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Abstract

A class of recent approaches for generating images,

called Generative Adversarial Networks (GAN), have been

used to generate impressively realistic images of objects,

bedrooms, handwritten digits and a variety of other im-

age modalities. However, typical GAN-based approaches

require large amounts of training data to capture the di-

versity across the image modality. In this paper, we pro-

pose DeLiGAN – a novel GAN-based architecture for di-

verse and limited training data scenarios. In our approach,

we reparameterize the latent generative space as a mixture

model and learn the mixture model’s parameters along with

those of GAN. This seemingly simple modification to the

GAN framework is surprisingly effective and results in mod-

els which enable diversity in generated samples although

trained with limited data. In our work, we show that DeLi-

GAN can generate images of handwritten digits, objects and

hand-drawn sketches, all using limited amounts of data.

To quantitatively characterize intra-class diversity of gen-

erated samples, we also introduce a modified version of

“inception-score”, a measure which has been found to cor-

relate well with human assessment of generated samples.

1. Introduction

Generative models for images have enjoyed a resurgence

in recent years, particularly with the availability of large

datasets [20, 25] and advent of deep neural networks [15].

In particular, Generative Adversarial Networks (GANs) [8]

and Variational Auto-Encoders (VAE) [13] have shown a lot

of promise in this regard. In this paper, we focus on GAN-

based approaches.

A typical GAN framework consists of two components,

a generator G and a discriminator D. The generator G is

modelled so that it transforms a random vector z into an

image I , i.e. I = G(z). z usually arises from an easy-to-

∗Equal contribution

sample distribution (e.g. uniform). G is trained to gener-

ate images I which are indistinguishable from a sampling

of the true distribution, i.e I ∼ pdata, where pdata is the

true distribution of images. The discriminator D takes an

image as input and outputs the probability that the image

is from the true data distribution pdata. In practice, D is

trained to output a low probability pD when fed a “fake”

(generated) image. D and G are trained adversarially to

improve by competing with each other. A proper training

regime ensures that at end of training, G generates images

which are essentially indistinguishable from real images,

i.e. pD(G(z)) = 0.5 [8].

In recent times, GAN-based approaches have been used

to generate impressively realistic house-numbers [4], faces,

bedrooms [17] and a variety of other image categories [18,

21]. Usually, these image categories tend to have extremely

complex underlying distributions. This complexity arises

from two factors: (1) level of detail (e.g. color photos of

objects have more detail than binary handwritten digit im-

ages) (2) diversity (e.g. inter and intra-category variability

is larger for object categories compared to, say, house num-

bers). To be viable, generator G needs to have sufficient ca-

pacity for tackling these complexity-inducing factors. Typ-

ically, such capacity is attained by having deep networks

for G [2]. However, training high-capacity generators re-

quires a large amount of training data. Therefore, existing

GAN-based approaches are not viable when the amount of

training data is limited.

Contributions:

• We propose DeLiGAN – a novel GAN-based frame-

work which is especially suited for small-yet-diverse

data scenarios (Section 4).

• We show that DeLiGAN enables generation of diverse

images for a number of different modalities in limited

data regimes. In particular, we construct modality-

specific models which generate images of handwrit-

ten digits (Section 5.3), photo objects (Section 5.4) and

hand-drawn sketches (Section 5.5).

• To quantitatively characterize the intra-class diversity

of generated samples, we also design a modified ver-
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sion of the “inception-score” [21], a measure which

has been found to correlate well with human assess-

ment of generated samples (Section 5.1).

The rest of the paper is organised as follows: We give an

overview of the related work in Section 2, review GAN in

Section 3 and then go on to describe our model DeLiGAN

in Section 4. In Section 5, we discuss experimental results

which showcase the capabilities of our model. Towards the

end of the paper, we discuss these results and the implica-

tions of our design decisions in Section 6. We conclude with

some pointers for future work in Section 7.

2. Related Work

Generative Adversarial Networks (GANs) have recently

gained a lot of popularity due to the relative sharpness of

samples generated by these models compared to other ap-

proaches. The originally proposed baseline approach [8]

has been modified to incorporate deep convolutional net-

works without destabilizing the training scheme and achiev-

ing significant qualitative improvements in image qual-

ity [5, 17]. Further improvements were made by Salimans

et al. [21] by incorporating algorithmic tricks such as mini-

batch discrimination which stabilize training and provide

better image quality. We incorporate some of these tricks in

our work as well.

