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Abstract

Querying with an example image is a simple and intuitive

interface to retrieve information from a visual database.

Most of the research in image retrieval has focused on the

task of instance-level image retrieval, where the goal is to

retrieve images that contain the same object instance as the

query image. In this work we move beyond instance-level

retrieval and consider the task of semantic image retrieval

in complex scenes, where the goal is to retrieve images that

share the same semantics as the query image. We show that,

despite its subjective nature, the task of semantically rank-

ing visual scenes is consistently implemented across a pool

of human annotators. We also show that a similarity based

on human-annotated region-level captions is highly corre-

lated with the human ranking and constitutes a good com-

putable surrogate. Following this observation, we learn a

visual embedding of the images where the similarity in the

visual space is correlated with their semantic similarity sur-

rogate. We further extend our model to learn a joint embed-

ding of visual and textual cues that allows one to query the

database using a text modifier in addition to the query im-

age, adapting the results to the modifier. Finally, our model

can ground the ranking decisions by showing regions that

contributed the most to the similarity between pairs of im-

ages, providing a visual explanation of the similarity.

1. Introduction

The task of image retrieval aims at, given a query image,

retrieving all images relevant to that query within a poten-

tially very large database of images. This topic has been

heavily studied over the years. Initially tackled with bag-

of-features representations, large vocabularies, and inverted

files [61, 51], and then with feature encodings such as the

Fisher vector or the VLAD descriptors [55, 31], the retrieval

task has recently benefited from the success of deep learn-

ing representations such as convolutional neural networks

that were shown to be both effective and computationally

Figure 1. We tackle the semantic retrieval task. Leveraging the

multiple human captions that are available for images of a train-

ing set, we train a semantic-aware representation that improves

semantic visual search within a disjoint database of images that

do not contain textual annotations. As a by-product, our method

highlights regions that contributed the most to the decision.

efficient for this task [64, 58, 25]. Among previous retrieval

methods, many have focused on retrieving the exact same

instance as in the query image, such as a particular land-

mark [56, 57, 32] or a particular object [51]. Another group

of methods have concentrated on retrieving semantically-

related images, where “semantically related” is understood

as displaying the same object category [65, 8], or sharing

a set of tags [23, 22]. This requires to make the strong as-

sumption that all categories or tags are known in advance,

which does not hold for complex scenes.

In this paper we are interested in applying the task of se-

mantic retrieval to query images that display realistic and

complex scenes, where we cannot assume that all the ob-

ject categories are known in advance, and where the inter-
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action between objects can be very complex. Our first con-

tribution is to validate that the task of semantic retrieval is

well-defined, particularly in the presence of complex scenes

(section 3). Although what different persons understand as

a semantically similar scene is subject to interpretation, we

show in a user study that there is a high level of consistency

between different users.

Following the standard image retrieval paradigm that tar-

gets efficient retrieval within databases of potentially mil-

lions of images, we aim at learning a global and compact

visual representation tailored to the semantic retrieval task

that, instead of relying on a predefined list of categories or

interactions, implicitly captures information about the scene

objects and their interactions. However, directly acquiring

enough semantic annotations from humans to train such a

model may not be feasible. Our second contribution is to

show that a similarity function based on captions produced

by human annotators, which we assume are available at

training time, constitutes a good computable surrogate of

the true semantic similarity, and provides enough informa-

tion to learn a semantic visual representation (section 4).

Our third contribution is a model that leverages the simi-

larity between human-generated captions, i.e. privileged in-

formation available only at training time, to learn how to

embed images in a semantic space, where the similarity be-

tween embedded images is related to their semantic similar-

ity (section 5.1). Our experiments first show that learning a

semantic representation significantly improves over a model

pretrained on ImageNet. We also show that it can provide

a visual explanation of the semantic similarity by highlight-

ing regions that contributed the most to it.

Our last contribution (section 5.2) is an extension of the

previous model that leverages the image captions explicitly

and learns a joint embedding for the visual and textual rep-

resentations. We show that this further improves the accu-

racy of the model, and, more importantly, this allows one to

add text modifiers to the query in order to refine the query

or to adapt the results towards additional concepts.

