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Abstract

The depth images acquired by consumer depth sensors

(e.g., Kinect and ToF) usually are of low resolution and in-

sufficient quality. One natural solution is to incorporate

with high resolution RGB camera for exploiting their sta-

tistical correlation. However, most existing methods are in-

tuitive and limited in characterizing the complex and dy-

namic dependency between intensity and depth images. To

address these limitations, we propose a weighted analysis

representation model for guided depth image enhancement,

which advances the conventional methods in two aspects:

(i) task driven learning and (ii) dynamic guidance. First,

we generalize the analysis representation model by includ-

ing a guided weight function for dependency modeling. The

task-driven learning formulation is introduced to obtain the

optimized guidance tailored to specific enhancement tasks.

Second, the depth image is gradually enhanced along with

the iterations, and thus the guidance should also be dynam-

ically adjusted to account for the updating of depth image.

To this end, stage-wise parameters are learned for dynamic

guidance. Experiments on guided depth image upsampling

and noisy depth image restoration validate the effectiveness

of our method.

1. Introduction

High quality and dense depth image plays a fundamen-

tal role in many real world applications, such as robotics,

human-computer interaction, and augmented reality. Tra-

ditional depth sensing is mainly based on stereo or laser

measurement, which in general is of high computational

burden or expensive price. Recently, the wide availability

of consumer depth sensing products, e.g., RGB-D cameras

and Time of Flight (ToF) range sensors, offers an econom-

ic alternative for dense depth measurements. However, the

depth image generated by consumer depth sensors usually
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is of insufficient quality, resulting in depth image with low

resolution, noise or missing values.

Depth image enhancement have received considerable

recent research interests [38, 15, 4, 28, 6, 20, 24]. One

representative solution is to utilize multiple depth images

from the same scene to reconstruct a high quality depth im-

age [38, 15]. These methods, however, relies heavily on

accurate calibration, and may fail when applied to dynamic

environment. Another popular solution is to incorporate a

high quality color camera with a depth sensor for depth im-

age enhancement [4, 1, 28, 6, 24]. For most consumer depth

sensors, high quality RGB image generally can be simulta-

neously acquired with the depth image, making it very ap-

pealing and natural to exploit color images for guided depth

image enhancement.

Modeling dependency between intensity and depth im-

ages plays a key role in guided depth image enhancement.

Based on the structural co-occurrence between intensity and

depth images, filtering methods have been used to transfer

the salient structure from intensity image to the enhanced

depth map [13, 34]. Certain forms of objective function-

s have also been adopted for interdependency modeling,

resulting several Markov Random Fields (MRF) [4], non-

local mean [28]), and variational (e.g., Total Generalized

Variation [6] models. The filter-based and model-based ap-

proaches, however, usually are ad hoc and limited in char-

acterizing the complex dependency.

Recently, learning-based methods have been studied.

Under the sparse representation framework, analysis and

synthesis dictionary learning models have been exploited

for modeling the statistical relation of intensity and depth

images [36, 20]. Motivated by the success of deep learning,

deep CNNs [7, 22] are also developed. However, the ex-

isting dictionary learning methods simply packed intensity

and the associated depth patches to learn dictionaries in a

group learning manner. Moreover, along with the enhance-

ment, more details of the depth image will be recovered.

Therefore, the guidance should also be dynamically adjust-

ed to cope with the updating of depth image, but few studies

have been given to address this issue in the dictionary learn-
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Figure 1. Illustration of our guided depth enhancement method. At stage t+ 1, the current enhancement result xt and the guided image g

are first convolved with the corresponding L analysis filters, respectively. After nonlinear transform, the filtering responses of xt and g are

combined via element-wise product, and further convolved with the L adjoint filters to form the result by regularization term. Finally, the

results by regularization and fidelity terms are summarized to obtain the updated result xt+1.

ing and CNN-based methods.

In this paper, we investigate the problem of task-driven

dynamic guidance learning in the analysis representation

framework [30]. Due to its ability in modeling complex lo-

cal structure, analysis representation model has been adopt-

ed in various image restoration tasks [30, 2]. Here we ex-

tend it by including a guided weight function for dependen-

cy modeling, resulting in our weighted analysis representa-

tion model. For task-driven guidance learning, we introduce

a bi-level optimization model, which allows us to obtain the

optimized guidance tailored to specific enhancement task.

