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Abstract

We present in this paper an efficient template-based

method for 3D recovery of elastic shapes from a fixed

monocular camera. By exploiting the object’s elasticity, in

contrast to isometric methods that use inextensibility con-

straints, a large range of deformations can be handled. Our

method is expressed as a saddle point problem using La-

grangian multipliers resulting in a linear system which uni-

fies both mechanical and optical constraints and integrates

Dirichlet boundary conditions, whether they are fixed or

free. We experimentally show that no prior knowledge on

material properties is needed, which exhibit the generic

usability of our method with elastic and inelastic objects

with different kinds of materials. Comparisons with exist-

ing techniques are conducted on synthetic and real elastic

objects with strains ranging from 25% to 130% resulting to

low errors.

1. Introduction

Three-dimensional reconstruction of non-rigid objects

from a monocular camera is a complex problem with many

potential applications in computer graphics, augmented re-

ality and surgical vision. The complexity emanates from its

underconstrained nature since several shape configurations

may produce the same projection which leads to ambigui-

ties [6]. To resolve these ambiguities considering inexten-

sible materials, various approaches have been considered

that, most of the time, rely on additional constraints such

as the preservation of mesh geometrical properties, tempo-

ral consistency or shading information. However, the addi-

tional constraints that are used are not always suited to the

properties of an elastic object.

Physics-based models have been seldom used in the past

due the complexity which precludes real time algorithms

and due to the necessary assumption on the material stiff-

ness (which is difficult to acquire). Nevertheless, recent

studies [2, 13, 8, 12, 3] have shown that such methods are

appropriate when dealing with elastic objects that can un-

Figure 1: 3D recovery of elastic objects from a fixed

monocular camera. Instead of minimizing the forces that act

on the object, our method solves a constrained optimization

that permits to handle elastic and inelastic materials without

a prior on their properties.

dergo stretching or compression. Thus, we advocate in this

paper the use of elastic models to enable reconstruction of

deformable objects undergoing large deformations (see Fig-

ure 1). However, in contrast to related works that express

the problem as force minimization [8] [12] or as non-linear

energy minimization [13], we propose to express the prob-

lem as a saddle point problem using Lagrangian multipli-

ers. This formulation permits to build a well-posed linear

system that unifies both optical and mechanical constraints.

Our method is invariant of material properties which makes

it adequate to elastic and inelastic deformations, and behave

well with poorly textured surfaces and presence of occlu-

sions.

We therefore view the contribution of this paper as a

generic method that: (i) truly handles large elastic defor-

mations up to 130 % (more than 2 times the initial shape),

(ii) is invariant to material properties and get rid of mass,

damping coefficients, time-steps and external forces, which

are one of the major concerns in using mechanical models

in computer vision tasks, and (iii) is adapted to both extensi-

ble and inextensible materials as well as textured and poorly

textured surfaces and behave well with the presence of oc-

clusions. Furthermore, we experimentally validate it with

various type of materials and data, with tests on synthetic

data and real data with quantitative measures and quantita-

tive assessment and comparison with related works.
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2. Related Works

Recovering 3D shapes from a monocular camera has

been an extensive area of research in the last decade. Prior

works have first considered inextensible surfaces where the

exploitation of the underlying distance constraints is possi-

ble, using parametric geometrical warping models [18] [22]

[17], a set of representative sample of possible shapes from

learning-based approaches [21] [19], or by considering the

problem as a convex minimization of the reprojection error

[20] [23].

Previous methods are very effective when considering

inextensible surfaces. However, they are not suitable for

elastic objects, where the conservation of shape’s geometri-

cal properties cannot be considered as a plausible constraint.

One way to overcome this issue is to rely on environment

light and shading information. To this end, a closed-form

method was introduced in [14] to capture stretching sur-

faces. This method assumes a Lambertian surface with a

single point light source and yields good results. However,

the strong assumption on the lighting makes the method

hard to generalize in all environments.

The closest works to our method are the ones that deal

with elastic shapes using mechanical models [13, 8, 12, 9]

The approach described in [13] relies on the minimization

of a stretching energy subject to external image constraints.

The problem is formalized as a non-linear minimization

and uses an underlying B-spline model as a regularization

term. It unifies geometric and mechanical constraints as-

suming local linear elasticity and shows effective results

considering Poisson’s ratio as the unique mechanical pa-

rameter. This method was improved in [12] by integrating

fixed boundary conditions. Nevertheless, it was not partic-

ularly designed to handle large deformations where the re-

sults shown are limited to an extensibility of 15%. In a simi-

lar context, non-linear elasticity has been considered in [8],

for the reconstruction of highly elastic objects. The prob-

lem was expressed as force minimization problem subject to

fixed boundary conditions and considering the image points

as stretching forces. The method provided convincing re-

sults and was later extended to handle self-occlusions [9].