2. Related work

Image retrieval. Image retrieval has been mostly tack-

led as the problem of instance-level image retrieval [61,

51, 55, 31, 64, 58, 25], that focuses on the retrieval of

the exact same instance as defined in standard benchmark

datasets [56, 57, 32, 51]. Moving away from instances,

some works have tackled visual search as the retrieval of

images that share the same category label [7, 8] or a set of

tags [29, 22]. These works still have a crude understand-

ing of the semantics of a scene. On their synthetic dataset

of abstract scenes, Zitnick and Parikh have shown that im-

age retrieval can be greatly improved when detailed seman-

tics is available [70]. Explicit modeling of a scene can be

done with attributes [19, 17, 53, 41], object co-occurrences

[47], or pairwise relationship between objects [12, 14, 43].

As the interaction between objects in a scene can be highly

complex, going beyond simple pairwise relations, one ex-

treme interface proposed by Johnson et al. [34] is to com-

pare explicit scene graph representations instead of visual

representations. One shortcoming of their method is that it

requires the user to query with a full scene graph, which is

a tedious process. We believe that querying with an image

is a more intuitive interface.

A number of approaches have cast the task of image cap-

tioning as a retrieval problem, first retrieving similar im-

ages, and then transferring caption annotations from the re-

trieved images to the query image [28, 62, 18, 52]. Yet these

methods use features that are not trained for the task, ei-

ther simple global features [28], features pretrained on Ima-

geNet [62] or complex features relying on object detectors,

scene classifiers, etc. [18, 52]. We believe that the repre-

sentation should be free of assumptions about the list of ob-

jects, attributes, and interactions one might encounter in the

scene, and therefore, we learn these representations directly

from the training data.

Joint embeddings of image and text. Many tasks require

to jointly leverage images and natural text, such as zero-

shot learning [4, 10], language generation [67, 35], multi-

media retrieval [2, 3], image captioning [62, 16], and VQA

[59, 45, 6]. A common solution is to build a joint embed-

ding for textual and visual cues and to compare the modali-

ties directly in that space. The first category of methods for

joint embedding is based on CCA [26]. Recent methods us-

ing CCA include [22, 24, 39] and [5], a deep extensions of

CCA. As an alternative to CCA, previous work has learned

the joint embedding with a ranking loss. Among them, WS-

ABIE [69] and DeViSE [20] learn a linear transformation

of visual and textual features with a single-directional rank-

ing loss. Some papers have proposed a bidirectional rank-

ing loss [35, 36, 38, 62] possibly with additional constraints

[68]. Deep methods have also been proposed for this task,

based on deep Boltzman machines [63], auto-encoders [50],

LSTMs [15], or RNNs [46]. These joint image and text em-

beddings are often used to do cross-modal queries, i.e. to

retrieve image with textual queries and vice-versa [68].

In many of these works learning the joint embedding is,

by itself, the end objective. This differs from our work,

where the end task is to learn a visual embedding to retrieve

images using a query image, and where the joint embedding

is used to enrich the visual representation. From that point

of view, a connection is also found with the privileged learn-

ing framework [66]: our improved representation is learned

with privileged information in the form of semantic sim-

ilarity measures provided by the captions that are present

at training time. The work of Gomez et al. [21], in these

same proceedings, follows a similar idea, leveraging text
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from the Wikipedia to learn self-supervised visual embed-

dings aimed at classification, detection, and retrieval tasks.

3. User study

In this section we conduct a user study to acquire anno-

tations related to the semantic similarity between images as

perceived by users, and use those to show that the task of se-

mantic retrieval in complex scenes is well-defined and that

users tend to agree on their decisions. We also show that

visual models pretrained on ImageNet, although better than

random, do not reach a high agreement with the users, and

that some form of training will be required to achieve good

semantic retrieval results using only visual features.

Dataset. The computer vision community has made a re-

cent effort in collecting and organizing large-scale datasets

allowing for both training and benchmarking of cognitive

scene understanding tasks: the MS-COCO dataset [42], the

VQA dataset [6], that adds to MS-COCO a set of ques-

tion/answer pairs related to the visual content of these im-

ages, and, more recently, the Visual Genome dataset [40],

that is composed of 108k images with a wide range of an-

notations such as region level-captions, scene graphs, ob-

jects, and attributes. This dataset has been designed to eval-

uate tasks that go beyond image classification and that re-

quire to reason about the visual scenes. We adopt the Visual

Genome dataset for our experiments, as it is well suited for

the task of semantic visual search. We structure it into 80k

images for training, 10k for validation, and 10k for test.