For dynamic guidance learning, by referring to [33, 3], we

use gradient descent to solve the lower-level problem, and

learn stage-wise parameters from training data.

To sum up, our method can not only provide a good way

to introduce intensity guidance for depth image enhance-

ment, but also result in good stage-wise parameters speci-

fied to certain depth image enhancement task. Fig. 1 illus-

trates the process of one stage in our method. The contribu-

tion of this paper is three-fold:

• By introducing a guided weight function, we extend

analysis representation model for guided depth image

enhancement. In our model, analysis representation

and weight function are combined to characterize the

priors and dependency of intensity and depth images.

• A task-driven formulation is suggested to learn weight-

ed analysis representation model by solving a bi-

level optimization problem, and dynamic guidance is

learned from training data for certain task.

• Experiments are conducted on depth image upsam-

pling and noisy depth image restoration. The results

validate the superiority of our method against state-of-

the-arts by both quantitative metric and visual quality.

2. Related works

In this section, we first provide a brief survey on anal-

ysis representation model, and then review several related

methods on explicit guidance modeling.

2.1. Analysis sparse representation

Analysis sparse representation has been widely applied

in many image processing and computer vision tasks [32,

35, 30, 33, 40, 3]. It adopts analysis operator [31] on image

patches or analysis filters [30] on whole images for mod-

eling the local structure of natural images. Compared with

synthesis sparse representation, the analysis model adopts

an alternative viewpoint for union-of-subspaces reconstruc-

tion by characterizing the complement subspace of signal-

s [5], and usually results in efficient solutions.

Here we only consider convolutional analysis represen-

tation, and one representative form can be given by:

x = argmin
x

L(x, y) +
∑

l

∑

i
ρl((kl ⊗ x)i), (1)

where ⊗ denotes the convolution operator, and (·)i denotes

the value at position i. The penalty function ρl(·) is in-

troduced to characterize the analysis coefficients. L(x, y)
is the data fidelity term determined by degradation mod-

el. For Gaussian image denoising, one can simply let

L(x, y) = 1
2σ2 ‖x − y‖22.

Analysis sparse representation has been studied for sev-

eral decades. Rudin et al. proposed a total variation (TV)

model [32], where the analysis filters are gradient opera-

tors and the penalty function is the ℓ1-norm. Subsequently,

a great many of attempts have been made to provide bet-

ter analysis filters and penalty functions. And an emerging

topic is to learn analysis sparse models from training da-

ta. Zhu et al. [39] proposed a FRAME model which aims

to learn penalty functions for predefined filters. Roth et al.

[30] proposed a field-of-expert (FoE) model in which anal-

3770



ysis filters are learned for predefined penalty functions. Al-

though FRAME and FoE are originally introduced from a

MRF perspective, they can also be interpreted as the analy-

sis representation models [31]. Recently, Schmidt et al. [33]

and Chen et al. [3] suggest to model the related functions

with linear combination of Gaussian RBF kernels, and can

learn both analysis filters and penalty functions from train-

ing data. Moreover, by incorporating with the specific opti-

mization methods, stage-wise parameters can be learned in

a task driven manner.

Despite their achievements in image restoration, most

existing methods are used for learning analysis represen-

tation on images from one single modality, and cannot be

applied to guided depth image reconstruction. Kiechle et

al. take one step forward by introducing a bimodal anal-

ysis model to learn a pair of analysis operators [19]. But

the issue of explicit and dynamic guidance from intensity

image remains unaddressed in analysis representation learn-

ing. In this work, we extend the analysis model by introduc-

ing guided weight function for modeling the guidance from

intensity image, and adopt a task-driven learning method to

learn stage-wise parameters for dynamic guidance.