However, it requires the definition of internal stretching and

external stretching parameters, which are hard to estimate

in general. In [2], the authors combined a physical model

derived from Navier’s equations with an Extended Kalman

Filter to efficiently estimate 3D elastic shapes while simul-

taneously compute the camera pose. Similar to this, [3] pro-

posed to incorporate a dynamic particle model into a bundle

adjustment framework. Both methods exhibit convincing

results under small elastic deformations.

3. Elastic Model

Our approach focuses on recovering the 3D deformation

of an object from its 2D projection on the image. It relies

on the use of an elastic model that describe the behavior of

the recovered surface. In this section, we will describe the

material law that defines the elastic model, the discretization

of the model using Finite Element Method (FEM) and the

resolution of the system through a static integration scheme.

3.1. Constitutive Law

The literature related to deformable models is vast and

crosses many scientific domains such as engineering, com-

putational mechanics, computer graphics [15]. Several

characteristics are sought for our elastic model: a low com-

putation cost while having reasonable accuracy, the ability

to handle large deformations and a low parameterization.

While dedicated models such as thin-plate splines or free-

from have proved their relevance and efficiency for isomet-

ric deformations such ones that undergo paper sheets, sails

or cloths [5], we intend to have a more generic model in

order to handle elastic materials such as silicone samples,

hair ribbon or liver tissue. For this purpose, a Saint-Venant

Kirchoff material appears to be a relevant strategy [8]: the

material is hyper-elastic, thus allowing to handle large de-

formations, it relies on few material parameters and can be

quickly computed thanks to the work in [10].

A Saint-Venant Kirchoff material is defined by a stress-

strain relationship of the form:

S = η(trE)I3 + 2µE (1)

where S is the second Piola stress tensor, E is the Green-

Lagrange strain tensor and trE its trace, I3 is the 3 × 3
identity matrix and η and µ are Lamé coefficients and can

be computed thanks to the elastic parameters of the mate-

rial E and ν. E is Young’s modulus and is a measure of

the stiffness of the material while ν is Poisson’s ratio and

estimates the compressibility of the material.

3.2. Discretization with Finite Element Method

Without loss of generality, we use the FEM to discretize

the partial differential equations in (1). The deformable ob-

ject is represented as a volumetric mesh consisting of 3D

polyhedra called elements. We choose here to rely on ther-

ahedral elements with linear shape functions [10].

A particular object deformation is specified by the dis-

placements of mesh vertices (nodal positions) and/or the

nodal forces. In general, the relationship between nodal

forces and nodal positions is nonlinear. When linearized,

the relationship for an element e connecting ne nodes can

simply be expressed as fe = Keue, where fe ∈ R
3ne con-

tains the ne nodal forces and ue ∈ R
3n the ne nodal dis-

placements of an element. The matrix Ke ∈ R
3ne×3ne is
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called the stiffness matrix of the element. Because elastic

forces coming from adjacent elements add up at a node, the

stiffness matrix K ∈ R
3n×3n for an entire mesh with n

nodes is formed by assembling the element’s stiffness ma-

trices Ke. The equation of a deformation on an elastic ob-

ject will therefore take the form:

Ku = f (2)

The computation of the stiffness matrix K is nonlinear due

to the non-linearity of Green-Lagrange strain tensor and

should be recomputed after every deformation to remain

valid. Because we want to handle several kinds of elastic

deformations, the stiffness matrix is computed as follow:

K(u) =
∂f(u)

∂u
(3)

thus allowing for a large displacement du (such as u′ =
u+ du) of the vertices of the mesh.

We can notice that the deformation depends only on the

computation of internal forces. Indeed, the solution does

not integrate acceleration or velocity, since we choose here

no to consider kinetic energy. We address here a static sce-

nario where only a rest and a deformed image states are

provided. This reduces the number of parameters involved

in the solution (mass, damping coefficients, time-step) that

are usually considered in dynamic scenario (time-stepping

techniques [4]).

Figure 2: Problem formulation: we aim at recovering the

elastic deformed shape corresponding to u, from the known

reprojected displacement in the image p, using a physical

model at rest shape and possible fixed boundary conditions.

4. Problem formulation

We follow the formalization of [8] and [12] that aims

at unifiying the physical constraints of the targeted object,

represented by the internal forces that emanate from its con-

stitutive law, and its optical protective constraints that rep-

resent the projection of the elastic object on the image with

respect to the camera parameters (see Figure 5).

