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Abstract

In this paper, we develop an interest point detector and

binary feature descriptor for spherical images. We take as

inspiration a recent framework developed for planar im-

ages, BRISK (Binary Robust Invariant Scalable Keypoints),

and adapt the method to operate on spherical images. All of

our processing is intrinsic to the sphere and avoids the dis-

tortion inherent in storing and indexing spherical images in

a 2D representation. We discretise images on a spherical

geodesic grid formed by recursive subdivision of a trian-

gular mesh. This leads to a multiscale pixel grid compris-

ing mainly hexagonal pixels that lends itself naturally to a

spherical image pyramid representation. For interest point

detection, we use a variant of the Accelerated Segment Test

(AST) corner detector which operates on our geodesic grid.

We estimate a continuous scale and location for features

and descriptors are built by sampling onto a regular pat-

tern in the tangent space. We evaluate repeatability, pre-

cision and recall on both synthetic spherical images with

known ground truth correspondences and real images.

1. Introduction

Spherical images arise in a number of contexts. In com-

puter vision, they are captured by omnidirectional cameras

such as catadioptric or fisheye imaging systems or by stitch-

ing multiple perspective images. Such panoramic images

have many applications where their full coverage of the

viewing sphere provides a richer source of image features

and increases the likelihood of matching features between

views. Spherical images have taken on a particular impor-

tance recently due to the rapid rise in popularity of “360

video”. There are now commercially available systems for

capturing such video1 and support for their interactive play-

back is available in the most popular online video repos-

itories2. Outside computer vision, any discretely sampled

spherical function may be processed as a spherical image.

1https://vr.gopro.com/
2https://support.google.com/youtube/answer/

6178631?hl=en-GB

The most obvious examples occur in Geographic Informa-

tion Systems (GIS) which model the spatial variation of

properties of the surface of the Earth [21].

Image processing for spherical images is less well devel-

oped than for their planar counterpart. There are two com-

plexities that arise in processing spherical images. The first

is that the nature of the spherical surface must be taken into

account when performing geometric operations. For ex-

ample, distance between image points depends on geodesic

(great circle) distance as opposed to Euclidean distance for

planar images. The second is that for discrete images, the

spherical surface must be segmented into discrete pixels

which can be efficiently indexed. A common means to ad-

dress both of these issues is to parameterise a spherical im-

age to the 2D plane via a chosen projection (e.g. equirect-

angular) and then treat the image as if it were planar. The

problem with this approach is that any projection introduces

distortion and boundaries. A more attractive alternative is to

discretise spherical images on the sphere and perform image

processing on the surface of the sphere.

One of the most fundamental operations in image pro-

cessing is to identify points of interest and to build descrip-

tors of local appearance around an interest point. This en-

ables point-to-point matches to be established between im-

ages or a compact description of a scene or object to be con-

structed. The seminal work in this area is the Scale Invariant

Feature Transform (SIFT) of Lowe [12]. While SIFT fea-

tures remain a benchmark for their distinctiveness and ro-

bustness to appearance variation, the computational cost of

extracting and matching them has led to them being largely

superseded by a class of lighter weight features based on

binary descriptors. In this paper, we take one such feature,

BRISK (Binary Robust Invariant Scalable Keypoints) [11],

as inspiration and extend them to operate on spherical im-

ages. The proposed BRISKS (BRISK on the Sphere) frame-

work includes a novel discretisation of spherical images and

scale space, interest point detection, binary feature descrip-

tion and matching. We perform experimental evaluation on

both synthetic and real images and test robustness to rota-

tion, camera motion, illumination changes and noise.
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2. Related Work

Feature descriptors for omnidirectional images can be

classified into naive methods that use planar descriptors on

a planar embedding of the image and those that account for

the spherical geometry and build the feature on the sphere.

A number of previous works have taken the former ap-

proach and compute planar feature descriptors on a planar

embedding of a spherical image (most commonly equirect-

angular or directly on an image acquired by a catadioptric

camera). Goedemé et al. [7] and Scaramuzza et al. [22] both

compute SIFT features directly on an unwrapped spheri-

cal image. Benseddik et al. [2] apply the planar BRISK

descriptor to catadoptric images and find improved perfor-

mance over SIFT. The drawback of these approaches is that

the distortion varies with pose changes and so the local ap-

pearance around an interest point may vary dramatically,

even with only a change in viewing direction.

