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Abstract

We present a novel visual attention tracking technique

based on Shared Attention modeling. By considering the

viewer as a participant in the activity occurring in the

scene, our model learns the loci of attention of the scene ac-

tors and use it to augment image salience. We go beyond im-

age salience and instead of only computing the power of im-

age regions to pull attention, we also consider the strength

with which the scene actors push attention to the region in

question, thus the term Attentional Push. We present a con-

volutional neural network (CNN) which augments standard

saliency models with Attentional Push. Our model contains

two pathways: an Attentional Push pathway which learns

the gaze location of the scene actors and a saliency path-

way. These are followed by a shallow augmented saliency

CNN which combines them and generates the augmented

saliency. For training, we use transfer learning to initial-

ize and train the Attentional Push CNN by minimizing the

classification error of following the actors’ gaze location on

a 2-D grid using a large-scale gaze-following dataset. The

Attentional Push CNN is then fine-tuned along with the aug-

mented saliency CNN to minimize the Euclidean distance

between the augmented saliency and ground truth fixations

using an eye-tracking dataset, annotated with the head and

the gaze location of the scene actors. We evaluate our model

on three challenging eye fixation datasets, SALICON, iSUN

and CAT2000, and illustrate significant improvements in

predicting viewers’ fixations in social scenes.

1. Introduction

Modeling visual attention has attracted much interest re-

cently and there are several frameworks and computational

approaches available. The current state-of-the-art of atten-

tion prediction techniques are based on computing image

salience maps, which provide, for each pixel, its proba-

bility of attracting viewers’ attention and have often been

Figure 1: Input Image (top left) and ground-truth fixation heat

map (top right), eDN saliency [35] (bottom left) and BMS saliency

[37] (bottom right).

characterized by how well they predict eye movements. Al-

most all attention models are directly or indirectly inspired

by cognitive findings and traditionally, they are based on

hand-crafted features emerging from neuroscience studies.

The basis of many attention models dates back to Treisman

and Gelade’s feature integration theory [34], Koch and Ull-

man’s [18] feed-forward neural model and Clark and Fer-

rier’s [9] computational demonstration of the link between

image salience and eye movements. The first complete im-

plementation of the Koch and Ullman model was proposed

in the pioneering work of Itti et al. [13] which inspired

many later models and has been the standard benchmark

for comparison.

The recent publication of large-scale fixation datasets

has motivated many saliency models based on convolutional

neural networks (convnets), which have made quite signif-

icant improvements over traditional saliency models which

are mostly designed using hand-crafted features. This

trending increase in performance improvement of convnet-

based saliency models seems to have saturated the predic-

tion performance to the extent that further improvements re-
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quire new and deeper insights into the concept of saliency-

based attention tracking [7]. One of the shortcomings of

the standard saliency-based attention tracking approaches

is that, for the most part, they concentrate on analyzing re-

gions of the image for their power to attract attention. How-

ever, in many instances, a region of the image may have

low salience, but nonetheless still have attention allocated

to it. Clearly, in such cases there are no salient features that

attract viewers’ attention to these regions other than the ma-

nipulating effect of higher-level concepts in the image. This

suggests that in building an attention model we should go

beyond image salience and instead of only computing the

power of an image region to pull attention to it, we should

also consider the strength with which other regions of the

image push attention to the region in question.

Our proposed method models the viewer as a passive par-

ticipant in the activity occurring in the scene. While view-

ers cannot affect what is going on in the scene, their at-

tentional state can nonetheless be influenced by the scene

actors. We will treat every image viewing situation as one

of Shared Attention, which is the process by which multiple

agents mutually direct and follow each others attentional

state [17]. The goal of an agent in a shared attention setting

is to coordinate its attention with other agents. While shared

attention usually requires both agents to be able to manipu-

late and understand the attentional state of the other agent,

our particular situation is a restricted asymmetric form of

shared attention, in that the viewer has no control over the

attentional state of the actors in the imagery. However, the

actors in the image are assumed to have some control over

the attentional state of the other actors in the image, as well

as that of the viewer. Our working assumption will be that

the attentional locus, i.e. the gaze location of each actor

in a scene compels the viewers to direct their attention to

that region, even if it has low salience by the scene ac-

tor’s gaze. Figure 1 demonstrates an example in which the

viewers’ attention is pushed to an image region with low

saliency. The figure compare the performance of two of

the best-performing saliency models (according to the MIT

saliency benchmark), eDN [35] (neural network-based) and

BMS [37] (non-neural network), with the ground truth fix-

ation heat maps. Clearly both methods perform poorly in

predicting the viewers’ attention. To improve on the perfor-

mance of these methods, we need to also track the attention

of the scene actors, and use this to augment the saliency.