Methodology. Manually ranking a large set of images ac-

cording to their semantic relevance to a query image is a

very complex, tedious, and time-consuming task. Instead,

to ease the task of the annotators, we consider the problem

of triplet ranking: given a triplet of images, composed of

one query image and two other images, we ask our users

to choose the most semantically similar image to the query

among the two options. To not bias the annotations towards

any interpretation of semantic similarity, we keep the guide-

lines as open as possible, asking the users to choose, among

the two displayed images, the one that “depicted the scene

that was most similar to the scene in the query image”. The

users have the choice to choose one of the two images or to

choose that both images were either equally relevant or not

relevant to the query.

To construct the triplets we randomly sample query im-

ages and then choose two images that are visually similar to

the query. This is achieved by extracting image features us-

ing ResNet-101 [27] pretrained on ImageNet (performing

global average pooling after the last convolutional layer)

and sampling two images from the 50 nearest neighbors

to the query in the visual feature space. The motivation

to choose visually similar images is that, in random im-

age triplets, both images will most often be irrelevant to the

query. Our study involves 35 annotators (13 women and 22

men), whose annotations spread over 3,000 image triplets.

A common set of 50 triplets was answered by 25 users, and

most triplets were annotated by at least two annotators. For

every triplet we store three values: o1 and o2 encode the

number of times the first (resp. second) image was chosen,

and o3 the number of times people did not pick any of the

two images.

Inter-user agreement. We evaluate the agreement between

users on this ranking task. We compute a score in a leave-

one-user-out fashion, where the decisions of each user are

compared against the decisions of all the other users. Given

a user and a ranking question, the agreement score s is mea-

sured as the proportion of the remaining users that made

the same choice as the user, weighted by the proportion of

remaining users that made a decision on that triplet, i.e.,

s = w oi−1

o1+o2−1
, with w = o1+o2−1

o1+o2+o3−1
and i ∈ {1, 2} is the

choice of the user. This score is only computed for triplets

where both the user and at least one of the remaining users

chose one of the images. The final agreement score for a

particular user is the average of the per-triplet agreements.

In average, the inter-user agreement score is 89.1, with a

standard deviation of 4.6. This shows that people generally

agree with each other on the semantic similarity ranking be-

tween two images. On the set of 50 images that was anno-

tated by 25 users, we get a similar leave-one-out agreement

score of 87.3 ± 4.5.

Agreement with visual representations. We now show

that a model pretrained on ImageNet, with no further train-

ing, does not achieve a high agreement with the users.

We consider an image representation based on the fully-

convolutional ResNet-101 architecture [27]. Our represen-

tation follows the R-MAC [64, 25] architecture, where, af-

ter the convolutional layers from [27], one performs max-

pooling over different grid regions of the image at different

scales, normalizes the descriptors of each region indepen-

dently using PCA with whitening, and finally aggregates

and renormalizes the final output to obtain a descriptor of

2048 dimensions. These ResNet R-MAC descriptors can

be compared using the dot product.

As in the inter-user agreement case, the agreement be-

tween a method and the users is measured as the proportion

of users that agree with the ranking decisions produced by

the method, weighted by the proportion of users that made

a decision on that triplet, averaged through all the triplets

with at least one human annotator. Under this setup, our

visual baseline, the ResNet with R-MAC, obtains an agree-

ment of 64.0, cf . Table 1. This agreement is higher than

a random ranking of triplets (50.0 ± 0.8 over 5 runs), but

significantly lower than the inter-user agreement, suggest-

ing that training the visual models is necessary, and that, to

that end, semantic annotations will be necessary.
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Method score

Human annotators 89.1 ± 4.6

Visual baseline: ResNet R-MAC 64.0

Object annotations 63.4

Human captions: METEOR 72.1

Human captions: word2vec + FV 70.1

Human captions: tf-idf 76.3

Generated captions: tf-idf 62.5

Random (x5) 50.0 ± 0.8

Table 1. Top row, inter-human annotation agreement on the im-

age ranking task. Bottom rows: comparison between the semantic

ranking provided by human annotators and several visual baselines

and methods based on the Visual Genome annotations.

4. Proxy measures for semantic similarity

To learn a visual embedding that preserves the semantic

similarity between images one would need a large number

of annotated image triplets. Unfortunately, requiring human

annotators to provide rankings for millions of triplets is not

feasible. Instead, we propose to use a surrogate measure.

