a shared feature space that improves the performance of the

target learning task only.

Feature Extraction and Fine-tuning. Off-the-shelf CNN

features [37, 5] have been proven to be powerful in vari-

ous computer vision problems. Pre-training convolutional

neural networks on ImageNet [36] or Places [50] has been

the standard practice for other vision problems. However,

features learnt in pre-trained models are not tailored for the
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Figure 1. Pipeline of the proposed selective joint fine-tuning. From left to right: (a) Datasets in the source domain and the target domain. (b)

Select nearest neighbors of each target domain training sample in the source domain via a low-level feature space. (c) Deep convolutional

neural network initialized with weights pre-trained on ImageNet or Places. (d) Jointly optimize the source and target cost functions in their

own label spaces.

target learning task. Fine-tuning pre-trained models [10]

has become a commonly used method to learn task-specific

features. The transfer ability of different convolutional lay-

ers in CNNs has been investigated in [48]. However, for

tasks that do not have sufficient training data, overfitting

occurs quickly during fine-tuning. The proposed pipeline in

this paper not only alleviates overfitting, but also attempts

to find a more discriminative feature space for the target

learning task.

Transfer Learning. Different from MTL, transfer learn-

ing (or domain adaptation) [30] applies knowledge learnt in

one domain to other related tasks. Domain adaptation al-

gorithms can be divided into three categories, including in-

stance adaption [16, 1], feature adaption [26, 41], and model

adaption [6]. Hong et al. [15] transferred rich semantic in-

formation from source categories to target categories via

the attention model. Tzeng et al. [41] performed feature

adaptation using a shared convolutional neural network by

transferring the class relationship in the source domain to

the target domain. To make our pipeline more flexible, this

paper does not assume the source and target label spaces

are the same as in [41]. Different from the work in [1]

which randomly resamples training classes or images in the

source domain, this paper conducts a special type of transfer

learning by selecting source training samples that are near-

est neighbors of samples in the target domain in the space

of certain low-level image descriptor.

Krause et al. [21] directly performed Google image

search using keywords associated with categories from the

target domain, and download a noisy collection of images

to form a training set. In our method, we search for near-

est neighbors in a large-scale labeled dataset using low-

level features instead of high-level semantic information. It

has been shown in [27] that low-level features computed in

the bottom layers of a CNN encode very rich information,

which can completely reconstruct the original image. Our

experimental results show that nearest neighbor search us-

ing low-level features can outperform that using high-level

semantic information as in [21].

3. Selective Joint Fine-tuning

3.1. Overview

Fig. 1 shows the overall pipeline for our proposed

source-target selective joint fine-tuning scheme. Given a

target learning task T t that has insufficient training data,

we perform selective joint fine-tuning as follows. The en-

tire training dataset associated with the target learning task

is called the target domain. The source domain is defined

similarly.

Source Domain : The minimum requirement is that

the number of images in the source domain, Ds ={(
xs
i , y

s
i

)}ns

i=1
, should be large enough to train a deep con-

volutional neural network from scratch. Ideally, these train-

ing images should present diversified low-level character-

istics. That is, running a filter bank on them give rise

to as diversified responses as possible. There exist a few

large-scale visual recognition datasets that can serve as the

source domain, including ImageNet ILSVRC dataset [36],

Places [50], and MS COCO [23].
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Source Domain Training Images : In our selective joint

fine-tuning, we do not use all images in the source domain

as training images. Instead, for each image from the target

domain, we search a certain number of images with simi-

lar low-level characteristics from the source domain. Only

images returned from these searches are used as training

images for the source learning task in selective joint fine-

tuning. We apply a filter bank to all images in both source

domain and target domain. Histograms of filter bank re-

sponses are used as image descriptors during search. We

associate an adaptive number of source domain images with

each target domain image. Hard training samples in the tar-

get domain might be associated with a larger number of

source domain images. Two filter banks are used in our

experiments. One is the Gabor filter bank, and the other

consists of kernels in the convolutional layers of AlexNet

pre-trained on ImageNet [22].

CNN Architecture : Almost any existing deep convolu-

tional neural network, such as AlexNet [22], VGGNet [18],

and ResidualNet [12], can be used in our selective joint fine-

tuning. We use the 152-layer residual network with identity

mappings [13] as the CNN architecture in our experiments.