We use the term Attentional Push [30] to refer to the power

of the scene actors to direct and manipulate the attention

allocation of the viewer. Although there are other reported

Attentional Push cues in the literature (see Section 6), in

this work, we focus on the most prominent of these, i.e. the

actors’ gaze.

We propose a model that learns to follow the gaze lo-

cation of the scene actors and augments saliency models

with the Attentional Push effect of the actors’ gaze in so-

cial scenes (everyday scenes depicting human activities).

Instead of designing a saliency model from scratch, we

purposefully use pre-built saliency models to illustrate that

even the state-of-the-art in saliency models, either built

from hand-crafted features or complete data-driven mod-

els based on convnets, can still benefit from the manipu-

lating effect of Attentional Push. We present a deep con-

volutional neural network which augments saliency mod-

els with Attentional Push. Our network contains two path-

ways: a saliency pathway, which embeds saliency methods,

and an Attentional Push pathway, containing a deep convnet

which learns to estimate the gaze location of the scene ac-

tors. These are followed by a shallow augmented saliency

convnet that combines them and generates the augmented

saliency. While the saliency pathway is fed with the whole

input image to compute the saliency map, we only provide

a 2-D grid location of the head of the scene actors and a

cropped image region around them to the Attentional Push

convnet. We use transfer learning to initialize the Atten-

tional Push convnet and train it to minimize the error of

classifying the actors’ gaze location on a 2-D grid. For

training and validating the Attentional Push convnet, we

use a large-scale gaze following dataset, the GazeFollow

dataset [26], containing more than 120000 social images

annotated with the center of the eyes and the gaze location

of the scene actors. We use a soft-max layer in the output

of the network to compute a multinomial logistic loss dur-

ing training, and also for computing the Attentional Push

map, i.e. a 2-D distribution of the actor’s gaze location over

all possible image regions. The Attentional Push convnet

is then fine-tuned along with the augmented saliency con-

vnet to minimize the Euclidean distance between the aug-

mented saliency with ground truth fixations. We use more

than 4000 social images from the SALICON [15] dataset

and annotate them with the center of the eyes and the gaze

location of the scene actors. To evaluate the performance

of the proposed network, we provide evaluation metrics for

social images from three challenging eye fixation datasets:

SALICON, iSUN [36] and CAT2000 [2] dataset.

The rest of this paper is organized as follows. Section

2 presents related work on attention tracking and saliency

models that have employed gaze following as a subcompo-

nent and data-driven saliency methods using convnets. We

explain the structure and the training scheme for the At-

tentional Push CNN and the augmented saliency CNN in

Section 3 and 4, respectively. Section 5 outlines the ex-

periments and presents the prediction performance of our

model. Future works and concluding remarks are given in

Section 6.
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2. Related work

The manipulating effect of the gaze direction of scene ac-

tors has been studied in the visual attention literature. Ric-

ciardelli et al. [27] showed that perceived gaze enhances

attention if it is in agreement with the task direction, and

inhibits it otherwise. They showed that in spite of top-

down knowledge of its lack of usefulness, the perceived

gaze automatically acts as an attentional cue and directs

the viewer’s attention. Similarly, Kuhn and Kingstone [21]