Ideally, this surrogate measure should be efficient to com-

pute and be highly correlated with the ranking given by the

human annotators. To this end, we leverage the annotations

of the Visual Genome dataset and study which measures

yield a high correlation with the human annotators.

Our first representation leverages the objects contained

in images. We consider the ground-truth object annotations

provided with the Visual Genome dataset [40], that list all

the objects present in one image and, when relevant, their

WordNet [49] synset assignment. We build a histogram rep-

resentation of each image, counting how many objects of

each synset appear in that image, and weight the histograms

with a tf-idf mechanism followed by ℓ2 normalization. The

final representations are compared with the dot product. As

seen in Table 1, the agreement of this representation with

the users is worse than the visual agreement. This shows

that counting objects from a predefined list of categories and

neglecting their interactions does not offer a good proxy for

semantic similarity, and that more information is needed.

Motivated by this, we consider human captions as a

proxy for semantic similarity. Our rationale is that the hu-

man annotators will have a bias towards annotating parts of

the image that they deem important, and that these anno-

tated parts will be the same that they use to decide if images

are semantically similar or not. The Visual Genome dataset

contains, on average, 50 region-level captions per image an-

notated by different users, and this redundancy should fur-

ther help to capture subtle semantic nuances. Consequently

we leverage the provided region-level captions to build sev-

eral textual representations of the images.

An intuitive way to compare image captions is to use
METEOR [13], a similarity between text sentences typi-

cally used in machine translation that has also been used
as a standard evaluation measure for image captioning [11].
To compare two sets of region-level captions X and Y from
two images, we perform many-to-many matching with a
(non-Mercer [44]) match kernel of the form

K(X, Y ) =
1

|X| + |Y |
(

X

x∈X

max
y∈Y

M(x, y)+
X

y∈Y

max
x∈X

M(x, y)).

Note that this requires to evaluate up to thousands of pairs

of sentences to compare two images, which may take up to a

few seconds for images with more than a hundred captions.

Therefore, the scalability of this approach is limited.

To avoid the scalability problem, one option is to merge

all the words of all the captions of an image into a single

set of words. This sacrifices the structure of the sentences

but allows to use other methods based on bags of words.

We experiment with two of them. The first one follows [30]

and computes a Fisher vector [54] (FV) of the word2vec

[48] representations of the captions’ words. The semantic

similarity between two captioned images is the dot prod-

uct between the two ℓ2-normalized FV representations. The

second one is a tf-idf weighting of a bag-of-words (BoW)

followed by ℓ2 normalization, that can also be compared us-

ing the dot product. Contrary to the METEOR metric, these

two last approaches produce not only a similarity but also

a vectorial representation of the text that can potentially be

used during training. All learning involved in these repre-

sentations (vocabulary of 46881 words, idf weights, Gaus-

sian mixture model for the word2vec-based Fisher vector,

etc.) is done on our training partition of the Visual Genome

dataset.

We compute the agreement score of all these methods

by comparing their decision to the users’, and report results

in Table 1. We observe that the region-level captions pro-

vided by human annotators are very good predictors of the

semantic similarity between two images, much better than

the visual baseline ones. Of these, the tf-idf BoW represen-

tation is best, outperforming METEOR and word2vec on

this task. Consequently, this is the representation we lever-

age to train a better visual representation in the next section.

As a comparison, we also experimented with automatically-

generated captions [1, 67] instead of user-generated cap-

tions. The score of the automatic captions is significantly

lower, highlighting the importance of using human captions

for training.

5. Learning visual representations

In the previous section we have shown that human gen-

erated captions capture the semantic similarity between im-

ages. Here we propose to learn a global image represen-

tation that preserves this semantic similarity (Section 5.1).

We then extend our method to explicitly embed the visual

and textual representations jointly (Section 5.2).
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5.1. Visual embedding

Our underlying visual representation is the ResNet-101

R-MAC network discussed in Section 3. This network is de-

signed for retrieval [64] and can be trained in an end-to-end

manner [25]. Our objective is to learn the optimal weights

of the model (the convolutional layers and the projections in

the R-MAC pipeline) that preserve the semantic similarity.

As a proxy of the true semantic similarity we leverage the

tf-idf-based BoW representation over the image captions.

Given two images with captions we define their proxy simi-

larity as the dot product between their tf-idf representations.