Our central idea – utilizing a mixture model for latent

space – has been suggested in various papers, but mostly

in the context of variational inference. For example, Ger-

shman et al. [7], Jordan et al. [11] and Jaakkola et al. [10]

model the approximate posterior of the inferred latent dis-

tribution as a mixture model to represent more compli-

cated distributions. More recently, Renzede et al. [19] and

Kingma et al. [12] propose ‘normalizing flows’ to transform

the latent probability density through a series of invertible

mappings to construct a complex distribution. In the con-

text of GANs, no such approaches exist, to the best of our

knowledge.

Our approach can be viewed as an attempt to modify the

latent space to obtain samples in the high probability re-

gions in the latent space. The notion of latent space modifi-

cation has been explored in some recent works. For exam-

ple, Han et al. [9] propose to alternate between training the

latent factors and the generator parameters. Arulkumaran

et al. [1] formulate an MCMC sampling process to sample

from high probability regions of a learned latent space in

variational or adversarial autoencoders.

3. Generative Adversarial Networks (GANs)

Although GANs were introduced in Section 1, we for-

mally describe them below to establish continuity.

A typical GAN framework consists of two components,

a generator G and a discriminator D. In practice, these two

components are usually two neural networks. The generator

G is modelled so that it transforms a random vector z into

an image xG, i.e. xG = G(z). z typically arises from an

easy-to-sample distribution, for e.g. z ∼ U(−1, 1) where

U denotes a uniform distribution. G is trained to generate

images which are indistinguishable from a sampling of the

true distribution. In other words, while training G, we try

to maximise pdata(xG), the probability that the generated

samples belong to the data distribution.

pdata(xG) =

∫

z

p(xG, z)dz (1)

=

∫

z

pdata(xG|z)pz(z)dz (2)

The above equations make explicit the fact that GANs

assume a fixed, easy to sample, prior distribution pz(z) and

then maximize pdata(xG|z) by training the generator net-

work to produce samples from the data distribution.

The discriminator D takes an image I as input and out-

puts the probability pD(I) that the image is from the true

data distribution. Typically, D is trained to output a low

probability when fed a “fake” (generated) image. Thus, D

is supposed to act as an expert, estimating the probability

that the sample is from the true data distribution as opposed

to the G’s output.

D and G are trained adversarially to improve by compet-

ing with each other. This is achieved by alternating between

the training phases of D and G. G tries to ‘fool’ D into

thinking that its outputs are from the the true data distribu-

tion by maximizing its score D(G(z)). This is achieved by

solving the following optimization problem in the generator

phase of training:

min
G

VG(D,G) = min
G

(

Ez∼pz
[log(1−D(G(z)))]

)

(3)

On the other hand, D tries to minimize the score it as-

signs to generated samples G(z) by minimising D(G(z))
and maximize the score it assigns to the real (training) data

x by maximising D(x). Hence, the optimisation problem

for D can be formulated as follows:

max
D

VD(D,G) =max
D

(

Ex∼pdata
[logD(x)]

+ Ez∼pz
[log(1−D(G(z)))]

) (4)

Hence the combined loss for the GAN can now be writ-

ten as:

min
G

max
D

V (D,G) =min
G

max
D

(

Ex∼pdata
[logD(x)]

+ Ez∼pz
[log(1−D(G(z)))]

) (5)
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Figure 1. Baseline GAN framework (left of dotted line) and our model - DeLiGAN (right of dotted line). Dotted arrows indicate sampling

from the source. Instead of sampling directly from a simple latent distribution as done for baseline model, we reparameterize the latent

space using a mixture of Gaussian model in DeLiGAN. We randomly select one of the Gaussian components (depicted with a dark blue

outline in the right-side figure) and employ the “reparameterization trick” [13] to obtain a sample from the chosen Gaussian. See Section

4 for details.

In their work, Goodfellow et al. [8] show that Equa-

tion 5 gives us Jensen–Shannon (JS) divergence between

the model’s distribution and data generating process. A

proper training regime ensures that at the end of training,

G generates images which are essentially indistinguishable

from real images, i.e. pD(G(z)) = 0.5 and JS divergence

achieves its lowest value.