showed that even in task-driven viewing of a scene, the ac-

tors’ eye gaze cannot be ignored by the viewer and causes

voluntary saccades even if it is counterpredictive to the vi-

sual task. Birmingham et al. [1] assessed the ability of the

Itti et al. [13] saliency map in predicting eye fixations in so-

cial scenes and showed that its performance is near chance

levels. They concluded that the viewers’ eye movements are

not largely affected by early visual features and are instead

manipulated by their interest to social information and cues

of the scenes. Castelhano et al. [8] showed that while the

actor’s face is highly likely to be fixated, the viewer’s next

saccade is more likely to be toward the object that is fixated

by the actor, compared to any other direction. In [32], by

inspecting viewers’ eye movements in social scene, Subra-

manian et al. showed that the viewers’ fixations follow the

attention patterns of the scene actors. Borji et al. [3] investi-

gated the effect of the gaze direction of the scene actors and

showed that on average, the ratio of the viewers’ saccades

that start from the head and end inside the gazed-at object to

that of the ignored object is more than 3. Recently, Bylinskii

et al. [7] analyzed the prediction performance of the best-

performing saliency models (according to the MIT saliency

benchmark [5] and [16]) in social scenes. The study shows

that on average, around 50 percent of the under-predicted

regions in the images could be predicted using the gaze lo-

cation of the scene actors.

To the authors knowledge, the first attention tracking

model benefiting from the actors’ gaze was proposed by

Parks et al. [25]. This model uses a two-state Markov

chain, describing the transition probabilities between head

region and non-head region states, which are used to predict

whether the next fixation is gaze related or being saliency

driven. Our proposed method differs from the Parks et

al. model in that this method requires the sequence of the

viewers’ eye movements to predict the next fixation point,

whereas our method is based the image information only.

Recasens et al. [26] proposed a convnet to learn the likely

gazed-at object in a scene. Their proposed architecture ap-

proach is similar to our model in that it learns to combine

information about the head orientation and head location

with the scene content. However, their combination scheme

is based on a simple element-wise multiplication of a pre-

dicted gaze map with a saliency map, whereas our model

employs a convnet to effectively merge the complementary

information given by the saliency map and the Attentional

Push map. In addition, their model outputs an estimation of

the location of the gazed-at object (classification formula-

tion), whereas our model solves the challenging regression

problem of estimating viewers’ fixation with the augmented

saliency map.

The recent publication of large-scale fixation datasets

has motivated many saliency models based on convolutional

neural networks. Perhaps the first attempt of predicting im-

age salience using convnets was the eDN model [35] which

uses three optimally-chosen convnets that are used as fea-

ture extractors which are followed by a linear SVM classi-

fier. Similarly, Liu et al. [23] proposed a multi-resolution

convnet in which three different convnets, each trained on a

different scale, are followed by two fully connected layers.

Other models usually benefit from transfer learning in their

convnets. Kummerer et al. [22] adopted the pre-trained

AlexNet network [19] in their DeepGaze model and used

the output of the convolutional layers to create and train

a linear model to compute image salience. Similarly, the

SALICON model [12] benefits from two pre-trained con-

vnets, each on a different image scale, that are concate-

nated to produce the saliency map. The DeepFix model

[20] uses the pre-trained VGG network [29] and extracts

feature across different scales by employing multiple incep-

tion layers from GoogLeNet [33]. The ML-Net model [10]

also uses the convolutional layers of the VGG network and

instead of using the feature maps of the final layers, it com-

putes the saliency map by combining feature maps extracted

from different levels of the VGG network. Pan et al. [24]

proposed a shallow and a deep convnet. The shallow con-

vnet uses three convolutional and two fully connected layer,

which are all randomly initialized. The deep convnet, i.e.

the SalNet model, contains ten convolutional layers with the

first three initialized using the VGG network.

3. Attentional Push CNN

While viewing a scene, a viewer infers the gaze loca-

tion of the scene actors by first looking at their eyes, or if

the eyes are not visible, by looking at their head pose. Af-

ter perceiving the gaze direction, the viewer would look for

possible gaze-at objects in the actors’ field of view, i.e. the

Attentional Push effect. This process is inherently ambigu-

ous, as there are many situations in which the viewer might

be unable to perceive the correct gaze direction [3], in ad-

dition to the uncertainty of following the actor’s gaze di-

rection to the attended image region, in cases that there are

multiple salient regions in the actor’s field of view. Since

our goal is to track the viewers’ attention, we need to con-

sider all the ambiguities arising during this. Therefore, in-

stead of directly solving the problem of finding the gazed-at

object, we learn a probability distribution of the actor’s gaze

location over all possible locations in the image. This way,
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Figure 2: Architecture of the Attentional Push network. Data

conditioning layers are depicted in black.