The entire residual network is shared by the source and tar-

get learning tasks. An extra output layer is added on top of

the residual network for each of the two learning tasks. This

output layer is not shared because the two learning tasks

may not share the same label space. The residual network

is pre-trained either on ImageNet or Places.

Source-Target Joint Fine-tuning : Each task uses its

own cost function during selective joint fine-tuning, and ev-

ery training image only contributes to the cost function cor-

responding to the domain it comes from. The source do-

main images selected by the aforementioned searches are

used as training images for the source learning task only

while the entire target domain is used as the training set for

the target learning task only. Since the residual network

(with all its convolutional layers) is shared by these two

learning tasks, it is fine-tuned by both training sets. And the

output layers on top of the residual network are fine-tuned

by its corresponding training set only. Thus we conduct

end-to-end joint fine-tuning to minimize the original loss

functions of the source learning task and the target learning

task simultaneously.

3.2. Similar Image Search

There is a unique step in our pipeline. For each image

from the target domain, we search a certain number of im-

ages with similar low-level characteristics from the source

domain. Only images returned from these searches are used

as training images for the source learning task in selective

joint fine-tuning. We elaborate this image search step be-

low.

Filter Bank We use the responses to a filter bank to de-

scribe the low-level characteristics of an image. The first

filter bank we use is the Gabor filter bank. Gabor filters are

commonly used for feature description, especially texture

description [28]. Gabor filter responses are powerful low-

level features for image and pattern analysis. We use the

parameter setting in [28] as a reference. For each of the real

and imaginary parts, we use 24 convolutional kernels with

4 scales and 6 orientations. Thus there are 48 Gabor filters

in total.

Kernels in a deep convolutional neural network are ac-

tually spatial filters. When there is nonlinear activation fol-

lowing a kernel, the combination of the kernel and nonlinear

activation is essentially a nonlinear filter. A deep CNN can

extract low/middle/high level features at different convolu-

tional layers [48]. Convolutional layers close to the input

data focus on extract low-level features while those further

away from the input extract middle- and high-level features.

In fact, a subset of the kernels in the first convolutional layer

of AlexNet trained on ImageNet exhibit oriented stripes,

similar to Gabor filters [22]. When trained on a large-scale

diverse dataset, such as ImageNet, such kernels can be used

for describing generic low-level image characteristics. In

practice, we use all kernels (and their following nonlinear

activation) from the first and second convolutional layers of

AlexNet pre-trained on ImageNet as our second choice of a

filter bank.

Image Descriptor Let Ci(m,n) denote the response map

to the i-th convolutional kernel or Gabor filter in our filter

bank, and φi its histogram. To obtain more discriminative

histogram features, we first obtain the upper bound hu
i and

lower bound hl
i of the i-th response map by scanning the

entire target domain Dt. Then the interval hl
i, h

u
i is divided

into a set of small bins. We adaptively set the width of ev-

ery histogram bin so that each of them contains a roughly

equal percentage of pixels. In this manner, we can avoid a

large percentage of pixels falling into the same bin. We con-

catenate the histograms of all filter response maps to form a

feature vector, φk =
{
φ1,φ2, ,φD

}
, for image xk.

Nearest Neighbor Ranking Given the histogram-based

descriptor of a training image xt
i in the target domain,

we search for its nearest neighbors in the source domain

Ds. Note that the number of kernels in different convo-

lutional layers of AlexNet might be different. To ensure

equal weighting among different convolutional layers dur-

ing nearest neighbor search, each histogram of kernel re-

sponses is normalized by the total number of kernels in the

corresponding layer. Thus the distance between the descrip-

tor of a source image xs
j and that of a target image xt

i is

computed as follows.

H
(
xt
i,x

s
j

)
=

D∑

h=1

wh[κ(φ
i,t
h ,φj,s

h ) + κ(φj,s
h ,φi,t

h )], (1)
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where wh = 1/Nh, Nh is the number of convolutional ker-

nels in the corresponding layer, φ
i,t
h and φ

j,s
h are the h-

th histogram for images xt
i and xs

j , and κ(·, ·) is the KL-

divergence.