4. Our model - DeLiGAN

In GAN training, we essentially attempt to learn a map-

ping from a simple latent distribution pz to the complicated

data distribution (Equation 2). This mapping requires a

deep generative network which can disentangle the under-

lying factors of variation in the data distribution and enable

diversity in generated samples [2]. In turn, this translates to

the requirement of large amounts of data. Therefore, when

data is limited yet originates from a diverse image modal-

ity, increasing the network depth becomes infeasible. Our

solution to this conundrum is the following: Instead of in-

creasing the model depth, we propose to increase the mod-

elling power of the prior distribution. In particular, we pro-

pose a reparameterization of the latent space as a Mixture-

of-Gaussians model (see Figure 1).

pz(z) =
N
∑

i=1

φig(z|µi,Σi) (6)

where g(z|µi,Σi) represents the probability of the sam-

ple z in the normal distribution, N (µi,Σi). For reasons

which will be apparent shortly (Section 4.1), we assume

uniform mixture weights, φi, i.e.

pz(z) =

N
∑

i=1

g(z|µi,Σi)

N
(7)

To obtain a sample from the above distribution, we ran-

domly select one of the N Gaussian components and em-

ploy the “reparameterization trick” introduced by Kingma

et al. [13] to sample from the chosen Gaussian. We also

assume that each Gaussian component has a diagonal co-

variance matrix. Suppose the i-th Gaussian is chosen. Let

us denote the diagonal elements of the corresponding co-

variance matrix as σi = [σi1σi2 . . . σiK ] where K is the

dimension of the latent space. For the “reparameterization

trick”, we represent the sample from the chosen i-th Gaus-

sian as a deterministic function of µi, σi and an auxiliary

noise variable ǫ.

z = µi + σiǫ where ǫ ∼ N (0, 1) (8)

Therefore, obtaining a latent space sample translates to

sampling ǫ ∼ N (0, 1) and calculating z according to Equa-

tion 8. Substituting Equations 7, 8 in RHS of Equation 2,

we get:
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Figure 2. Architectural details of Generator and Discriminator in GAN models experimentally evaluated for various image domains.

Notation: FC=Fully Connected Layer, GP = Global Pooling, NIN = Network-in-Network, MD=mini-batch discrimination. Convolutional

layers are specified in the format dimensions/ stride | number of filters.

pdata(G(z)) =

N
∑

i=1

∫

pdata(G(µi + σiǫ)|ǫ)p(ǫ)dǫ

N
(9)

Let us define µ = [µ1, µ2, . . . , µN ]T and σ =
[σ1, σ2, . . . , σN ]T . Therefore, our new objective is to learn

µ and σ (along with the GAN parameters) to maximise

pdata(G(µi + σiǫ)|ǫ).
Next, we describe the procedure for learning µ and σ.

4.1. Learning µ and σ

For each Gaussian component, we first need to initialise

its parameters. For µi, 1 6 i 6 N , we sample from a sim-

ple prior – in our case, a uniform distribution U(−1, 1). For

σi, we assign a small, fixed non-zero initial value (0.2 in our

case). Normally, the number of samples we generate from

each Gaussian relative to the other Gaussians during train-

ing gives us a measure of the ‘weight’ π for that component.

However, π is not a trainable parameter in our model since

we cannot obtain gradients for πis. Therefore, as mentioned

before, we consider all components to be equally important.

To generate data, we randomly choose one of the N

Gaussian components and sample a latent vector z from the

chosen Gaussian (Equation 8). z is passed to G to obtain

the output data (image). The generated sample z can now

be used to train parameters of D or G using the standard

GAN training procedure (Equation 5). In addition, µ and σ

are also trained simultaneously along with G’s parameters,

using gradients arising from G’s loss function.

However, we need to consider a subtle issue here involv-

ing σ. Since pdata(G(z)) (Equation 9) has local maxima

at the µis, G tries to decrease the σis in an effort to obtain

more samples from the high probability regions. As a result

σis can collapse to zero. Hence, we add a L2 regularizer to

the generator cost to prevent this from happening. The orig-

inal formulation of loss function for G (Equation 3) now

becomes:

min
G

VG(D,G) = min
G

Ez∼pz
[log(1−D(G(z)))]

+λ

N
∑

i=1

(1− σi)
2

N

(10)

Note that this procedure can be extended to generate a

batch of images for mini-batch training. Indeed, increasing

the number of samples per Gaussian increases the accuracy

of the gradients used to update µ and σ since they are aver-

aged out over p(ǫ) [3], thereby speeding up training.