To train our network we propose to minimize the empir-

ical loss of the visual samples over the training data. If q

denotes a query image, d+ a semantically similar image to

q, and d− a semantically dissimilar image, we define the

empirical loss as as L =
∑

q

∑
d+,d− Lv(q, d+, d−), where

Lv(q, d+, d−) =
1

2
max(0, m − φT

q φ+ + φT
q φ−), (1)

m is the margin and φ : I → R
D is the function that em-

beds the image into a vectorial space, i.e. the output of our

model. We slightly abuse the notation and denote φ(q),
φ(d+), and φ(d−), as φq, φ+, and φ−. We optimize this

loss with a three-stream network as in [25] with stochastic

optimization using ADAM [37].

To select the semantically similar d+ and dissimilar d−

images we evaluated two approaches. In the first one we di-

rectly sample them such as that s(q, d+) > s(q, d−), where

s is the semantic similarity between two images, computed

as the dot product between their tf-idf representations, as

above. However, we observed this sampling strategy not

to improve the visual representation. We believe this is

because this strategy optimizes the whole ranking at once,

and in particular tries to produce a correct ranking for im-

ages that are all very relevant, and for images that are all

irrelevant, simply based on visual information. This is an

extremely challenging task that our model was not able to

correctly learn. Instead, for the second approach, we adopt

a hard separation strategy. Similar to other retrieval works

that evaluate retrieval without strict labels (e.g. [33]), we

consider the k nearest neighbors of each query according

to the similarity s as relevant, and the remaining images

as irrelevant. This significantly simplifies the problem, as

now the goal is to separate relevant images from irrelevant

ones given a query, instead of producing a global ranking.

Despite the hard thresholding, we observe this approach to

learn a much better representation. Note that this threshold-

ing is done only at training time, not at testing time. In our

experiments we use k = 32, although other values of k led

to very similar results. To reduce the impact of this thresh-

olding the loss could also be scaled by a weight involving

the semantic similarity, similar to the WARP loss [69], al-

though we did not explore this option in this work. Finally,

note that the human captions are only needed at training

time to select image triplets, and are not used at test time.

5.2. A joint visual and textual embedding

In the previous formulation, we only used the textual in-

formation (i.e. the human captions) as a proxy for the se-

mantic similarity in order to build the triplets of images

(query, relevant and irrelevant) used in the loss function.

In this section, we propose to leverage the text information

in an explicit manner during the training process. This is

done by building a joint embedding space for both the vi-

sual representation and the textual representation. For this

we define two new losses that operate over the text repre-

sentations associated with the images:

Lt1(q, d
+, d−) =

1

2
max(0, m − φT

q θ+ + φT
q θ−), (2)

Lt2(q, d
+, d−) =

1

2
max(0, m − θT

q φ+ + θT
q φ−). (3)

As before, m is the margin, φ : I → R
D is the visual em-

bedding of the image, and θ : T → R
D is the function that

embeds the text associated with the image into a vectorial

space of the same dimensionality as the visual features. We

define the textual embedding as θ(t) = W T t
‖W T t‖2

, where t

is the ℓ2-normalized tf-idf vector and W is a learned ma-

trix that projects t into a space associated with the visual

representation.

The goal of these two textual losses is to explicitly guide

the visual representation towards the textual one, which we

know is more informative. In particular, the loss in Eq. (2)

enforces that text representations can be retrieved using the

visual representation as a query, implicitly improving the

visual representation, while the loss in Eq. (3) ensures that

image representations can be retrieved using the textual rep-

resentation, which is particularly useful if text information

is available at query time. All three losses (the visual and

the two textual ones) can be learned simultaneously using

a siamese network with six streams – three visual streams

and three textual streams. Interestingly, by removing the

visual loss (Eq. (1)) and keeping only the joint losses (par-

ticularly Eq. (2)), one recovers a formulation similar to pop-

ular joint embedding methods such as WSABIE [69] or De-

ViSE [20]. In our case, however, retaining the visual loss

is crucial as we target a query-by-image retrieval task, and

removing the visual loss leads to inferior results. We also

note that our visual loss shares some similarities with the

structure-preserving loss of [68], although they tackle the

very different task of cross-modality search (i.e. sentence-

to-image and image-to-sentence retrieval).

6. Experiments

This section validates the representations produced by

our proposed semantic embeddings on the semantic re-
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Figure 2. Left and center: NDCG and PCC achieved by the dif-

ferent models as a function of the number of retrieved images

R, where the ground truth is determined by the tf-idf similarity.