Hard Samples in the Target Domain The labels of train-

ing samples in the target domain have varying degrees of

difficulty to satisfy. Intuitively, we would like to seek extra

help for those hard training samples in the target domain by

searching for more and more nearest neighbors in the source

domain. We propose an iterative scheme for this purpose.

We calculate the information entropy to measure the classi-

fication uncertainty of training samples in the target domain

after the m-th iteration as follows.

Hm
i = −

C∑

c=1

pmi,c log(p
m
i,c), (2)

where C is the number of classes, pmi,c is the probability

that the i-th training sample belongs to the c-th class after a

softmax layer in the m-th iteration.

Training samples that have high classification uncer-

tainty are considered hard training samples. In the next

iteration, we increase the number of nearest neighbors of

the hard training samples as in Eq. (3.2), and continue fine-

tuning the model trained in the current iteration. For a train-

ing sample xt
i in the target domain, the number of its nearest

neighbors in the next iteration is defined as follows.

Km+1

i =





Km
i + σ0, ŷti 6= yti

Km
i + σ1, ŷti = yti and Hm

i ≥ δ
Km

i , ŷti = yti and Hm
i < δ

(3)

where σ0, σ1 and δ are constants, ŷti is predicted label of

xt
i, and Km

i is the number of nearest neighbors in the m-

th iteration. By changing the number of nearest neighbors

for samples in the target domain, the subset of the source

domain used as training data evolves over iterations, which

in turn gradually changes the feature representation learned

in the deep network. In the above equation, we typically set

δ = 0.1, σ0 = 4K0 and σ1 = 2K0, where K0 is the initial

number of nearest neighbors for all samples in the target

domain. In our experiments, we stop after five iterations.

In Table 1, we compare the effectiveness of Gabor filters

and various combinations of kernels from AlexNet in our

selective joint fine-tuning. In this experiment, we use the

50-layer residual network [12] with half the number of ker-

nels in each convolutional layer of the original architecture.

4. Experiments

4.1. Implementation

In all experiments, we use the 152-layer residual network

with identity mappings [13] as the deep convolutional archi-

tecture, and conventional fine-tuning performed on a pre-

trained network with the same architecture without using

Filter Bank over all Accuracy(%)

Conv1-Conv2 in AlexNet 89.59

Conv1-Conv5 in AlexNet 88.82

Conv4-Conv5 in AlexNet 88.48

Gabor Filters 88.90

Fine-tuning w/o source domain 88.12

Table 1. A comparison of classification performance on Oxford

Flowers 102 using various choices for the filter bank in selective

joint fine-tuning.

any source datasets as our baseline. Note that the network

architecture we use is different from those used in most

published methods for the datasets we run experiments on,

and many existing methods adopt sophisticated parts mod-

els and feature encodings. The performance of such meth-

ods are still included in this paper to indicate that our simple

holistic method without incorporating parts models and fea-

ture encodings is capable of achieving state-of-the-art per-

formance.

We use the pre-trained model released in [12] to initial-

ize the residual network. During selective joint fine-turning,

source and target samples are mixed together in each mini-

batch. Once the data has passed the average pooling layer

in the residual network, we split the source and target sam-

ples, and send them to their corresponding softmax classi-

fier layer respectively. Both the source and target classifiers

are initialized randomly.

We run all our experiments on a TITAN X GPU with

12GB memory. All training data is augmented as in [31]

first, and we follow the training and testing settings in [12].

Every mini-batch can include 20 224×224 images using a

modified implementation of the residual network. We in-

clude randomly chosen samples from the target domain in a

mini-batch. Then for each of the chosen target sample, we

further include one of its retrieved nearest neighbors from

the source domain in the same mini-batch. We set the iter

size to 10 for each iteration in Caffe [17]. The momen-

tum parameter is set to 0.9 and the weight decay is 0.0001

in SGD. During selective joint fine-tuning, the learning rate

starts from 0.01 and is divided by 10 after every 2400−5000
iterations in all the experiments. Most of the experiments

can finish in 16000 iterations.