5. Experiments

For our DeLiGAN framework, the choice of N , the

number of Gaussian components, is made empirically –

more complicated data distributions require more Gaus-

sians. Larger values of N potentially help model with rel-

atively increased diversity. However, increasing N also in-

creases memory requirements. Our experiments indicate

that increasing N beyond a point has little to no effect on

the model capacity since the Gaussian components tend to

‘crowd’ and become redundant. We use a N between 50
and 100 for our experiments.

To quantitatively characterize the diversity of gener-

ated samples, we also design a modified version of the

“inception-score”, a measure which has been found to cor-

relate well with human evaluation [21]. We describe this

score next.

5.1. Modified Inception Score

Passing a generated image x = G(z) through a trained

classifier with an “inception” architecture [22] results in

a conditional label distribution p(y|x). If x is realistic

enough, it should result in a “peaky” label distribution i.e.

p(y|x) should have low entropy. We also want all cate-

gories to be covered uniformly among the generated sam-

ples, i.e. p(y) =
∫

z
p(y|x = G(z))pz(z)dz should have
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Figure 3. Comparing the performance of baseline GANs and our model (DeLiGAN) for toy data. Refer to Section 5.2 for details.

high entropy. These two requirements are unified into a sin-

gle measure called “inception-score” as eExKL(p(y|x)||p(y))

where KL stands for KL-divergence and expectation E is

taken over generated samples x.

Our modification: In its original formulation,

“inception-score” assigns a higher score for models that re-

sult in a low entropy class conditional distribution p(y|x).
However, it is desirable to have diversity within image sam-

ples of a particular category. To characterize this diversity,

we use a cross-entropy style score −p(y|xi)log(p(y|xj))
where xjs are samples of the same class as xi as per the

outputs of the trained inception model. We incorporate this

cross-entropy style term into the original “inception-score”

formulation and define the modified “inception-score” (m-

IS) as a KL-divergence: eExi
[Exj

[(KL(P (y|xi)||P (y|xj))]]. Es-

sentially, m-IS can be viewed as a proxy for measuring

intra-class sample diversity along with the sample quality.

In our experiments, we report m-IS scores on a per-class

basis and a combined m-IS score averaged over all classes.

We analyze the performance of DeLiGAN models

trained on toy data, handwritten digits [16], photo ob-

jects [14] and hand-drawn object sketches [6] and compare

with a regular GAN model. Specifically, we use a vari-

ant of DCGAN [17] with mini-batch discrimination in the

discriminator [21]. We also need to note here that DeLi-

GAN adds extra parameters over DCGAN. Therefore, we

also compare DeliGAN with baseline models containing an

increased number of learnable parameters. We start by de-

scribing a series of experiments on toy data.

5.2. Toy Data

As a baseline GAN model for toy data, we set up a

multi-layer perceptron with one hidden layer as G and D

(see Figure 2). For the DeLiGAN model, we incorpo-

rate the mixture of Gaussian layer as shown in Figure 1.

We also compare DeLiGAN with four other baseline mod-

els – (i) GAN++ (instead of mixture of Gaussian layer,

we add a fully connected layer containing N neurons be-

tween the input (z) and the generator) (ii) Ensemble-GAN

(An ensemble-of-N -generators setting for DeLiGAN. Dur-

ing training, we randomly choose one of the generators Gi

for training and update its parameters along with µi, σi) (iii)

Nx-GAN (We increase number of parameters in the genera-

tor network N times by having N times more neurons in the

hidden layer) and (iv) MoE-GAN (This is short for Mixture-

of-Experts GAN. In this model, we just append a uniform

discrete variable via a N -dimensional one-hot encoding [4]

to the random input z).

For the first set of experiments, we design our genera-

tor network to output data samples originally belonging to

a unimodal 2-D Gaussian data (see Figure 3(g)). Figures 3

(a)-(f) show samples generated by the respective GAN vari-

ants for this data. For the unimodal case, all models perform

reasonably well in generating samples.