we obtain information solely coming from Attentional Push

effect of the actors’ gaze and we let the augmented saliency

convnet to merge them with the information coming from

the saliency pathway. To achieve this, we restrict the input

of the Attentional Push network to a cropped image region,

centered around the viewer’s head and the spatial coordi-

nates of the actor’s head in the image and we train it to es-

timated the actor’s gaze location solely based on them. In

the following sections, we provide the architecture and the

training procedure for the Attentional Push convnet.

3.1. Architecture

As illustrated in Figure 2, the network consists of four-

teen weight layers, including ten convolutional and four

fully connected layers. Considering the amount of available

training instances, we followed the structure of the VGG-16

net [29] and restricted the convolutional kernels to 3× 3 in

size. All convolutional layers are followed by a Rectified

Linear Unit(ReLU) activation to introduce non-linearity to

the network.

We formulate the gaze location learning as a classifica-

tion problem, i.e. classifying the gazed-at location to one

of a pre-defined set of possible locations. Assuming an

M × M spatial grid, the number of output classes would

be M2. The network takes two inputs: a close-up, cropped

image region around the actor’s head and the location of

the head within the M × M spatial grid. Given an anno-

tated RGB input image I ∈ R
W×H×3, we use the loca-

tion of the center of the eyes of the scene actor, denoted

by (xh, yh), and center a region-of-interest (ROI) around

it, F = I(xh − sW : xh + sW, yh − sH : yh + sH, :),
where : denotes the slicing operator and s is the scale fac-

tor (in our experiments, we set s to 0.25). Note that if the

ROI exceeds the image boundaries, the remaining pixels of

F are set to zero. Finally, F is then resized to 224 × 224
pixels and is fed through the convolutional layers. To create

the face location input, we create a zero-initialized image

L ∈ R
M×M×1, and set L(xh

W
M,

yh

H
M) = 1. We set M to

15 in our experiments.

The model contains four max-pool layers, three of them

having strides of two, which effectively halves the size of

the following feature maps in the network. Therefore, after

the last convolutional layer, the feature maps are of the size

of (28× 28× 512). Before concatenating the above with

the face location input, we use a fully connected layer to

encode the feature maps into a more compressed represen-

tation. The size of the fully connected layer is set low to

prevent over-fitting. This continues in the remaining layer

and the last fully connected layer generates the network es-

timation of the gaze location in a flattened M2
×1 represen-

tation. We use a soft-max layer in the output of the network

to compute a multinomial logistic loss during training, and

also for computing the 2-D probability distribution of the

actor’s gaze location over all possible image regions; i.e.

the Attentional Push map.

3.2. Training

We implemented the network using Caffe [14]. Transfer

learning is used to initialize the parameters of the convo-

lutional layers from the VGG-16 net [29]. The weights of

the fully connected layers are randomly initialized using the

Xavier method [11] and the bias set to 0. For training, we

use 119125 images from the GazeFollow dataset [26] train

set, and 3018 images from the GazeFollow dataset test set

for validation (see Section 5.1). To zero center the pixel in-

tensities, we subtract the mean pixel value of the training

images from all of the training and validation images. We
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Figure 3: Architecture of the augmented saliency network. Data conditioning layers are depicted in black. The attentional push network is

indicated by the red dashed line.

also use random horizontal flips during training to increase

the number of training examples. The network is trained by

back-propagating the multinomial logistic regression loss

between the soft-max output and the ground truth gaze lo-

cation, using mini-batch stochastic gradient descent with a

mini-batch size of 2, a momentum of 0.9 and a weight de-

cay of 0.0005. We train the network with a base learning

rate of 1 × 10−5 for all of the fully connected layers and

the last three convolutional layers. The learning rate of the

first two convolutional layers are set to 0, while the learning

rate of the rest of the convolutional layers is set to 1×10−7.