An improvement over working directly with a planar em-

bedding is to locally adapt the embedding to reduce the dis-

tortion. Fiala et al. [6] transform the sphere to a cube map

and then compute SIFT features on each cube face. Mauth-

ner et al. [14] match regions in omnidirectional images by

generating virtual perspective views. Pagani et al. [19] reg-

ularly distribute points over the sphere and generate a per-

spective image centred on each point with a fixed field of

view. They further introduce affine distortions (in the same

manner as Affine-SIFT [18]) providing invariance to both

spherical distortion and affine transformations of the scene.

Although robust, such an approach dramatically increases

computational cost since a large number of images must

be generated by resampling and processed independently.

Hansen et al. [9] and Arican et al. [1] both build descriptors

based on circular support regions on the sphere centred on

an interest point. Hansen et al. [9] resample to the tangent

plane and then build planar SIFT descriptors. Arican and

Frossard [1] build log-polar descriptors on the sphere in a

way that accounts for the different sampling densities.

The most attractive approaches avoid issues of distortion

and boundaries and work directly on the sphere. We are

aware of two previous pieces of work that do so [4, 24].

Cruz-Mota et al. [4] provide a full spherical extension of

SIFT. This approach handles the differential geometry of

the spherical image surface providing highly robust fea-

tures. As with planar SIFT, the drawbacks are computa-

tional cost. In this case, the situation is even worse since

computing the scale space via heat diffusion is expensive.

The most relevant previous work to ours is the spheri-

cal extension of the ORB descriptor (SPHORB) by Zhao

et al. [24]. Like us, they work on a hexagonal geodesic

grid, use a spherical extension of AST [8] and extend a

planar binary descriptor to the sphere (ORB [20] in their

case, BRISK [11] in ours). However, there are some impor-

tant differences. First, they transform the spherical geodesic

Figure 1: Aperture 4 triangle subdivision rule. By adding

additional vertices to the middle of each edge, an equilateral

triangle is subdivided into four equally sized triangles.

−0.5

(a) (b) (c) (d)

Figure 2: Subdivision process for Quaternary Triangular

Mesh. a-c: icosahedron base surface, once subdivided and

twice subdivided. d: Dual polyhedron of the QTM (black)

is an aperture 4 hexagon grid (blue).

grid to the plane by partitioning the sphere into sets of tri-

angles. This flattening induces distortion and requires addi-

tional processing to handle issues at the boundaries of the

triangles. All of our processing is intrinsic to the sphere

using geodesic distances and concepts from differential ge-

ometry (the log map) in order to build a chart around an

interest point. Part of their motivation for flattening is effi-

cient indexing and storage. We represent the grid as a mesh

and store it using a halfedge data structure which allows ef-

ficient access to local neighbourhoods. The SPHORB grid

reduces distance distortion by about one order of magni-

tude compared to a latitude-longitude image. By storing

the image directly in a geodesic grid, our representation has

zero distortion. Second, they use a fixed-size AST pattern

for interest point detection. We use different sized patterns

that differ by a scale factor of 1.5 in order to detect in-

terest points at intra-octaves. Third, their feature descrip-

tor is built directly on the (flattened) hexagonal grid. This

means that irregularities caused by pentagonal pixels can-

not be handled and features detected in these regions are

discarded. We resample local regions onto a standard pat-

tern in the tangent space meaning that we can handle any

pixel structure and sub-pixel refined feature locations. Fi-

nally, the BRISK framework that we extend includes sub-

pixel position refinement and sub-octave scale refinement,

whereas SPHORB does not.

3. Multiscale Geodesic Grid Representation

In this section we describe how images on the S2 sphere

are discretised, stored, processed in a multiscale manner and

represented for local feature detection and description.

We segment the sphere into discrete pixels via a process

of recursive subdivision. Starting with an icosahedron as a
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base shape, we use an aperture 4 triangle hierarchy. This

means each triangle is subdivided into four by adding a ver-

tex to the middle of each edge as shown in Figure 1. The

newly formed vertices are reprojected to the surface of the

sphere. This subdivision provides a triangular segmenta-

tion whose surface approximates a sphere with increasing

accuracy at each level of subdivision. This is known as a

Quaternary Triangle Mesh (QTM) and we show three levels

of subdivision in Figure 2.