2.2. Explicit guidance modeling

A number of approaches have been proposed to intro-

duce the guidance information. One representative method

is to formulate the input image y, output image x and the

guidance image g into an optimization model [21, 4, 28,

6, 11]. Here we only focus the explicit guidance models,

where the regularization term is represented as the combi-

nation of the guidance function on g and the penalty func-

tion on x. In the MRF-based depth upsampling model [4],

the prior potential function is defined as:
∑

i

∑

j∈N (i)
φµ(gi − gj)(xi − xj)

2, (2)

where i and j are the pixel indexes of image, N (i) is the set

of neighboring index of i, and φµ(z) = exp(−µz2). Sim-

ilar weight function has also been adopted in other model-

s, e.g., non-local mean (NLM) [28], for guided depth en-

hancement. Besides pixel-wise difference, other cues such

as color, segmentation and edge, are also considered to de-

sign proper weight function.

Instead of modifying weight function, Ham et al. [11]

adopt the Welsch’s function to regularize the depth differ-

ences:
∑

i

∑

j∈N (i)
φµ(gi − gj)(1− φν(xi − xj))/ν. (3)

Besides, several hand-crafted high order models are also

proposed to model the weight function and depth regular-

izer [6].

Actually, the models in Eqns. (2) and (3) can be treat-

ed as extensions of handcrafted analysis model. In which

a group of inter-pixel difference operators are used as the

analysis filters, and weight functions on g are introduced

for explicit guidance. Motivated by this observation, we

propose a generalized analysis representation model to in-

clude weight function, and provide a task-driven learning

method to learn the weight functions, analysis filters, and

penalty functions from training data.

3. Proposed method

In this section, we introduce our guided depth image en-

hancement method. First, a weighted analysis sparse rep-

resentation model is suggested to introduce guidance infor-

mation from intensity image. We then provide a task driv-

en formulation, resulting in a bi-level optimization prob-

lem. Finally, stage-wise model parameters are learned from

training data.

3.1. Weighted analysis sparse representation

For conventional analysis sparse representation in E-

qn. (1), the regularization term is only a function of the

output image x. To introduce guidance information from

intensity image, we refer to the models in Eqns. (2) and

(3), and generalize the analysis model by including a weight

function. Instead of handcrafted guidance, we adopt a para-

metric form of the weight function, and the parameters can

be learned in a task-driven manner.

We define the weight function for the l-th analysis oper-

ator at position i as wl,i(g). It is known that the depth and

intensity discontinuities often co-occur. Thus, wl,i(g) is de-

fined based on the local structure of intensity image, such

that wi → 1 for smooth region, and wi → 0 when discon-

tinuity occurs. The resulting weighted analysis model will

penalize depth discontinuities when the corresponding in-

tensity region is smooth, and allow sharp depth jumps when

the intensity region exhibits strong discontinuities.

Although the intensity and the depth images arise from

the same scene are strongly dependent, the values in the t-

wo images have different physical meaning. For example, a

black box in front of a white wall or a gray box in front of a

black wall may correspond to the same depth map but total-

ly different edge gradients for intensity images. Therefore,

the weight function should be able to avoid the interference

of such structure-unrelated intensity information, while ex-

tracting useful salient structures to help the depth map lo-

cate its discontinuities. To this end, local normalization on

intensity map is employed to avoid the effect of different in-

tensity magnitude. Specifically, given the guided intensity

image g, we introduce the operator Ri to extract the local

patch in position i by Rig. The local normalization of Rig

can then be attained by ei =
Rig

||Rig||2
.

With ei, we define the weight function for the l-th anal-

ysis operator βl at position i as,

wl,i(g) = exp
(

−(βT
l ei)

2
)

. (4)

3771



The analysis operator βl can serve as a special local struc-

ture detector. If the local normalized patch ei contains lo-

cal structure such as edges, wl,i(g) will be very small to

encourage that the depth patch exhibits the corresponding

local structure. By introducing the weight function wl,i(g),
we define the weighted analysis sparse representation as,

L(x, y) +
∑

i

∑

l
wl,i(g)ρl((kl ⊗ x)i) . (5)

Based on the weighted analysis sparse representation mod-

el, we further provide the task-driven formulation for guid-

ed depth image enhancement, and suggest to learn the pa-

rameters {ρl,βl, kl}l=1···L from training data.