For the second set of experiments, we replace the uni-

modal distribution with a bi-modal distribution comprising

two Gaussians (Figure 3(n)). The results in this case show

that DeLiGAN is able to clearly model the two separate dis-

tributions whereas the baseline GAN frameworks struggle

to model the void in between (Figure 3(h-m)). Although

the other variants, containing more parameters, were able to

model the two modes, they still struggle to model the local

structure in the Gaussians properly. The generations pro-

duced by DeLiGAN look the most convincing. Although

not obvious from the results, a recurring trend across all the

baseline models was the relative difficulty in training due

to instabilities. On the other hand, training DeliGAN was

much easier in practice. As we shall soon see, this phe-

nomenon of suboptimal baseline models and better perfor-

mance by DeLiGAN persists even for more complex data

distributions (CIFAR-10, sketches etc.)
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Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Overall

GAN 2.72± 0.20 2.02± 0.18 2.21± 0.44 2.43± 0.19 2.06± 0.09 2.22± 0.23 1.82± 0.08 2.12± 0.55 1.19± 0.19 2.16± 0.15 2.15± 0.25
DeLiGAN 2.78± 0.02 2.36± 0.06 2.44± 0.07 2.17± 0.04 2.31± 0.02 1.27± 0.01 2.31± 0.02 3.63± 0.14 1.51± 0.03 2.00± 0.05 2.28± 0.62
MoE-GAN 2.69± 0.08 2.08± 0.05 2.01± 0.06 2.19± 0.04 2.16± 0.03 1.85± 0.09 1.84± 0.07 2.14± 0.08 1.60± 0.04 1.85± 0.05 2.04± 0.28

GAN++ 2.44± 0.06 1.73± 0.04 1.68± 0.05 2.27± 0.06 2.23± 0.04 1.73± 0.03 1.56± 0.02 1.21± 0.04 1.25± 0.02 1.53± 0.02 1.76± 0.40

Table 1. Comparing modified “inception-score” values for baseline GANs and DeLiGAN across the 10 categories of CIFAR-10 dataset.

Larger scores are better. The entries represent score’s mean value and standard deviation for the category.

b) DeliGANa) GAN

Figure 4. Comparing the performance of GAN and our model

(DeLiGAN) for MNIST handwritten digits data. Refer to Section

5.3 for details.

5.3. MNIST

The MNIST dataset contains 60, 000 images of hand-

written digits from 0 to 9 [16]. We conduct experiments

on a reduced training set of 500 images to mimic the low-

data scenario. The images are sampled randomly from the

dataset, keeping the total number of images per digit con-

stant. For MNIST, the generator network has a fully con-

nected layer followed by 3 deconvolution layers while the

discriminator network has 3 convolutional layers followed

by a mini-batch discrimination layer (see Figure 2).

In Figure 4, we show typical samples generated by both

models, arranged in a 7 × 7 grid. For each model, the last

column of digits (outlined in red), contains nearest-neighbor

images (from the training set) to the samples present in the

last (7th) column of the grid. For nearest neighborhood

computation, we use L2 distance between the images.

The samples produced by our model (Figure 4(b), right)

are visibly crisper compared to baseline GAN (Figure 4(a),

left). Also, some of the samples produced by the GAN

model are almost identical to one other (shown as simi-

larly colored boxes in Figure 4(a)) whereas our model pro-

duces more diverse samples. We also observe that some

of the samples produced by the baseline GAN model are

deformed and don’t resemble any digit. This artifact is

much less common in our model. Additionally, in practice,

the baseline GAN model frequently diverges during train-

ing given the small data regime and the deformation artifact

mentioned above becomes predominant, eventually leading

to homogeneous non-digit like samples. In contrast, our

model remains stable during training and generates samples

with better diversity.

b) DeLiGANa) GAN

Figure 5. Comparing the performance of GAN and our model

(DeLiGAN) for CIFAR-10 data. Refer to Section 5.4 for details.

5.4. CIFAR 10

The CIFAR 10 dataset [14] contains 60, 000 32×32 color

images across 10 object classes. Once again, to mimic the

diverse-yet-limited-data scenario, we compare the architec-

tures on a reduced dataset of 2000 images. The images are

drawn randomly from the entire dataset, keeping the num-

ber of images per category constant. For the experiments in-

volving CIFAR dataset, we adopt the architecture proposed

by Goodfellow et al. [8]. The generator has a fully con-

nected layer followed by 3 deconvolution layers with batch

normalisation after each layer. The discriminator network

has 9 convolutional layers with dropout and weight normal-

isation, followed by a mini-batch discrimination layer.