Assume a physical model with n nodes and assuming

m feature correspondences between the deformed and the

rest shape of the object in the image. Let urest ∈ R
3n be

the positions of our physical model at its rest configuration

and udef ∈ R
3n the unknown position at deformed con-

figuration. And let prest ∈ R
2m, be the vector of extracted

features at rest configuration and pdef ∈ R
2m their position

at the deformed state.

Given a projection matrix P, the optical constraints that

relate each 3D point ui in world coordinates to the 2D point

pi in image coordinates are expressed as follows

Pui = pi, for i = 1, . . .m (4)

Considering the mechanical and optical constraints, and

by letting u = urest − udef and p = prest − pdef . The

problem can be formalized as finding (urest + u) ∈ R
3n

such that: {
Ku = f

Lu = p
(5)

where L ∈ R
2m×3n is built from the projection matrix P.

5. Elastic Shape Recovery

5.1. Saddle Point Problem

We aim at recovering (urest+u) that it satisfies both ma-

terial and image constraints. Where related works proposed

to solve the set of equations 5 by minimizing the external

forces f . We express our problem as a saddle point problem

resulting in a linear system that can be solved with iterative

of direct solvers. To do so, we use Lagrangian multipliers

method that aims at finding the local minima of a function

subject to equality constraints, as follows.

The potential energy of the unconstrained finite element

model can take the form

W =
1

2
u⊤Ku− u⊤f (6)

Using the potential energy W , we can express the system of

equations 5 as the following minimization problem:

min
u∈R3n

{
1

2
u⊤Ku− u⊤f : Lu = p} (7)

We can turn this constrained quadratic minimization into

an unconstrained problem using the theory of Lagrangian

multipliers by optimizing the Lagrangian function:

L(u,λ) =
1

2
u⊤Ku− u⊤f

︸ ︷︷ ︸

Elastic constraints

+ λ
⊤(Lu− p)

︸ ︷︷ ︸

Projective constraints

(8)

Here, we adjoined 2m Lagrangian multipliers collected in

vector λ. Extremizing L with respect to u and λ yields the

multiplier-augmented form
[
K L⊤

L 0

] [
u

λ

]

=

[
f

p

]

(9)
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The stiffness matrix K is bordered with L and L⊤, where

the vector p contains the boundary conditions extracted

from the image, while the vector λ can be interpreted as

forces required to maintain the boundary conditions p. Fi-

nally, the solution u is the vector of saddle points of the

problem and its uniqueness is discussed below.

5.2. Compliance matrix relaxation

Ideally, we would want the reprojection error to be zero

for all ui for which we have a reprojected image point pi.

However, in practice, due to noisy image measurements,

this is never possible. The formulation of Eq. 10 tend to

exactly satisfy the reprojection constraints, which can be

highly damaging in the presence of outliers. Therefore,

we introduce an additional variable to relax the reprojection

constraints and rewrite our problem as
[
K L⊤

L C

] [
u

λ

]

=

[
f

p

]

(10)

where C ∈ R
2m×2m can be seen as a compliance matrix

which is composed of an uncertainty σi associated to each

feature pi. Following the argumentation in [24] we choose

the inverse of the Hessian as the covariance for the measure

for feature localization uncertainty.

6. Implementation

6.1. Initialization of forces vector

The question of initialization of the force vector f natu-

rally arises from the system of equation 10. At rest configu-

ration the vector of external forces f is a null vector, leading

to solve Eq. 10 where both K and u are known. More-

over, forces controlling the deformation of the object, and

derived from the measured displacement, are automatically

computed from the Lagrange multipliers and do not need to

be set.

6.2. Building the L matrix

In order to build the matrix L, we first use the intrinsic

matrix to represent the features in world units. Then, as-

suming an orthographic camera, the projection of the 3D

points u onto the image can be expressed as:

pi = Rui +T, for i = 1, . . .m (11)

where R is a 2× 3 Stiefel matrix that encodes the two first

rows of the camera rotation matrix and T is a 2× 1 transla-

tion vector of the form

R =

(
r11 r12 r13
r21 r22 r23

)

, T =

(
t1
t2

)

(12)

Assuming the features are registered to the centroid of

the object and considering that (n > m) (to avoid over-

constrained system), the sparse matrix L of size 2m× 3n is

built from the rotation matrix R so that

Ln =

{

R, if n ∈ m

0(2,3), otherwise
(13)

6.3. Mapping features with nodal positions

In practice, image points do not coincide with the nodes

of the mechanical model. At rest configuration, we can ex-

press each feature pi using barycentric coordinates1 of facet

vertices, such that presti =
∑3

j=1 φj(xi, yi)u
rest
j , where

φ(x, y) = a + bx + cy with (a, b, c) being the barycentric

coordinates of the triangle composed of nodal points urest
j ,

with 1 ≤ j ≤ 3. This linear relation remains valid during

the deformation which permits to express features positions

as a linear combination of the mechanical nodal positions.