Right: correlation between the ground truth tf-idf similarity and

the visual similarity of the baseline and trained models.

trieval task. We quantitatively evaluate them in two dif-

ferent scenarios. In the first one, we evaluate how well the

learned embeddings are able to reproduce the semantic sim-

ilarity surrogate based on the human captions. In the second

scenario, we evaluate our models using the triplet-ranking

annotations acquired from users (Section 3), by comparing

how well our visual embeddings agree with the human deci-

sions on all these triplets. Then, we propose an experiment

that shows which parts of the images led to the matching

score. Finally we illustrate how, by leveraging the joint

embedding, the results retrieved for a query image can be

altered or refined using a text modifier.

6.1. Experimental details

Implementation details. Our visual model is based on the

ResNet-101 architecture [27] (pretrained on ImageNet) for

the convolutional layers followed by the R-MAC pooling,

projection, aggregation, and normalization pipeline [64].

We resize all our images preserving the aspect ratio such

as that the largest side is of 576 pixels, and use two scales

for the R-MAC pooling. To extract textual features we en-

code the captions using tf-idf. We stem the words using the

Snowball stemmer from NLTK [9].

Our models are learned with a batch size of 64 triplets

(sextuples depending on the setup) using the ADAM opti-

mizer with an initial learning rate of 10−5, which is reduced

to 10−6 after 8k iterations. To mine triplets for training, we

follow a similar approach to [25, 58]. We first randomly

sample N = 500 images. For each of those N samples,

we sample 9 relevant images according to the ground truth.

This produces a pool of 5000 images, where at least 500 of

them have at least 9 relevant images in the pool. Then we

extract their features using the current state of the model,

and prepare all possible triplets of query image, relevant im-

age, and irrelevant image involving the images in the pool,

and where the query is only sampled from the first N im-

ages. Finally, the 100 triplets with the largest loss for every

query and positive pair are selected as potential candidates

to be sampled and used for updating the model. This mining

process is repeated after t = 64 updates of the model.

US NDCG AUC PCC AUC

Text oracle

Caption Tf-idf 76.3 100 100

Query by image

Random (x5) 50.0 ± 0.8 10.2 ± 0.1 -0.2 ± 0.7

Visual baseline (, V) 64.0 58.4 16.1

WSABIE (V+T, V) 67.8 61.0 15.7

Proposed (V, V) 76.9 70.1 20.7

Proposed (V+T, V) 77.2 68.8 21.1

Query by image + text

Proposed (V+T, V+T) 78.6 74.4 22.5

Table 2. Comparison of the proposed methods and baselines eval-

uated according to User-study (US) agreement score, AUC of the

NDCG and PCC curves (i.e. NDCG AUC and PCC AUC).

Metrics. We benchmark our proposed models with two

metrics that evaluate how well they correlate with the tf-idf

proxy measure, which is the task we optimize for, as well as

with the user agreement metric proposed in Section 3. Al-

though the latter corresponds to the exact task that we want

to address, the metrics based on the tf-idf similarity pro-

vide additional insights about the learning process and al-

low one to crossvalidate the model parameters. We evaluate

our approach using normalized discounted cumulative gain

(NDCG) and Pearson’s correlation coefficient (PCC). Both

measures are designed to evaluate ranking tasks. PCC mea-

sures the correlation between ground-truth and predicted

ranking scores, while NDCG can be seen as a weighted

mean average precision, where every item has a different

relevance – in our case, the relevance of one item with re-

spect to the query is the dot product between their tf-idf

representations. To evaluate our method in the validation or

test splits we choose 1k images from the split, that are used

as queries, and use them to rank all the 10k images in the

split. The query image is removed from the results. Finally,

since we are particularly interested in the top results, we do

not report results using the full list of 10k retrieved images.

Instead, we report NDCG and PCC after retrieving the top

R results, for different values of R, and plot the results.

Methods and baselines. We evaluate different versions of

our embedding. We denote our methods with a tuple of

the form ({V, V+T}, {V, V+T}). The first element denotes

whether the model was trained using only visual embed-

dings (V), cf . Eq. (1), or joint visual and textual embed-

dings (V+T), cf . Eq. (1)-(3). The second element denotes

whether, at test time, one queries only with an image, using

its visual embedding (V), or with an image and text, using

its joint visual and textual embedding (V+T). In all cases,

the database consists only of images represented with vi-

sual embeddings, with no textual information.