Our image representation is based on hexagonal pixels

which are obtained by taking the dual polyhedron of the

triangular mesh, i.e. each vertex in the triangular mesh be-

comes the centre of a hexagonal face as shown in Figure 2d.

It is impossible to completely tile a sphere with hexagons.

With an icosahedron as the base shape, the triangular subdi-

vision mesh contains 12 vertices with 5 neighbours (regard-

less of subdivision resolution). Hence, the hexagonal grid at

all resolutions contains 12 pixels that are pentagons. These

are handled appropriately throughout our pipeline.

In a planar, rectangular image, the vertical and horizontal

resolution (and hence the number of pixels) can be chosen

arbitrarily (although often height and width are set equal

and made a power of two to ease multiscale processing). On

the other hand a spherical image stored as a geodesic grid

has a relatively small set of possible resolutions determined

by the subdivision scheme and the level of subdivision.

3.1. Storage and indexing

The hexagonal segmentation at subdivision level s and

the corresponding spherical image is stored via the corre-

sponding QTM using a triangle mesh Ms = (Ks,Vs,Ts).
The adjacency information is stored in the simplicial com-

plex Ks, whose elements can be vertices {i}, edges {i, j},

or faces {i, j, k}, with indices i, j, k 2 [1 .. Vs], where Vs

is the number of vertices. Each vertex in the mesh corre-

sponds to a hexagonal pixel. The position of each vertex

is stored in the matrix Vs 2 R
3⇥Vs which contains the 3D

coordinates vs,i 2 R
3 of the respective vertices. Since vs,i

are points on the S2 sphere, kvs,ik = 1. The colour of each

hexagonal pixel is stored as a matrix of per-vertex colours,

Ts 2 R
3⇥Vs , associated with the triangle mesh. The colour

of the ith pixel is written as ts,i 2 R
3 or ts,i 2 R for a

grayscale image. Note that when a new image is loaded,

only Ts changes. The mesh structure, adjacency and neigh-

bourhoods are all fixed so can be precomputed and stored.

Throughout the interest point detection and feature de-

scription pipeline, we require efficient indexing of pixel

neighbours and local neighbourhoods. To ensure that this is

possible, we store the QTM in a half-edge data structure [5].

This structure allows vertex adjacency queries to be calcu-

lated in O(1) time. Hence, in asymptotic terms, accessing

local neighbourhoods is the same cost for the geodesic grid

as for a 2D planar image.

A	

B	

D	

C	 E	

F	

Figure 3: Adjacency across scale: C has neighbours at both

finer (E) and coarser (A) subdivision. D has a neighbour at

finer subdivision (F) but we consider it to have two neigh-

bours at coarser subdivision (A and B).

Spatial neighbours of a vertex (and hence a hexago-

nal pixel) i are given by adjacent vertices in the mesh

N1(vs,i) = {j|{i, j} 2 Ks}. We write the n-ring neigh-

bourhood of a vertex as Nn(vs,i). They can either be com-

puted on-the-fly using the half-edge structure or precom-

puted and stored for fast access.

We also define neighbours across scale. This is used

for non-maxima suppression and feature scale refinement.

A vertex vs,i at subdivision level s always has a well-

defined neighbour at the next finer subdivision level s + 1,

N s+1
1 (vs,i) 2 Ks+1, |N s+1

1 (vs,i)| = 1. This is because

the vertices of the mesh at subdivision level s are a subset

of those at subdivision level s + 1. On the other hand, at

the next coarser level of subdivision, a vertex can have ei-

ther one or two adjacent neighbours N s−1
1 (vs,i) ⇢ Ks−1,

|N s−1
1 (vs,i)| 2 {1, 2}. This is illustrated in Figure 3.

3.2. Pyramid generation

For scale invariance, we detect features across scale-

space and construct descriptors at an appropriate scale. We

therefore require an efficient representation of scale-space.

We follow the BRISK framework and discretise to a pyra-

mid comprising n octaves and n intra-octaves. Although the

scale discretisation is fairly coarse, we estimate a precise

feature scale in continuous scale-space by interpolation.

Our subdivision scheme lends itself naturally to con-

struction of a spherical image pyramid. The aperture 4 sub-

division corresponds to a halving of scale and hence a one

octave shift in scale-space. We construct a scale-space pyra-

mid comprising n octaves ci for i 2 {0, 1, . . . , n− 1}. The

octave count is related to the number of subdivisions of the

geodesic grid by i = smax − s, where smax is the number

of subdivisions of the maximally subdivided mesh. In our

experiments we use n = 4 octaves and smax = 8.