3.2. Task driven formulation

In the weighted analysis representation model, the da-

ta fidelity term is specified by the depth enhancement task.

This work considers two representative tasks, i.e., depth up-

sampling and hole filling. And their fidelity terms take the

following form,

L(x, y) =
τ

2
‖M

1

2 (x − y)‖22. (6)

where M is a diagonal matrix and τ is a tradeoff parameter.

For depth upsampling, the diagonal elements in M indicate

the corresponding points between high resolution estima-

tion x and aligned low resolution input y. For hole filling,

the diagonal element in M is binary to indicate whether the

pixel is observable or not.

Given L(x, y), one natural solution is to perform depth

image enhancement by minimizing the model in Eqn. (5).

However, the model parameters {ρl,βl, kl}l=1···L remain

unknown and should be learned from training data. More-

over, the model parameters may vary for different tasks.

Thus, we provide a task-driven formulation of weighted

analysis sparse representation, which allows us learn model

parameters to specific task [25, 2].

Denote by D = {y(s), xs
gt, gs}Ss=1 a training set of S

samples. y(s), xsgt, and gs denote the s-th input depth image,

ground truth depth image, and ground truth intensity image,

respectively. Following [25, 2], the task-driven formulation

can be written as a bi-level optimization problem,

{ρ∗l ,β
∗
l , k∗l }

L
l=1 = arg min

{ρl,βl,kl}L

l=1

∑S

s=1
‖xs

gt − xs‖22

s.t. xs=argmin
x

L(x, ys)+
∑

l

∑

i
wl,i(g

s)ρl((kl ⊗ x)i)

(7)

By solving the model above, we can obtain the task-specific

model parameters {ρl,βl, kl}l=1···L.

3.3. Stage-wise model parameter learning

The lower-level problem in Eqn. (7) defines an implic-

it function on {ρl,βl, kl}l=1···L, making the training prob-

lem very difficult to optimize. The high non-convexity of

the lower-level problem further adds difficulty in obtaining

the exact solution. Moreover, along with the enhancement

procedure, more details of xs will be recovered. Thus, in-

stead of employing the same model parameters in all the

iterations, dynamic guidance by learning stage-wise param-

eters may benefit both efficiency and enhancement result.

Actually, stage-wise learning has been adopted in differen-

t applications. Gregor et al. [8] show that a deep archi-

tecture can be obtained based on the truncated version of

optimization algorithm with fixed iterations to approximate

the sparse coding process. Based on half-quadric splitting

(gradient descent), [33] ([3]) learns a few stage-wise oper-

ations to deal with natural image restoration problems, and

achieves the state-of-the-art performance.

Following [8, 33, 3], we use the gradient descen-

t method to solve the lower-level problem, and adop-

t a greedy learning strategy to learn stage-wise pa-

rameters. Assume that both the model parameters

{{ρ1l ,β
1
l , k1l }l=1···L, · · · , {ρ

t
l ,β

t
l , ktl}l=1···L} and the en-

hancement results {x1, · · · , xt} are known. Using gradient

descent, the updated result xt+1 can be obtained by,

xt+1 =

xt −
(

∇xL(xt, y) +
∑

l
k
t+1

l ⊗ (Wt+1
l ρt+1′

l (kt+1
l ⊗ xt))

)

,

(8)

where Wt+1
l is with the same size of kt+1

l ⊗xt, and its value

in position i is wt+1
l,i (g). k

t+1

l is obtained by rotating kt+1
l

180 degree.

So far, the penalty function ρt+1
l (z) is still not param-

eterized. One possible choice is to use the existing regu-

larizers in literature [32, 35, 30, 4, 28, 6]. Actually, from

Eqn. (8), one can see that what we should parameterize is

not the penalty function ρl,t+1(z) but the influence function

ρt+1′
l (z). Here we allow the influence function ρt+1′

l (z) to

have more flexible shapes by parameterizing it with,

ρt+1′
l (z) =

∑M

j
αt+1
l,j exp

(

−(z − µj)
2

2γ2
j

)

, (9)

which is the summation of M Gaussian RBF kernels with

center µj and scalar factor γj . This formulation can pro-

vide a group of highly flexible functions for image restora-

tion [33, 3].