Figure 5 shows samples generated by our model and the

baseline GAN model. As in the case of MNIST, some of

the samples generated by the GAN, shown with similar col-

ored bounding boxes, look nearly identical (Figure 5(a)).

Again, we observe that our model produces visibly diverse

looking samples and provides more stability. The modi-

fied “inception-score” values for the models (Table 1) at-

test to this observation as well. Note that there exist cate-

gories (‘cat’, ‘dog’) with somewhat better diversity scores

for GAN. Since images belonging to these categories are

similar, these kinds of images would be better represented

in the data. As a result, GAN performs better for these cat-

egories, whereas DeLiGAN manages to capture even the

other under-represented categories. Table 1 also shows the

modified inception scores for the GAN++ and MoE-GAN

models introduced in the toy experiments. We observe that

the performance in this case is actually worse than the base-

line GAN model, despite the increased number of parame-
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Apple Tomato Pear Candle Overall

GAN 1.31± 0.01 1.39± 0.01 1.49± 0.03 1.25± 0.01 1.36± 0.09
DeLiGAN 1.40± 0.00 1.9± 0.00 1.47± 0.01 1.22± 0.01 1.35± 0.10

Table 2. Comparing modified “inception-score” values for GAN

and DeLiGAN across sketches from the 4 ‘similar’ categories. The

entries represent score’s mean value and standard deviation for the

category.

ters. Moreover, adding fully connected layers in the genera-

tor in GAN++ also leads to increased instability in training.

We hypothesize that the added set of extra parameters wors-

ens the performance given our limited data scenario. In fact,

for baseline models such as Ensemble-GAN and Nx-GAN,

the added set of parameters also makes computations pro-

hibitively expensive.

Overall, the CIFAR dataset experiments demonstrate

that our model can scale to more complicated real life

datasets and still outperform the traditional GANs in low

data scenarios.

5.5. Freehand Sketches

The TU-Berlin dataset [6], contains 20, 000 hand-drawn

sketches evenly distributed among 250 object categories,

which amounts to 80 images per category. This dataset rep-

resents a scenario where the amount of training data is actu-

ally limited, unlike previous experiments where the quantity

of training data was artificially restricted. For sketches, our

network contains 5 convolutional layers in the discriminator

with weight normalization and dropout followed by mini-

batch discrimination and 3 deconvolutional layers, followed

by a fully connected layer in the generator. To demonstrate

the capability of our model, we perform two sets of experi-

ments.

For the first set of experiments, we select 4 sketch cat-

egories – apple, pear, tomato, candle. These

categories have simple global contours, low sketch stroke

density and are somewhat similar in appearance. During

training, we augment the dataset using the flipped versions

of the images. Once again, we compare the generated re-

sults of GAN and DeLiGAN. Figure 6 shows the samples

generated by DeLiGAN and GAN respectively, trained on

the similar looking categories (left side of the dotted line).

The samples generated by both the models look visually ap-

pealing. Our guess is that since the object categories are

very similar, the data distribution can be easily modelled as

a continuous distribution in the latent space. Therefore, the

latent space doesn’t need a multi-modal representation in

this case. This is also borne out by the m-IS diversity scores

in Table 2.

For the second set of experiments, we select 5
diverse looking categories – apple, wine glass,

candle, canoe, cup – and compare the generation

results for both the models. The corresponding samples are

Wineglass Candle Apple Canoe Cup Overall

GAN 1.80± 0.01 1.48± 0.02 1.50± 0.01 1.53± 0.01 1.74± 0.01 1.61± 0.13
DeLiGAN 2.09± 0.01 1.57± 0.02 1.65± 0.01 1.75± 0.01 1.87± 0.02 1.79± 0.18

Table 3. Comparing modified “inception-score” values for GAN

and DeLiGAN across sketches from the 5 ‘dissimilar’ categories.

The entries represent score’s mean value and standard deviation

for the category.

shown in Figure 6 (on the right side of the dotted line). In

this case, DeLiGAN samples are visibly better, less hazy,

and arise from a more stable training procedure. The sam-

ples generated by DeLiGAN also exhibit larger diversity,

visibly and according to m-IS scores as well (Table 3).