We used drop-out and batch normalization after each of the

fully connected layers to speedup convergence. The net-

work is validated against the validation set every 1000 it-

erations and the learning rates are scaled down by a factor

of 0.5, if the performance saturates on the validation set, to

prevent over-fitting.

4. Augmented Saliency CNN

We combine the complementary information given by

the saliency and the Attentional Push maps using a shallow

convnet. The augmented saliency convnet takes the saliency

map, the Attentional Push map, and the actors’ head loca-

tions as inputs and generates the augmented saliency map.

The reason that we feed the actors’ head locations to the

augmented saliency convnet is that the augmentation pro-

cess should vary as a function of both the actors’ head and

gaze location. For instance, if an image contains multiple

faces, not all of them are equally important and the Atten-

tional Push effect would change as a function of the ac-

tors’ location inside the image. Another example would

be cases in which an actor located near the image bound-

aries is looking outside of the image boundaries, which

are not as strong to push the viewers’ attention. In addi-

tion, since we are augmenting pre-trained saliency models,

the augmentation should vary depending on the employed

saliency model. Therefore, we train the network once for

each saliency model. In the following sections, we pro-

vide the architecture and the training procedure for the aug-

mented saliency convnet.

4.1. Architecture

As illustrated in Figure 3, the network takes three in-

puts: the saliency map, the Attentional Push map, and the

location of the head of the scene actors; all resized to the

same size as the input image. In addition to the Attentional

Push layers, the network consists of four convolutional lay-

ers, three of them followed by a ReLU layer to introduce

non-linearity to the network. These added layers are re-

sponsible for combining the provided input information and

to compute the augmented saliency. The architecture of the

network is designed and restricted to convolutional layers in

order to keep the number of parameters small, considering

the amount of available training instances. The output of the

last convolutional layer is used as the augmented saliency

map and is fed to the loss layer during training. We use a

Euclidean loss layer to minimize the Euclidean distance be-

tween the augmented saliency with ground truth fixations

during training.
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Table 1: Summaries of the used datasets.

Dataset Annotations Viewers Added annotations Train Validation Test

GazeFollow [26] Head and gaze location Crowd - 119125 3018 -

SALICON [15] Mouse tracking based eye-movement Crowd Head & gaze location 3246 603 200

CAT2000 [2] Eyetracker 28 Head location - - 200

iSUN [36] Web-cam eyetracker Crowd Head location - - 200

To illustrate the effectiveness of Attentional Push in aug-

menting image saliency, we employ five saliency models

and train and evaluate the network in Figure 3 once for each

of them. We used the MIT saliency benchmark [5] in select-

ing the best-performing saliency models which have avail-

able implementations. We used three neural network-based

saliency models: ML-Net [10], SalNet [24] and eDN [35];

and two best-performing non neural network models: BMS

[37] and RARE [28].

4.2. Training

We implemented the network using Caffe [14]. We use

transfer learning to initialize the parameters of the Atten-

tional Push layers from the pre-trained Attentional Push

convnet and fine-tune them along with the added convolu-

tional layers to minimize the Euclidean loss. The weights

of the added convolutional layers are randomly initialized

using the Xavier method [11] with the bias set to 0. We use

3246 social images from the SALICON [15] dataset (see

Section 5.1) for training and 603 images for validating the

network. We subtract the mean pixel value of the training

images from all of the training and validation images. We

also normalize the fixation heatmaps between 0 and 1 prior

to training. We also use random horizontal flips of the train-

ing images and fixation heatmaps during training.

The network is trained by back-propagating the Eu-

clidean distance between the augmented saliency and the

fixation heatmaps, using mini-batch stochastic gradient de-

scent with a mini-batch size of 2, a momentum of 0.9 and a

weight decay of 0.0005. We train the network with a base

learning rate of 1 × 10−8 for the randomly initialized lay-

ers. The learning rate of the pre-trained Attentional Push

convnet is set 1 × 10−10. The network is validated against

the validation set every 100 iterations and the learning rates

are scaled down by a factor of 0.5, if the performance satu-

rates on the validation set to prevent over-fitting.

5. Evaluation and Comparison

5.1. Datasets

We use the following four datasets to train, validate and

test the performance of proposed methodology. Table 1

summarizes the employed datasets.