The highest resolution image (corresponding to c0) is

created by sampling a panoramic image onto the maximally

subdivided mesh using bilinear interpolation. Successive

octaves are formed by area-weighted averaging and sub-

sampling. A down-sampled hexagonal pixel is computed

as a weighted average of 7 hexagons, with unit weight for

the hexagon contained entirely within the down-sampled
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Figure 4: The log map on the S2 sphere.

hexagon and a weight of 0.5 for the 6 that are half con-

tained. For pentagonal pixels, the same approach is used

but there will be only 5 neighbours that are again half con-

tained within the pixel.

To increase resolution in scale, it is desirable to also in-

clude intra-octaves. We define n “virtual” intra-octaves di
that are located in between octaves ci and ci+1. They are

virtual in the sense that we do not compute and store images

at the intermediate sizes. Instead, we use an interest point

detector that is scaled 1.5 times larger and, when sampling

image data for descriptor construction, apply an appropriate

scaling to pixel coordinates in the tangent plane. There are

two reasons for using virtual intra-octaves. First, there is

an efficiency saving in not having to compute and store the

intra-octave images. Second, the subdivision scheme can-

not produce intra-octaves of appropriate resolution (a scale

1.5 times that of the aperture 4 subdivision can be obtained

by an aperture 9 subdivision but the dual polyhedron is not

then tile-able with hexagons). The scale t at an octave or

intra-octave is given by t(ci) = 2i and t(di) = 2i · 1.5.

3.3. Tangent space representation

For sub-pixel position refinement and sampling data for

descriptor construction, it is useful to transform pixels in

the spherical image to a local 2D representation. The S2

sphere is a Riemannian manifold and hence it is possible

to build a chart to parameterise the manifold locally. Since

our features describe local appearance only, the locality as-

sumption is reasonable.

We build local charts in the tangent plane to the sphere.

We do so using the Riemannian log map, Logp : S2 !

TpS
2, which transforms from the sphere to the tangent

plane at a point p 2 S2. The log map linearises the sphere

around the base point in such a way that Euclidean dis-

tances from the base point in the tangent plane are equal to

geodesic distances, i.e. dg(p, q) = kLogp(q)k. See Figure

4 for a visualisation of the log map.

For the sphere, the log map of a point q 2 S2 at base

point p 2 S2 is given by:

Logp(q) =
arccos(hp, qi)(q − hp, qip)

kq − hp, qipk
, (1)

Since we deal with unit vectors corresponding to an embed-

ding of the sphere in Euclidean space, the inner product is

(a) (b)

-0.5 0 0.5

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

(c)

Figure 5: The log map applied to a hexagonal geodesic grid

at subdivision level s = 3. (a) An interest point (black)

and its 4-ring neighbourhood on the sphere. (b) The local

neighbourhood transformed to the tangent plane via the log

map. (c) Local 2D coordinate system.

simply the scalar product of the embedded vectors:hp, qi =
p · q, where p = φ(p) 2 R

3, q = φ(q) 2 R
3 and φ is an

arbitrary embedding. The resulting tangent plane vectors

are also subject to this arbitrary embedding. So, to yield 2D

coordinates in a standardised coordinate system, we apply

a rotation to align the plane with the x-y plane and discard

the z coordinate as follows:

xp(q) = Tφ(Logp(q)) 2 R
2, (2)

where the transformation is given by

T =



1 0 0
0 1 0

]

R(α, θ), (3)

where R(α, θ) 2 SO(3) is a rotation matrix that de-

pends upon p with rotation axis α = p ⇥ [0, 0, 1]T =
[py,−px, 0]

T , and rotation angle θ = arccos(pz). The

inverse of the log map is the exponential map, Expp :

TpS
2 ! S2. This transforms a tangent vector v 2 TpS

2

at base point p to the sphere:

Expp(v) = p cos θ +
v sin θ

θ
, θ = kvk . (4)

In Figure 5 we visualise the application of the log map

to our hexagonal geodesic grid. In (a) we show an inter-

est point (coloured black) and its 4-ring neighbourhood. In

(b) we show the neighbourhood transformed to the tangent

plane at the interest point via the log map (note that the tan-

gent plane is embedded in 3D space in a way that depends

on the base point). Finally, in (c) we show the 2D coordi-

nate system after applying the transformation in Equation 2

to remove the effect of the embedding.