4.2. Source Image Retrieval

We use the ImageNet ILSVRC 2012 training set [36] as

the source domain for Stanford Dogs [19], Oxford Flow-

ers [29], and Caltech 256 [11], and the combination of the

ImageNet and Places 205 [50] training sets as the source

domain for MIT Indoor 67 [33]. Fig. 2 shows the retrieved

1-st, 10-th, 20-th, 30-th, and 40-th nearest neighbors from

ImageNet [36] or Places [50]. It can be observed that cor-

responding source and target images share similar colors,
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a.1 Chihuahua a.2 Chihuahua a.3 Beagle a.4 Tench a.5 Bib a.5 Diaper

b.1 Pink Primrose b.2 Bee b.3 Capuchin b.4 Measuring Cup b.4 Butterfly b.5 Bee

c.1 AK-47 c.2 Horse Cart c.3 Horn c.4 Hard Disk c.5 Snowmobile c.6 Jeep

d.1 Airport Inside d.2 Restaurant d.3 Restaurant d.4 Butcher Shop d.5 Coffee Mug d.6 Grocery Store

e.2 Game Roome.1 Airport Inside e.3 Restaurant e.4 Supermarket e.5 Lobby e.5 Museum

Figure 2. Images in the source domain that have similar low-level characteristics with the target images. The first column shows target

images from Stanford Dogs 120 [19], Oxford Flowers 102 [29], Caltech 256 [11], and MIT Indoor 67 [33]. The following columns in rows

(a)-(d) are the corresponding 1st, 10-th, 20-th, 30-th and 40-th nearest images in ImageNet (source domain). The following columns in row

(e) are images retrieved from Places (source domain for MIT Indoor 67).

local patterns and global structures. Since low-level filter

bank responses do not encode strong semantic information,

the 50 nearest neighbors from a target domain include im-

ages from various and sometimes completely unrelated cat-

egories.

We determined experimentally that there should be at

least 200,000 retrieved images from the source domain. Too

few source images give rise to overfitting quickly. There-

fore, the initial number of retrieved nearest neighbors (K0)

for each target training sample is set to meet this require-

ment. On the other hand, a surprising result is that set-

ting K0 too large would make the performance of the target

learning task drop significantly. In our experiments, we set

K0 to different values for Stanford Dogs (K0 = 100), Ox-

ford Flowers (K0 = 300), Caltech 256 (K0 = 50 − 100),

and MIT Indoor 67 (K0 = 100). Since there exists much

overlap among the nearest neighbors of different target sam-

ples, the retrieved images typically do not cover the entire

ImageNet or Places datasets.

4.3. Fine­grained Object Recognition

Stanford Dogs 120. Stanford Dogs 120 [19] contains 120

categories of dogs. There are 12000 images for training,

and 8580 images for testing. We do not use the parts in-

formation during selective joint fine-tuning, and use the

commonly used mean class accuracy to evaluate the per-

formance as in [11].

As shown in Table 2, the mean class accuracy achieved

by fine-tuning the residual network using the training sam-

ples of this dataset only and without a source domain is

80.4%. It shows that the 152-layer residual network [12, 13]

pre-trained on the ImageNet dataset [36] has a strong gen-

eralization capability on this fine-grained classification task.

Using the entire ImageNet dataset during regular joint fine-

tuning can improve the performance by 5.1%. When we

finally perform our proposed selective joint fine-tuning us-

ing a subset of source domain images retrieved using his-

tograms of low-level convolutional features, the perfor-

mance is further improved to 90.2%, which is 9.8% higher

than the performance of conventional fine-tuning without a

source domain and 4.3% higher than the result reported in

[21], which expands the original target training set using

Google image search. This comparison demonstrates that

selective joint fine-tuning can significantly outperform con-

ventional fine-tuning.

Oxford Flowers 102. Oxford Flowers 102 [29] consists of

102 flower categories. 1020 images are used for training,

1020 for validation, and 6149 images are used for testing.
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Method mean Acc(%)

HAR-CNN [44] 49.4

Local Alignment [9] 57.0

Multi scale metric learning [32] 70.3

MagNet [35] 75.1

Web Data + Original Data [21] 85.9

Training from scratch using target domain only 53.8

Selective joint training from scratch 83.4

Fine-tuning w/o source domain 80.4

Joint fine-tuning with all source samples 85.6

Selective joint FT with random source samples 85.5

Selective joint FT w/o iterative NN retrieval 88.3

Selective joint FT with Gabor filter bank 87.5

Selective joint fine-tuning 90.2

Selective joint FT with Model Fusion 90.3

Table 2. Classification results on Stanford Dogs 120.