6. Discussion

The experiments described above demonstrate the ben-

efits of modelling the latent space as a mixture of learn-

able Gaussians instead of the conventional unit Gaus-

sian/uniform distribution. One reason for our performance

is derived from the fact that mixture models can approxi-

mate arbitrarily complex latent distributions, given a suffi-

ciently large number of Gaussian components.

In practice, we also notice that our mixture model ap-

proach also helps increase the model stability and is espe-

cially useful for diverse, low-data regimes where the latent

distribution might not be continuous. Consider the follow-

ing: The gradients on µis push them in the latent space in a

direction which increases the discriminator score, D(G(z))
as per the gradient update (Equation 11). Thus, samples

generated from the updated Gaussian components result in

higher probability, pdata(G(z)).

∂V

∂µ
= −

1

1−D(G(z))

∂D(G(z))

∂G(z)

∂G(z)

∂z
∗ 1 (11)

Hence, as training progresses, we find the µis in par-

ticular, even if initialised in the lower probability regions,

slowly drift towards the regions that lead to samples of high

probability, pdata(G(z)). Hence, fewer points are sampled

from the low probability regions. This is illustrated by (i)

the locations of samples generated by our model in the toy

experiments (Figure 3(d)) (ii) relatively small frequency of

bad quality generations (that don’t resemble any digit) for

the MNIST experiments (Figure 4). Our model successfully

handles the low probability void between the two modes in

the data distribution by emulating the void into its own la-

tent distribution. As a result, no samples are produced in

these regions. This can also be seen in the MNIST experi-

ments – our model produces very few non-digit like samples

compared to the baseline GAN (Figure 4).

In complicated multi-modal settings, the data may be

disproportionally distributed among the modes such that

some of the modes contain relatively more data points. In
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Dissimilar CategoriesSimilar Categories

Figure 6. Comparing the performance of GAN and our model (DeLiGAN) for hand-drawn sketches for similar categories (left side of

dotted line) and dissimilar categories (right side of dotted line). Panels outlined in red correspond to generated samples. Panels outlined in

green correspond to the nearest training examples. Similarly colored boxes for GAN generations of dissimilar categories indicate samples

which look ‘similar’. Refer to Section 5.5 for details.

this situation, the generator in baseline GAN tends to fit the

latent distribution to the mode with maximum data as dic-

tated by the Jensen-Shannon Divergence [23]. This results

in low diversity among the generated samples since a sec-

tion of the data distribution is sometimes overlooked by the

generator network. This effect is especially pronounced in

low data regimes because the number of modes in the image

space increase due to the non-availability of data connecting

some of the modes. As a result, the generator tries to fit to

a small fraction of the already limited data. This is consis-

tent with our experimental results wherein the diversity and

quality of samples produced by baseline GANs deteriorate

with decreasing amounts of training data (MNIST – Figure

4, CIFAR – Figure 5) or increasing diversity of the training

data (Sketches – Figure 6).

Our design decision of having a trainable mixture model

for latent space can be viewed as an algorithmic “plug-in”

that can be added to almost any GAN framework including

recently proposed models [24, 21] to obtain better perfor-

mance on diverse data. Finally, it is also important to note

that our model is still constrained by the modelling capac-

ity of the underlying GAN framework itself. Hence, as we

employ better GAN frameworks on top of our mixture of

Gaussians layer, we can expect the model to generate real-

istic, high-quality samples.

7. Conclusions and Future Work

In this work, we have shown that reparameterizing the

latent space in GANs as a mixture model can lead to a

powerful generative model. Via experiments across a di-

verse set of modalities (digits, hand-drawn object sketches

and color photos of objects), we have observed that this

seemingly simple modification helps stabilize the model

and produce diverse samples even in low data scenarios.

Currently, our mixture model setup incorporates some sim-

plifying assumptions (diagonal covariance matrix for each

component, equally weighted mixture components) which

limit the ability of our model to approximate more com-

plex distributions. These parameters can be incorporated

into our learning scheme to better approximate the un-

derlying latent distribution. The source code for models

and experiments described in the paper can be accessed at

http://val.cds.iisc.ac.in/deligan/.
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