4. Interest point detection

We use the FAST corner detector as the basis of our in-

terest point detection. We begin by describing how the ac-

celerated segment test is extended to operate on a spherical

geodesic grid. We then describe how we apply non-maxima
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Figure 6: AST pattern for hexagonal lattice. Radius 2

shown in red, radius 3 in blue for corner test at black pixel.

suppression both spatially and across scale in our pyramid

representation. Finally, we show how we perform position

refinement in space and scale, enabling a continuous esti-

mate of feature position and scale.

4.1. Accelerated segment test on a geodesic grid

In the original FAST approach, a circle of radius 3.4 was

discretised onto a square pixel lattice using Bresenham’s al-

gorithm. Subsequently, alternate patterns have been con-

sidered, approximating circles of radius 1, 2 and 3, which

contain 8, 12 and 16 pixels respectively. To test for the exis-

tence of a corner, a consecutive sequence of length k pixels

must be brighter or darker than the central pixel by a thresh-

old tcorner. Originally, k was chosen as 12, corresponding

to a 45◦ corner. This value of k was also computationally

efficient since candidate corners could be discounted after

testing as few as 3 pixels. Subsequently, it has been found

that optimal performance occurs when k is chosen to be the

smallest value that will not detect edges. i.e. if the sequence

is of length m then k = d(m+ 1)/2e.

We extend this approach to operate on discrete geodesic

grids composed of hexagonal pixel lattices. In general,

curves and circles drawn on a hexagonal lattice appear

smoother because of the improved angular resolution af-

forded by having six equidistant neighbours compared to

only four in a square lattice [15]. The FAST patterns on

a square lattice are only invariant to rotations of 90◦, 180◦

and 270◦, whereas the hexagonal patterns are invariant to

rotations of 60◦, 120◦, 180◦, 240◦ and 300◦.

We consider circles of radius 2 and 3 on a hexagonal

lattice, as shown in Figure 6, containing 12 and 18 pixels

respectively. Note that the larger pattern differs in scale (ra-

dius) by a factor of 1.5 from the smaller one. We use this

fact to detect interest points at intra-octaves. To detect in-

terest points at octave ci, we use the radius 2 pattern on the

geodesic grid at subdivision level s = smax − i. To detect

interest points at intra-octave di we use the radius 3 pattern,

on the geodesic grid at the same subdivision level.

There are a number of special cases to deal with due

to the impossibility of completely tiling a sphere with

hexagons. Irrespective of level of subdivision, there are 12

pixels with pentagonal shape and hence 5 neighbours. In

the radius 2 case, corners centred on pentagonal pixels have

p 

Figure 7: An example of a pixel passing the hexagonal 7-12

AST.

circles containing 10 pixels and we test for sequences of

length 6. Corners centred on pixels adjacent to a pentag-

onal pixel have circles of 11 pixels and again we test for

sequences of length 6. Finally, the radius 3 case has spe-

cial cases of circles containing 15, 16 or 17 pixels which we

test for sequences of length 8, 9 and 9 respectively. Note

that the radius 2 circle shares the same number of pixels as

the radius 2 circle on a square lattice. This means that the

AGAST [13] decision tree for 12 pixels can be used on a

hexagonal lattice without modification.

In Figure 7 we show an example of a pixel passing the

hexagonal 7-12 test. The pixel labelled p is regarded as a

corner because the 7 pixel sequence (marked in red) lying

on the 12 pixel, radius 2 circle are all darker than p by more

than the threshold tcorner.

Feature saliency can be computed for corners by finding

the largest value for the threshold tscore(p) at which the point

is still considered a corner. This is done efficiently using

binary search on the interval [tcorner, 1].

4.2. Non-maxima suppression

We use the feature saliency score to apply non-maxima

suppression. For every detected corner, we compute the

corner saliency for adjacent pixels (even if they were not

detected as corners) at the same scale. We also compute

corner saliency for neighbours across scale (if there are two

neighbours at the next coarser scale, we take the one with

higher saliency as the neighbour). We require a feature to

have maximum saliency amongst all of its neighbours and

remove any that do not. The computed saliency scores are

saved as they are used subsequently for position refinement.