There are only 10 training images in each category.

As shown in Table 3, the mean class accuracy achieved

by conventional fine-tuning using the training samples of

this dataset only and without a source domain is 92.3%. Se-

lective joint fine-tuning further improves the performance to

94.7%, 3.3% higher than previous best result from a single

network [35]. To compare with previous state-of-the-art re-

sults obtained using an ensemble of different networks, we

also average the performance of multiple models obtained

during iterative source image retrieval for hard training sam-

ples in the target domain. Experiments show that the perfor-

mance of our ensemble model is 95.8%, 1.3% higher than

previous best ensemble performance reported in [20]. Note

Method mean Acc(%)

MPP [47] 91.3

Multi-model Feature Concat [1] 91.3

MagNet [35] 91.4

VGG-19 + GoogleNet + AlexNet [20] 94.5

Training from scratch using target domain only 58.2

Selective joint training from scratch 80.6

Fine-tuning w/o source domain 92.3

Joint fine-tuning with all source samples 93.4

Selective joint FT with random source samples 93.2

Selective joint FT w/o iterative NN retrieval 94.2

Selective joint FT with Gabor filter bank 93.8

Selective joint fine-tuning 94.7

Selective joint FT with model fusion 95.8

VGG-19 + Part Constellation Model [38] 95.3

Selective joint FT with val set 97.0

Table 3. Classification results on Oxford Flowers 102. The last two

rows compare performance using the validation set as additional

training data.

that Simon et al. [38] used the validation set in this dataset

as additional training data. To verify the effectiveness of

our joint fine-tuning strategy, we have also conducted ex-

periments using this training setting and our result from a

single network outperforms that of [38] by 1.7%.

4.4. General Object Recognition

Caltech 256. Caltech 256 [11] has 256 object categories

and 1 background cluster class. In every category, there

are at least 80 images used for training, validation and test-

ing. Researchers typically report results with the number

of training samples per class falling between 5 and 60. We

follow the testing procedure in [42] to compare with state-

of-the-art results.

We conduct four experiments with the number of train-

ing samples per class set to 15, 30, 45 and 60, respectively.

According to Table 4, in comparison to conventional fine-

tuning without using a source domain, selective joint fine-

tuning improves classification accuracy in all four experi-

ments, and the degree of improvement varies between 2.6%

and 4.1%. Performance improvement due to selective joint

fine-tuning is more obvious when a smaller number of target

training image per class are used. This is because limited di-

versity in the target training data imposes a greater need to

seek help from the source domain. In most of these exper-

iments, the classification performance of our selective joint

fine-tuning is also significantly better than previous state-

of-the-art results.

Method mean Acc(%)

MetaObject-CNN [43] 78.9

MPP + DFSL [47] 80.8

VGG-19 + FV [4] 81.0

VGG-19 + GoogleNet [20] 84.7

Multi scale + multi model ensemble [14] 86.0

Fine-tuning w/o source domain 81.7

Selective joint FT with ImageNet(i) 82.8

Selective joint FT with Places(ii) 85.8

Selective joint FT with hybrid data(iii) 85.5

Average the output of (ii) and (iii) 86.9

Table 5. Classification results on MIT Indoor 67.

4.5. Scene Classification

MIT Indoor 67. MIT Indoor 67 [33] has 67 scene cate-

gories. In each category, there are 80 images for training

and 20 images for testing. Since MIT Indoor 67 is a scene

dataset, in addition to the ImageNet ILSVRC 2012 training

set [36], the Places-205 training set [50] is also a potential

source domain. We compare three settings during selective

joint fine-tuning: ImageNet as the source domain, Places as
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Method
mean Acc(%)

15/class

mean Acc(%)

30/class

mean Acc(%)

45/class

mean Acc(%)

60/class

M-HMP [2] 40.5±0.4 48.0±0.2 51.9±0.2 55.2±0.3

Z. & F. Net [49] 65.7±0.2 70.6±0.2 72.7±0.4 74.2±0.3

VGG-19 [18] - - - 85.1±0.3

VGG-19 + GoogleNet +AlexNet [20] - - - 86.1

VGG-19 + VGG-16 [18] - - - 86.2±0.3

Fine-tuning w/o source domain 76.4±0.1 81.2±0.2 83.5±0.2 86.4±0.3

Selective joint fine-tuning 80.5±0.3 83.8±0.5 87.0±0.1 89.1±0.2

Table 4. Classification results on Caltech 256.

the source domain, and the combination of both ImageNet

and Places as the source domain.