Let αt+1
l = {αt+1

l,j }Mj=1. Then xt+1 can

be explicitly written as a function of Θ
t+1 =

{τ t+1, {αt+1
l ,βt+1

l , kt+1
l }Ll=1}, i.e., xt+1(Θ

t+1). Thus,

we adopt a greedy training strategy to learn the stage-wise

parameters Θt+1 by solving the following problem,

Θ
t+1 = argmin

Θ

1

2

∑S

s=1
||xsg − xs

t+1(Θ)||22 . (10)

The gradient of the loss function with respect to the param-

eters Θ
t+1 can be calculated by the chain rule. Then the

LBFGS method [23, 26] is used to learn the parameters for

each stage. We experimentally found that we can get very
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(a) (b) (c) (d) (e)

Figure 2. Part of learned parameters. In each sub-figure, the upper

part is the regressed penalty function by αi; the lower left part is

the analysis filters ki for depth map; and the lower right part is the

analysis filters βi for guided intensity image.

Figure 3. The training samples used in the guided depth upsam-

pling experiments.

good results after only a few stages of process, e.g., T . Af-

ter greedy learning, joint training is further utilized to learn

the parameters of the T stages simultaneously.

3.4. Discussion

Our weighted analysis sparse representation model can

provide a flexible model to characterize the complex and

dynamic dependency between guided intensity and output

depth images. Experiments are conducted to validate this

claim by using noisy depth upsampling with factor 4 as an

example. The detailed experimental setting will be intro-

duced in Section 4. Fig. 2 shows five of the 24 groups of

learned parameters, i.e., penalty function, and analysis fil-

ters for intensity and depth images. The analysis filters for

intensity and depth images are reshaped for better visual-

ization.

In Eqns. (2) and (3), the same pixel-wise difference op-

erator is used to model the co-occurrence of intensity and

depth discontinuities. From Fig. 2, one can see that the cor-

relation between intensity and depth images is more com-

plex, and the corresponding analysis filters for intensity

and depth images are quite different. Moreover, previous

hand-crafted models usually adopt some monotone shrink-

age functions on filter responses to promote smoothness in

the estimation. Instead, the penalty functions learned by

our models are much more complex. Some learned func-

tions clearly show expansion behaviour, making our model

able to generate high quality depth map with sharp edges.

4. Experiments on depth map upsampling

In this section, we compare the proposed method with

other depth upsampling methods. Three common used

datasets (Middlebury [14], NYU[27] and ToFMark [6]) are

utilized to evaluate the depth upsampling performance of

the proposed method. Besides the baseline bicubic and

bilinear upsampling methods, we compare the proposed

methods with a variety of guided upsampling methods. The

comparison methods include two filtering based method-

s [37, 13], some optimization based method: MRF based

method [4], non-local mean regularized depth upsampling

method [28], total generalized variation (TGV) method [6],

the joint static and dynamic filtering(SDF) method [12],

and recent proposed CNN-based deep joint filtering method

[22]. The root mean square error (RMSE) indexes by recen-

t proposed deep learning based methods are also included.

Detailed experimental setting will be introduced in the fol-

lowing subsections.

4.1. Upsampling results on the Middlebury dataset

The Art, Books and Moebius images in the Middlebury

dataset [14] have been widely utilized to evaluate depth

restoration algorithms. Following the experimental set-

ting of [6], we conduct upsampling experiments with both

the noise-free and noisy low resolution depth map on four

zooming factors, i.e. 2, 4, 8, 16. For the noise-free experi-

ments, both the training and testing samples are generate by

a bicubic resizing of the high quality depth maps. While, for

the noisy experiments, the noisy low-resolution depth maps

are from [28], and we prepare training noisy low resolution

depth map by adding white Gaussian noise with standard

variation 6 to the clean low resolution depth images.