Our approach is compared to our ResNet-101 R-MAC

baseline, pretrained on ImageNet, with no further training,

and to a WSABIE-like model, that seeks a joint embedding
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optimizing the loss in Eq. (2), but does not explicitly opti-

mize the visual retrieval goal of Eq. (1).

6.2. Results and discussion

We start by discussing the effect of training in the task of

simulating the semantic similarity surrogate function. Fig-

ure 2 presents the results using the NDCG@R and PCC@R

metrics for different values of R.

Our first observation is that all forms of training improve

over the ResNet baseline. Of these, WSABIE is the one that

obtains the smallest improvement, as it does not optimize

directly the retrieval end goal and only focuses on the joint

embedding. All methods that optimize the end goal obtain

significantly better accuracies. The second observation is

that, when the query consists only of one image, training

our model explicitly leveraging the text embeddings – mod-

els denoted with (V+T, V) – brings quantitative improve-

ment over (V,V) only on some of the metrics. However, this

joint training allows one to query the dataset using both vi-

sual and textual information – (V+T, V+T). Using the text

to complement the visual information of the query leads to

significant improvements.

In Table 2 we evaluate these methods on the human

agreement score. For context, we also report the area under

the curve (AUC) of the NDCG and PCC curves. As with

NDCG and PCC, learning the embeddings brings substan-

tial improvements in the user agreement score. In fact, all of

our trained models actually outperform the score of the tf-

idf over human captions, which was used as a “teacher” to

train our model, following the learning with privileged in-

formation terminology. Our model leverages both the visual

features as well as the tf-idf similarity during training, and,

as such, it is able to exploit the complementary information

that they offer. Using text during testing improves agree-

ment with users, and brings considerable improvements in

the NDCG and PCC metrics. Additionally, having a joint

embedding can be of use even if quantitative results do not

improve, for instance for refining the query, see Figure 5.

Grounding the decisions. We leverage recent visualiza-

tion techniques to highlight the regions of a pair of images

that contribute the most to their similarity. We follow Grad-

CAM [60], that displays the aggregated activations of the

last convolutional layer weighted with the gradient of the

loss for a target class. In our case, instead of using the gra-

dients with respect to a specific class, we use the gradients

with respect to the top k = 5 dimensions of the final signa-

tures that contributed the most to their similarity. Figure 3

displays pairs of images, where the key regions that most

contributed to the similarity are highlighted. Please note

how the same image can highlight different regions depend-

ing on with which image it has been matched with.

Qualitative retrieval results. Figure 4 compares the vi-

Figure 3. Grounding the decisions. For every pair of images we

highlight the parts that contributed the most to their learned vi-

sual similarity. Different parts of the same image are highlighted

depending on the image it is matched to.

sual baseline with our trained method (V+T,V), where

our method retrieves more semantically meaningful results,

such as horses on the beach or newlyweds cutting a wed-

ding cake. Figure 5 shows the effect of text modifiers. The

embedding of the query image is combined to the embed-

dings of textual terms (that can be added or subtracted to the

representation) to form a new query with an altered mean-

ing that is able to retrieve different images, and that is only

possible thanks to the joint embedding of images and text.

7. Conclusions

In this work we focus on the task of semantic image re-

trieval, where, given a query image, the goal is to retrieve

images that depicts similar scenes. To this end we con-

ducted a user study and showed that i) users typically agree

on the task of semantically ranking images, and ii) these

ranks can be accurately predicted by exploiting human-

annotated captions. We leveraged these annotations to learn

a visual embedding of the images and showed that this

visual embedding predicts very well the human ranking

preferences, even better than the human caption proxy we

trained with. Our models can also provide visual explana-

tions about why a pair of images is similar. Finally, our joint

visual and textual model can leverage text modifiers to re-

fine the meaning of a query image, providing exciting new

ways to query image databases.

Acknowledgments. We would like to thank Florent Per-

ronnin for fruitful discussions and all of our 35 annotators.
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Figure 4. Qualitative results. For every block of images, left: query image. top: top-7 images with the representation pretrained on

ImageNet, bottom: top-7 images with our learned representation with the (V+T,V) model.

Figure 5. For a set of query images, we use a text modifier as additional query information (concepts are added or removed) to bias the

results. Note that the first query is the last one from Figure 4 refined with additional text.
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