The GazeFollow dataset [26] is a large-scale dataset of

social scenes, annotated with the location of the head and

the location of where the scene actors are looking. The

dataset annotations are obtained using an Amazon Mechan-

ical Turk setup. As suggested in [26], we use 119125 im-

ages for training and the rest are used for validating the net-

work. The SALICON dataset [15] is obtained using mouse-

contingent-tracking as a replacement for eye-contingent-

tracking. The dataset contains fixation locations and fixa-

tion heatmaps for 10000 training and 5000 validation im-

ages. We selected 3246 social images from the training and

803 social images from the validation set respectively (all

images contain at least one actor), and added annotation for

the location of the actors’ head and the actors’ gaze location.

The CAT2000 dataset [2] contains 2000 images from 20 dif-

ferent categories. Images in this dataset are annotated with

eye-movement data from 28 viewers. We use 200 images

from the Action and the Social categories of this dataset

during evaluation. We provide annotations for the head lo-

cation of the scene actors during testing. The iSUN dataset

[36] contains 6926 images from natural scenes. The images

are annotated with eye-tracking data, obtained from viewer

gaze-tracking using web-cams on an Amazon Mechanical

Turk setup. We use 200 social images from this dataset for

evaluation. We provide annotations for the head location of

the scene actors during testing.

5.2. Evaluation protocol

We employ three neural network-based saliency models

and two best-performing non neural network saliency mod-

els and train the full network in Figure 3 for each. All net-

works are trained and validated using the training and the

validation subset of the annotated SALICON images. We

evaluate the performance of the networks on three test sets:

the test subset of the annotated SALICON, the action and

social categories of CAT2000 and the social images from

the iSUN dataset. Note that although our network requires

the actors’ head location during evaluation, we do not use

a face detector and instead, use human annotations for the

actors’ head location. The reason is that in many of the im-

ages, the actors are looking sideways or even looking away

from the camera, which makes it a challenging task for even

the best-performing face detectors such as [38]. Since our

goal is to illustrate the effectiveness of Attentional Push, we

assume to have head location annotations in both training

and testing.

Attention models have commonly been validated against
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Table 2: Average evaluation scores for the augmented saliency vs. saliency models on the SALICON, CAT2000 and iSUN test sets.

SALICON CAT2000 iSUN

AUC NSS CC AUC NSS CC AUC NSS CC

ML-Net [10] 0.66 0.36 0.13 0.73 0.62 0.26 0.68 0.52 0.27

augmented ML-Net 0.82 2.84 0.71 0.81 1.65 0.61 0.73 0.98 0.50

SalNet [24] 0.66 1.41 0.26 0.66 0.96 0.31 0.60 0.57 0.22

augmented SalNet 0.83 3.04 0.74 0.80 1.68 0.63 0.74 1.12 0.52

eDN [35] 0.78 1.03 0.34 0.78 1.06 0.43 0.72 0.85 0.44

augmented eDN 0.85 2.90 0.74 0.83 1.71 0.66 0.77 1.25 0.59

BMS [37] 0.77 1.28 0.38 0.79 1.18 0.46 0.68 0.72 0.35

augmented BMS 0.86 2.94 0.74 0.83 1.68 0.65 0.75 1.15 0.55

RARE [28] 0.77 1.33 0.39 0.79 1.25 0.49 0.68 0.75 0.36

augmented RARE 0.85 2.98 0.75 0.83 1.72 0.66 0.75 1.19 0.55

Average improvements 0.11 1.86 0.44 0.07 0.67 0.25 0.08 0.44 0.21

the eye movements of human observers based on various

evaluation metrics in the literature (e.g. [4, 5]). Since the

performance of a model may change remarkably while us-

ing different metrics, we use three popular evaluation met-

rics: the Area Under the ROC Curve (AUC), the Normal-

ized Scan-path Saliency (NSS), and the Correlation Coef-

ficient (CC) to ensure that the main qualitative conclusions

are independent of the choice of metric. We use MATLAB’s

implementation of the evaluation scores from [6].