To prepare training data, we choose 18 depth and inten-

sity image pairs in the Middlebury data set [14] and extract

300 72×72 small images as the training dataset. The 18 im-

ages are shown in Fig. 3, we can see that some images are

just a change of viewpoint for the same scene, our training

data set actually only contained limited samples. We thus

further extend the training data set by flipping and rotating

the original image. After extension, we get 1200 small im-

ages of resolution 72×72 in the training data set. Although

the extension improves the structure variety of the training

samples, the training data is still not diverse enough because

the original training images only contain limited kinds of

colors. In our experiments, instead of using RGB image,

we only use gray intensity image to guide the restoration.

Besides the model parameters we aim to learn from train-

ing data, there are still some algorithm parameters, e.g. the

number of filters and the filter size for the depth map and in-

tensity map. Generally, larger filters are able to model local

structure relationship of larger area, with enough training

data, they will lead to better performance. However, uti-

lizing large filters often demands large number of filters to

model local structural prior, which will greatly increase the

computational burden in both the training and testing phase.

To take a balance between efficiency and upsampling per-
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Table 1. Experimental results (RMSE) on the 3 noise-free test image.

Art Books Moebius

×2 ×4 ×8 ×16 ×2 ×4 ×8 ×16 ×2 ×4 ×8 ×16

Bicubic 2.57 3.85 5.52 8.37 1.01 1.56 2.25 3.35 0.91 1.38 2.04 2.95

Bilinear 2.83 4.15 6.00 8.93 1.12 1.67 2.39 3.53 1.02 1.50 2.20 3.18

GF [13] 2.93 3.79 4.97 7.88 1.16 1.58 2.10 3.19 1.10 1.43 1.88 2.85

MRF [4] 3.12 3.79 5.50 8.66 1.21 1.55 2.21 3.40 1.19 1.44 2.05 3.08

Yang [37] 4.07 4.06 4.71 8.27 1.61 1.70 1.95 3.32 1.07 1.39 1.82 2.49

Park [28] 2.83 3.50 4.17 6.26 1.20 1.50 1.98 2.95 1.06 1.35 1.80 2.38

TGV [6] 3.03 3.79 4.79 7.10 1.29 1.60 1.99 2.94 1.13 1.46 1.91 2.63

SDF [12] 3.31 3.73 4.60 7.33 1.51 1.67 1.98 2.92 1.56 1.54 1.85 2.57

DJF [22] 2.77 3.69 4.92 7.72 1.11 1.71 2.16 2.91 1.04 1.50 1.99 2.95

Ours 0.89 2.00 3.84 6.16 0.47 0.91 1.68 2.67 0.45 0.84 1.54 2.34

Table 2. Experimental results (RMSE) on the 3 noisy test image.

Art Books Moebius

×2 ×4 ×8 ×16 ×2 ×4 ×8 ×16 ×2 ×4 ×8 ×16

Bicubic 5.32 6.07 7.27 9.59 5.00 5.15 5.45 5.97 5.34 5.51 5.68 6.11

Bilinear 4.58 5.62 7.14 9.72 3.95 4.31 4.71 5.38 4.20 4.57 4.87 5.43

GF [13] 3.55 4.41 5.72 8.49 2.37 2.74 3.42 4.53 2.48 2.83 3.57 4.58

MRF [4] 3.49 4.51 6.39 9.39 2.06 3.00 4.05 5.13 2.13 3.11 4.18 5.17

Yang [37] 3.01 4.02 4.99 7.86 1.87 2.38 2.88 4.27 1.92 2.42 2.98 4.40

Park [28] 3.76 4.56 5.93 9.32 1.95 2.61 3.31 4.85 1.96 2.51 3.22 4.48

TGV [6] 3.19 4.06 5.08 7.61 1.52 2.21 2.47 3.54 1.47 2.03 2.58 3.56

Chan [1] 3.44 4.46 6.12 8.68 2.09 2.77 3.78 5.45 2.08 2.76 3.87 5.57

SDF [12] 3.36 3.86 4.93 7.85 1.59 1.92 2.60 4.16 1.64 1.85 2.67 4.21

Ours 1.84 2.96 4.41 7.06 1.18 1.64 2.35 3.50 1.34 1.74 2.57 3.79

Table 3. Experimental results (RMSE) on the 449 NYU test image.