As shown in Table 5, the mean class accuracy of se-

lective joint fine-tuning with ImageNet as the source do-

main is 82.8%, 1.1% higher than that of conventional fine-

tuning without using a source domain. Since ImageNet is

an object-centric dataset while MIT Indoor 67 is a scene

dataset, it is hard for training images in the target domain to

retrieve source domain images with similar low-level char-

acteristics. But source images retrieved from ImageNet still

prevent the network from overfitting too heavily and help

achieve a performance gain. When the Places dataset serves

as the source domain, the mean class accuracy reaches

85.8%, which is 4.1% higher than the performance of fine-

tuning without a source domain and 4.8% higher than pre-

vious best result from a single network [4]. And the hybrid

source domain based on both ImageNet and Places does not

further improve the performance. Once averaging the out-

put from the networks jointly fine-tuned with Places and

the hybrid source domain, we obtain a classification accu-

racy 0.9% higher than previous best result from an ensemble

model [14].

4.6. Ablation Study

We perform an ablation study on both Stanford Dogs 120

[19] and Oxford Flowers 102 [29] by replacing or remov-

ing a single component from our pipeline. First, instead of

fine-tuning, we perform training from scratch in two set-

tings, one using the target domain only and the other using

selective joint training. Tables 2 and 3 show that while se-

lective joint training obviously improves the performance, it

is still inferior than fine-tuning pre-trained networks. This

is because we only subsample a relatively small percentage

(20-30%) of the source data, which is still insufficient to

train deep networks from scratch. Second, instead of using a

subset of retrieved training images from the source domain,

we simply use all training images in the source domain.

Joint fine-tuning with the entire source domain decrease the

performance by 4.6% and 1.3% respectively. This demon-

strates that using more training data from the source do-

main is not always better. On the contrary, using less but

more relevant data from the source domain is actually more

helpful. Third, instead of using a subset of retrieved train-

ing images, we use the same number of randomly chosen

training images from the source domain. Again, the perfor-

mance drops by 4.7% and 1.5% respectively. Fourth, to val-

idate the effectiveness of iteratively increasing the number

of retrieved images for hard training samples in the target

domain, we turn off this feature and only use the same num-

ber (K0) of retrieved images for all training samples in the

target domain. The performance drops by 1.9% and 0.5%

respectively. This indicates that our adaptive scheme for

hard samples is useful in improving the performance. Fifth,

we use convolutional kernels in the two bottom layers of a

pre-trained AlexNet as our filter bank. If we replace this fil-

ter bank with the Gabor filter bank, the overall performance

drops by 2.7% and 0.9% respectively, which indicates a fil-

ter bank learned from a diverse dataset could be more pow-

erful than an analytically defined one. Finally, if we per-

form conventional fine-tuning without using a source do-

main, the performance drop becomes quite significant and

reaches 9.8% and 2.4% respectively.

5. Conclusions
In this paper, we address deep learning tasks with insuffi-

cient training data by introducing a new deep transfer learn-

ing scheme called selective joint fine-tuning, which per-

forms a target learning task with insufficient training data

simultaneously with another source learning task with abun-

dant training data. Different from previous work which di-

rectly adds extra training data to the target learning task,

our scheme borrows samples from a large-scale labeled

dataset for the source learning task, and do not require addi-

tional labeling effort beyond the existing datasets. Experi-

ments show that our deep transfer learning scheme achieves

state-of-the-art performance on multiple visual classifica-

tion tasks with insufficient training data for deep networks.

Nevertheless, how to find the most suitable source domain

for a specific target learning task remains an open problem

for future investigation.
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