Table 2 compares the prediction performance of the At-

tentional Push-based augmented saliency with the stan-

dard saliency methods on the SALICON, CAT2000 and

the iSUN test sets respectively. The results show that the

augmented saliency consistently improves upon the stan-

dard saliency methods. The results indicate that all the

employed saliency models, both neural network and non-

neural network based models, can benefit from Attentional

Push to improve the prediction accuracy. Interestingly,

the BMS and the augmented BMS models outperform the

ML-Net and SalNet and their augmented version in many

cases. Comparing the average improvements over the three

datasets, it is clear that the proposed methodology is able

to perform well across different eye-tracking datasets, even

though it only uses the SALICON train/validation sets dur-

ing the training procedure. We present qualitative results for

comparing the augmented saliency and the saliency meth-

ods in Figure 4. The figure compares the ground-truth fixa-

tion heatmaps with different components of our model, i.e.

the saliency map, the Attentional Push map, the input head

location and the augmented saliency map. As seen in the

figure, augmented saliency maps clearly benefit from the

all of them to provide an improved prediction of the ground-

truth fixations.

To investigate the relative significance of each compo-

nent in the augmented saliency, Table 3 reports the predic-

tion performance with each component disabled at a time.

Table 3: Performance analysis with some components disabled.

The results are based on BMS saliency and the SALICON test set.

AUC NSS CC

augmented saliency 0.86 2.94 0.74

No Attentional Push 0.83 2.30 0.56

No head location 0.82 2.13 0.54

Another saliency 0.81 2.79 0.70

No saliency 0.80 2.30 0.50

Saliency 0.77 1.28 0.38

3 shows the results for the augmented BMS network, with

the BMS saliency, the Attentional Push map and the ac-

tors’ head location disabled. We also included the results

for using the augmented BMS network, fed with SalNet

saliency during testing to illustrate the performance with

sub-optimal information fusion. The results show that all

three components contribute to the augmented saliency. The

performance of the model without the saliency input sug-

gests that while viewing social scenes, the viewers tend to

focus on social cues instead of irrelevant salient regions.

6. Conclusion and Future work

We presented an attention modeling scheme which com-

bines Attentional Push cues, i.e. the power of image re-

gions to direct and manipulate the attention allocation of

the viewer, with standard saliency models, which generally

concentrate on analyzing image regions for their power to

pull attention. We presented a deep convolutional convnet

which learns to follow the gaze location of the scene ac-

tors and augments saliency models with Attentional Push.

Based on evaluation using three eye-tracking datasets, our

methodology significantly outperforms saliency methods in

predicting the viewers’ fixations. Our results showed that by

employing Attentional Push cues, the augmented saliency

maps can improve upon the state of the art in saliency mod-
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Figure 4: Qualitative results. (i) Input image, (ii) ground-truth fixation heatmap, (iii) saliency map, (iv) face location input, (v) Attentional

Push map, and (vi) augmented saliency map. The input images are from the SALICON and the CAT2000 test sets. The employed saliency

models are: (a) BMS,(b) BMS,(c) eDN,(d) eDN,(e) eDN,(f) ML-Net,(g) ML-Net,(h) ML-Net, and (j) Rare.

els. In this work, we limited the Attentional Push effect

to the scene actors’ gaze. However, there are other At-

tentional Push cues reported in the literature of attention

tracking. One of the most frequently cited Attentional Push

cues in the literature is the center bias. We can treat the

center-bias effect in the shared attention setting by consid-

ering the photographer as an actor in the shared attention

setting, which tries to put the semantically interesting and

therefore, salient elements in the center of the frame. In ad-

dition, Attentional Push cues can also arise from dynamic

events. For example, Smith [31] showed that sudden move-

ments of the heads of actors are a very strong cue for atten-

tion. Smith [31] also notes the ”bounce” in the attention of

a movie viewer back to the center of the movie screen when

tracking an object which moves off the screen to one side.

Similarly, abrupt scene changes are the contribution of the

center bias in predicting viewer’s attention while watching

dynamic stimuli. We believe that the introduction of atten-

tion tracking techniques based on treating the viewer as a

participant in a shared attention situation, either in static or

in dynamic scenes, will open new avenues for research in

the attention field.
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