NYU

×4 ×8 ×16

MRF [4] 4.29 7.54 12.32

GF [13] 4.04 7.34 12.23

JBU [16] 2.31 4.12 6.98

TGV [6] 3.83 6.46 13.49

Park [28] 3.00 5.05 9.73

SDF [11] 3.04 5.67 9.97

DJF [22] 1.97 3.39 5.63

Ours 1.56 2.99 5.24

formance, we use 24 5×5 analysis filters {kl}l=1...L} for

depth image. For the filters {βl}l=1...L} used to extract in-

formation from intensity image, we set their size as 7×7.

For both the noisy and noise-free cases, we use the results

by bicubic interpolation as the initialization of x0. Our ex-

perimental results show that the proposed model is able to

generate very good upsampling results in a few steps. For

the noise free upsampling experiemts, we set the stage num-

ber for zooming factor 2, 4, 8 and 16 as 4, 5, 6 and 7. While

for the noisy upsampling experiments, the stage numbers

are set as 6, 8, 10 and 12. Adding extra stages will further

improve the training loss, but surfers from more computa-

tion burden in both the training and testing phase.

The upsampling experimental results on the 3 noise-free

testing images by different methods are shown in table 1.

The proposed method consistently shows its advantage over

the competing methods, it achieves the best results on all

the 3 images with different zooming factors. In Fig. 4, we

give visual examples of the upsampling results on the moe-

bius image with zooming factor 16. In the figure we can

see that the guided filter method [13] and the MRF method

[4] can not generate very sharp edges; while, the results by

[37][28] and [6] have some artifacts around the edge area.

Our method is able to generate high quality depth map with

sharper edges and less artifacts.

We further evaluate the proposed method by noisy depth

maps upsampling experiments. The results by different

methods are shown in Table 2, we do not provide the re-

sults by DJF [22] because the authors have not provide their

network as well as results on such setting. The results by

[1] is also included, which is designed to handle noise in

depth super-resolution problem. The proposed method a-

gain achieves the best results.

4.2. Upsampling results on the NYU dataset

In [22], Li et al. utilize the first 1000 images of NYU

dataset [27] as training data, and evaluate their DJF method

on the last 449 images of the NYU dataset. In this section,

we follow their experimental setting and compare different

methods on the 448 images. The results by the other meth-

ods are provided by the authors of [22]. To save the training

time, we train our model with only the first 100 images from

the training data set of [22]. The number and size of the fil-

ters for the NYU dataset are the same as our settings on the

Middleburry [14] dataset. While, the stage number for all
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(a) Color Image (b) Ground Truth (c) GF [13] (d) MRF [4] (e) Yang et al. [37]

(f) Park et al. [28] (g) TGV [6] (h) SDF [12] (i) DJF [22] (j) Ours

Figure 4. Depth restoration results by different methods based on noise-free data (Moebius).

the zooming factors 4, 8 and 16 are set as 4.

The experimental result are shown in Table 3. Compared

with other methods, the proposed method achieves the best

results in terms of RMSE.

4.3. Upsampling results on real Sensor Data

Besides synthetic data, we also evaluate the proposed

method on real sensor dataset [6]. In which a Time of Flight

(Tof) and a CMOS camera are used to obtain low resolution

depth maps and intensity images, and the ground truth depth

images are generated by a structured light scanner.

We utilize the same 18 images in Fig. 3 as the training

images. The noise in the low resolution input of ToFMark

dataset is different from previous synthetic data. To gener-

ate similar low resolution input for training, we first use a t

location-scale distribution to fit the residuals between input

and groundtruth data, and then generate additive noise by

the distribution parameters. Since the missing values in the

depth map are represented as zeros, which may be termed as

very sharp edge in the depth map. We use a simple masked

joint bilateral filtering [29] method to generate initialization

values for the unknown points in the depth map. Although

such initialization x0 is still very noisy, our method can still

generate very good results in just several stages. In addition,

we adopt larger size filters (7 × 7 filters ki for depth image

and 9 × 9 filters βi for intensity image) to further improve

the performance of the proposed method.