4.3. Position and scale refinement

We refine the spatial position of each feature to sub-pixel

accuracy and estimate a continuous scale. If a feature has

been detected at vertex vs,i, we fit a 2D quadratic function

in a least squares sense to the set of tangent plane coordi-

nates and FAST scores, F(vs,i), of the 1-ring neighbour-

hood of vs,i:

F(vs,i) =
(

[0 0]T, tscore(vs,i)
)

[ (5)
{(

xvs,i
(vs,j), tscore(vs,j)

)

|j2N1(vs,i)
 

.
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We compute the position and FAST score of the maxima

of the quadratic function in closed form and transform the

resulting point back to the sphere using the inverse of the

transformation applied in Equation 2 followed by the expo-

nential map. We perform the same sub-pixel position refine-

ment on neighbourhoods at adjacent scales, i.e. F(vs+1,i)
and F(vs−1,i). For these neighbourhoods, it is possible

that the central pixel is not the maximum or that the fitted

quadratic is not even concave (and hence has no maximum).

In these cases, we simply take the position and score of the

pixel in the neighbourhood with maximum score.

We now have sub-pixel refined positions and scores for

the detected feature and for scales either side of the detected

feature. Finally, we estimate a continuous scale by fitting a

parabola to the scores as a function of scale, compute the

scale of the maximum of the parabola and interpolate the

refined position between the position at the original scale

and that in the scale direction of the parabola maximum.

The refined scale and position are assigned to the feature.

5. Descriptor Extraction

The final step in the pipeline is to generate feature de-

scriptors for the detected features. Following the BRISK

framework, this is done in four steps. First, we make an

estimate of the local gradient direction in order to assign a

direction to the feature. Second, the local neighbourhood is

rotated to normalise this direction (introducing rotation in-

variance). Third, the local neighbourhood is sampled onto

a fixed sampling pattern. Finally, the binary descriptor is

generated based on a fixed set of intensity comparisons on

this descriptor.

5.1. Orientation normalisation

We begin by computing an estimate of the local gradient

direction for each feature. To do so, we use the 9-ring neigh-

bourhood around the feature point at the octave in which the

feature was detected. Suppose that a feature was detected at

vertex vs,i. The gradient according to a pair of pixels vs,j

and vs,k, j, k 2 N1..9(vs,i), in the neighbourhood of the

feature is computed in the tangent plane by:

g(vs,j ,vs,k) = (6)

xvs,i
(vs,k)− xvs,i

(vs,j) ·
ts,k − ts,j

kxvs,i
(vs,k)− xvs,i

(vs,j)k2
.

The estimate of the overall characteristic direction:

g =

✓

gx
gy

◆

=
1

|L|

X

(j,k)2L

g(vs,j ,vs,k) (7)

is computed by averaging the local gradient direction esti-

mates between all “long distance” pairs. That is the set of

pairs, L = {(j, k) | j, k 2 N1..9(vs,i) ^ kxvs,i
(vs,k) −

(a) Characteristic orientation. (b) Sampled intensities.

Figure 8: Orientation normalisation and sampling. Left:

a neighbourhood around a feature. Right: the intensities

after sampling the rotated neighbourhood onto the standard

pattern.

xvs,i
(vs,j)k > δmin}, whose Euclidean distance is greater

than a threshold, δmin. We choose the threshold to be the

radius of the neighbourhood, defined as the point on the 9-

ring that is minimum distance from the base point. The mo-

tivation for using long distance pairs in the original BRISK

framework is that local gradients annihilate each other and

therefore do not influence the global gradient estimate. In

Figure 8a we show an example of the intensities in the

neighbourhood around a feature and the estimated charac-

teristic direction. Orientation is normalised by applying a

rotation of angle arctan2(gy, gx) to the tangent plane coor-

dinates of the pixels in the local neighbourhood.

5.2. Sampling

In order to construct feature descriptors, we sample the

rotation-normalised intensities onto a standard pattern. This

serves numbers of purposes. First, we can deal with any ir-

regularities in pixel structures caused by pentagonal pixels.

Second, the sampling uses Gaussian smoothing which re-

duces aliasing effects. Third, it provides a standardised set

of image locations from which a fixed set of intensity com-

parisons can be used to create feature descriptors.

We use the same pattern as in the BRISK framework.

However, note that we are operating in the tangent space

to the sphere rather than on a 2D image. The sampling

pattern is shown in Figure 9 and comprises a circle of ra-

dius 1 with 60 sample points, s1, . . . , s60 2 R
2. Sample

points are plotted as red circles and the radius of the circle

corresponds to the standard deviation, σ1, . . . , σ60, of the

Gaussian used for smoothing at that sampling point. We

denote the smoothed, sampled intensity at sample point si
as I(si, σi). After rotation normalisation and sampling, the

image region (Figure 8a) results in the sampled intensities

(Figure 8b). It is from these intensities that we compute the

intensity comparisons to build the feature descriptor.

Pixel neighbourhoods are scaled according to the scale of

the detected feature prior to sampling. Since we do not ex-

plicitly compute intra-octave images, intra-octave features
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Figure 9: The sampling pattern consists of points (shown

as red circles) distributed over a radius 1 circle. The 9-ring

neighbourhood around a feature is scaled onto the pattern

as shown (shown as blue crosses).

Figure 10: Subset of the SUN360 dataset [23] used in our

experiments.

are scaled by a factor of 1.5 on the octave image at which

they were detected. This is illustrated in Figure 9.

5.3. Descriptor generation

The bit string descriptor is built using intensity com-

parisons on a set of short-distance pairs S{(i, j) | i, j 2
{1, . . . , 60} ^ ksi − sjk < δmax}. The motivation for

only using comparisons between pairs of locations that are

spatially close is that feature similarity then only requires

brightness variations to be locally consistent. This reduces

sensitivity to spatially varying illumination. The short dis-

tance threshold, δmax, is chosen to yield a bit string of the

desired length. We follow BRISK [11] and BRIEF64 [3]

and use 512 bit descriptors. For our pattern, this corre-

sponds to a value of δmax = 0.6378. Pairs are evaluated in

an arbitrary but fixed order, S1 2 S, . . . , S512 2 S , yielding

the bit string descriptor b, where

bi =

⇢

1 if I(sj , σj) < I(sk, σk)
0 otherwise

where Si = (j, k).

(8)

The dissimilarity between two feature descriptors is given

by their Hamming distance. Since this amounts to nothing

other than a bitwise XOR followed by a bit count, this can

implemented very efficiently.

6. Experimental results

We evaluate our proposed BRISKS features on both syn-

thetic rendered images and real images. The use of syn-

thetic images allows us to arbitrarily control illumination

and also means that ground truth correspondences can be

computed for images taken from different viewpoints. We

include comparison to two previous methods. The first ap-

plies classical planar SIFT to unwrapped equirectangular

panoramic images, as done by [7, 22]. The second is the

spherical extension of SIFT introduced by Cruz-Mota et

al. [4]. We use standard feature evaluation metrics [16, 17]

adapted to the sphere. Feature detection performance is

measured using repeatability [17]. Feature description and

matching performance is measured using 1−precision and

recall curves, giving a metric that is invariant to the match-

ing threshold. The synthetic images are rendered using

the spherical camera sensor in the Mitsuba renderer [10].

We use the Babylonian City scene from the Medieval City

collection (courtesy of Johnathan Good). We render both

panoramic images and depth maps. The real images we use

are a 10 image subset of the SUN360 dataset [23], as shown

in Figure 10, spanning a range of different scene types. We

resize input images for SIFT and SSIFT so that the number

of pixels is approximately equal to the number of pixels in

our finest subdivision mesh.

6.1. Detector repeatability

The repeatability score measures the ability of the inter-

est point detector to detect features at image points in dif-

ferent images corresponding to the same scene location. For

each detected interest point in the first image, we project the

point into the scene, project it back into the second image

and check whether an interest point has been detected at

the corresponding location. Our criteria for a successful re-

peated detection is simply to measure the spherical distance

between the reprojected and closest detected interest points

and test whether it smaller than a threshold of 2◦. The re-

peatability score is the ratio between the number of repeat

detections and the smaller of the number of interest points

in the pair of images.

In synthetic images, we use the ground truth depth map

to project image points into the scene allowing us to com-

pute correspondence even with viewpoint changes. For the

real images we only apply rotations and add noise and hence

simply need to rotate image points to test for repeated detec-

tions. For all three methods, we adjust the detection thresh-

old to yield similar numbers of interest points in each image.