The restoration results are showed in Table 4. We com-

pare our method with other classic or state-of-art methods.

Table 4 shows that our method gets better result in terms of

Table 4. Experimental results (RMSE) on the 3 test images in [6]

Books Shark Devil

Nearest Neighbor 18.21 21.83 19.36

Bilinear 17.10 20.17 18.66

Kopf [16] 16.03 18.79 27.57

He [18] 15.74 18.21 27.04

TGV [6] 12.36 15.29 14.68

Yang [17] 12.25 14.71 13.83

SDF [12] 12.66 14.33 10.68

Ours 12.31 14.06 9.66

Table 5. Experimental results (RMSE) on the 3 test images in [24].

Lu et al. [24] Shen et al. [34] Ours

Art 6.77 5.65 4.96

Books 2.24 2.24 1.66

Moebius 2.18 2.27 1.76

the RMSE. From Fig. 5, it is easy to see that our method is

capable of generating clean upsampling estimation, while,

the results by other methods would copy irrelevant textures

from intensity image.

5. Experiments on noisy depth map restoration

In this section, we provide some experimental results on

other depth map restoration problems. The dataset in [24]

is used to test the proposed method, in which not only ad-

ditive Gaussian noise but also some missing values are con-

tained in the depth image. In the following subsections, we

first introduce our experimental settings which including the
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(a) Intensity Image (b) Ground Truth (c) TGV [6] (d) Yang et al. [17] (e) SDF [12] (f) Ours

Figure 5. Depth restoration results by different methods based on real data(books).

(a) Color Image (b) Input (c) Ground Truth (d) Lu et al. [24] (e) Shen et al. [34] (f) Ours

Figure 6. Depth restoration results by different methods.

preparation of training data, the setting of initialization and

some algorithm parameters. Then, we compare our method

with other methods designed for this task, which include

low rank based method [24] and recently proposed mutual-

structure joint filtering method [34].

5.1. Experimental setting

Lu et al. [24] provided a synthetic data set to evaluate

depth restoration methods. 30 depth and RGB image pairs

in the Middlebury database [14] are included in the data

set. The size of all the images have been normalized to the

same height 370. Zero mean additive Gaussian noise with

stand deviation 25 and 5 have been added into the RGB and

depth image, respectively. The author [24] have manually

set 13% of pixels in depth map as missing values to simulate

the depth map acquired from consumer level depth sensor.

To compare the proposed method with other methods,

we take the Art, Books and Moebius as testing images, and

use the remaining 27 images as the training images. Our

proposed method does not consider the noise in the RGB

image, for fair comparison, we pre-process the RGB im-

age by a state-of-the-art denoising method [10, 9] and use

the denoised image to guide the restoration of depth map.

Such a method has been utilized in the original paper [24]

to compare with other depth restoration methods.

The filter number and size setting in this noisy depth map

restoration experiments is the same as it in the Middleburry

upsampling experiment. The same as our setting in the ToF

dataset [6], we also adopt JBF [29] to provide initial values

for the missing data. Since less training data is provided

in this dataset, we only adopt 4 stages to enhance the input

depth image.

5.2. Experimental results

The restoration results by different methods are shown

in Tabel 5. The results by [24] and [34] are downloaded

from the author’s websites. The proposed method shows

significant advantage over the competing methods in terms

of RMSE.

In Fig. 6, we give some visual examples of the restora-

tion results. One can clearly see that our restoration method

is able to generate sharp edges as well as remove noise in

the input image.

6. Conclusions

To better modeling the dependency between intensity

and depth map, we proposed a weighted analysis represen-

tation model for guided depth reconstruction. An intensi-

ty weighting term and an analysis representation regular-

ization term are combined to model complex relationship

between depth image and RGB image. We utilized a task

driven training strategy to learn stage-wise parameters for

specific task, the proposed model is able to generate high

quality depth restoration results in a few stages. Compared

with other state-of-the-art methods on both the guided depth

upsampling and restoration problems, the proposed mod-

el achieved better results with less RMSE value and more

pleasant visual quality.
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