In Table 1 we show repeatability results for the synthetic

images. The second column shows results for pose changes

(i.e. the rotation and translation of the camera differs be-

tween views). We rendered 6 images in which the cam-

era follows a linear trajectory with a distance of 50 units

along the x axis between each image. We also apply a rota-

tion about the z direction of 60◦ between each image. We

measure repeatability between pairs of consecutive images

and show results averaged over all pairs. In the third col-
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Rotation and Translation Illumination

Ours 0.93 (419) 0.64 (414)

SSIFT [4] 0.65 (412) 0.49 (414)

SIFT [7, 22] 0.57 (392) 0.41 (396)

Table 1: Repeatability on synthetic images. Average num-

ber of detected features shown in brackets.

Rotation Noise

10dB 15dB 20dB

Ours 0.94 (384) 0.90 (379) 0.93 (383) 0.93 (385)

SSIFT [4] 0.86 (391) 0.76 (389) 0.79 (379) 0.83 (374)

SIFT [7, 22] 0.70 (391) 0.65 (371) 0.67 (378) 0.66 (384)

Table 2: Repeatability on SUN360 images. The noise level

is shown as signal to noise ratio. Average number of de-

tected features shown in brackets.
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(b) Under pure rotation and noise

Figure 11: 1−precision and recall curves a: for the syn-

thetic images and b: for real data. The numbers of corre-

spondences are shown on the left corner in each figure.

umn we show results for changing illumination. For three

viewpoints, we render images with illumination simulating

12 noon and 5:00 pm in the afternoon with a 60◦ rotation

about the z axis between images. We measure repeatability

between each pair and average results over all pairs.

In Table 2 we show repeatability results for real images.

The second column shows results for rotation. For each

scene we generate six images differing by rotations of 60◦

about the z axis. Columns three to five show results with

additive noise. We add Gaussian noise to each image with

the variance selected to obtain a desired signal to noise ratio.

6.2. Descriptor precision and recall

We evaluate our descriptor on the same sets of images

as for the detector evaluation. We do so using the standard

1−precision and recall metrics. For each feature in the first

image we find the nearest neighbour feature descriptor in

the second image (using Hamming distance for our descrip-

tors and Euclidean distance for SIFT and SSIFT). We vary

matching threshold and plot how precision and recall vary.

Recall is the ratio between the number of correct matches

and the number of feature pairs that have correspondences.

1−precision is the ratio between the number of incorrect

matches and the total number of matches. Correct matches

are defined in the same way as in the repeatability score.

Figure 11 shows the averaged curves for the synthetic

images and real images. Rotation and translation results are

on the (a) left, illumination results on the (a) right. Note that

these are very challenging images since there are repeated

texture patterns (e.g. bricks and paving) and the changes

in pose and illumination cause dramatic changes in appear-

ance. Results for rotation only are shown on the (b) left,

results for additive noise are shown on the (b) right. These

images are less challenging than the synthetic ones since

camera position and illumination is fixed.

7. Conclusions

In this paper we have proposed a binary feature for spher-

ical images. This requires rethinking a number of funda-

mental aspects of a local feature such as how an image is

discretised and stored, how to build a discrete scale space

and how to perform feature detection and description with-

out having to project the spherical image to a planar em-

bedding. Despite having significantly lower computational

complexity than SIFT-like methods and a descriptor that is

16 times smaller (for 128D SIFT descriptor with double pre-

cision floats, or 8 times smaller for single precision), across

all experimental conditions on both synthetic and real im-

ages, our method significantly outperforms SSIFT which, in

turn, outperforms the naive application of SIFT to equirect-

angular images.

There are a number of ways that this work could be ex-

tended. First, there is scope to explore alternative sampling

patterns and comparison pairs, exploiting any developments

in 2D feature description that may improve performance.

Second, we would like to apply our features to applica-

tions such as structure-from-motion with panoramic images

or realtime visual odometry with omnidirectional cameras.

Third, the approach could be extended to dense matching

to enable applications such as motion segmentation, optical

flow or stereo to be addressed. Finally, an interesting al-

ternate approach would be to extend deep learning meth-

ods to our spherical image representation. For example, a

CNN could operate on our geodesic grid with convolution

operations taking place on the sphere. This would allow us

to learn features on the sphere that may be appropriate for

higher level visual tasks.
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