6.4. Boundary conditions

We refer in this study to boundary conditions as the

Dirichlet boundary conditions that can be seen as a set of

displacements that is imposed on the mechanical nodes.

These boundary conditions can be fixed (the displacement

is null) and are called homogeneous, or can follow a pre-

scribed displacement that usually emanates from external

forces such as gravity, elongation, torsion or compression

and are called heterogeneous. In our formulation, this set

of boundary conditions represents features and forms the

sets {prest,pdef} and they implicitly describe both homo-

geneous boundary conditions and heterogeneous boundary

conditions. Mathematically speaking, denoting L the do-

main of the volume mesh and S = ∂L its boundary (i. e.

the surface), we define:

• Homogeneous boundary conditions: ui = 0 for i ∈ Lf

where Lf ⊂ L is the part of the surface which is fixed,

i. e., the nodes do not move during the resolution.

• Heterogeneous boundary conditions: ui = pi for i ∈
Lm where Lm ⊂ L and Lm ∩ Lf = ∅ are prescribed

positions.

The presence of homogeneous boundary conditions is

not necessary for solving the system of equation 10. In

practice, their identification in the scene brings useful in-

formation for the modeling of the object and can improve

3D recovery in certain cases, as it will be shown in Section

7.

7. Results

We present in this section the results obtained using our

method and the comparison conducted with existing tech-

niques. We report results obtained on real and synthetic

1Equivalent to using linear shape functions defined on P1 tetrahedral

elements.
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Figure 3: Results on synthetic data with variation of

Young’s Modulus E in the range E × 10−1 to E × 104,

with and without fixed boundary conditions (shown in red

in the ground truth). [better seen in color]

data to illustrate the ability of our approach to capture 3D

large elastic deformations. We first test our approach on

synthetic data to show the invariance of our formulation to

elastic parameters and its robustness to noise and lack of

features. We then use the dataset of [8] where several video

sequences of a silicone-made object undergoing different

types of stretching deformation is proposed. We quantify

the three-dimensional shape recovery error with respect to

a ground truth. We also conduct experiments on inextensi-

ble surfaces and on poorly textured objects to highlight the

potential uses of our method. In all experiments we used

SIFT [11] to detect 2D features.

We compare our Largangian multipliers method denoted

LM with existing approaches: an inextensible approach that

handles isometric deformations described in [5] that we de-

note Inext, a physically-based approach for elastic surfaces

that formulate the problem as force minimization described

in [8] that we denote FM and linear least-square solution

that uses linear elasticity with fixed boundary conditions

encoded directly in the stiffness matrix [12] that we denote

LLS. We also consider the impact of fixed boundary con-

ditions in our experiments with the methods FMnoF and

LMnoF that respectively denote the FM and LM methods

without fixed boundary conditions. In addition to quantita-

tive comparisons with [20] a convex optimization method

and [16] denoted CVX a recent approach based on Lapla-

cian meshes denoted LAP, both dedicated to inextensible

3D shape recovery.
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Figure 4: Results on synthetic data: (a)(d)(g) sensitivity to

Young’s Modulus E; (b)(e)(h) sensitivity to Poisson’s ratio

ν; (c)(f)(i) 3D mean errors for each method: our method

exhibits the lowest error while being quasi-invariant to ma-

terial properties.
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Figure 5: Results on synthetic data: Robustness to image

noise and lack of features: randomly reducing the number

of constraints (from 144 features to 58 features) and dis-

turbing the data with Gaussian noise weakly impact 3D re-

construction error in a 1 mm interval.

4099



Method Inext LLS FM LM Inext LLS FM LM

Exp. Mean RMS

Def1 3.62 3.28 1.99 1.66 4.29 3.82 2.62 1.93

Def2 2.77 1.94 2.00 1.27 3.47 2.45 2.44 1.60

Def3 2.98 2.06 1.56 1.55 3.71 2.58 2.06 1.91

Def4 4.87 1.99 1.19 1.31 5.58 2.53 1.69 1.51

Table 1: Comparison with related works for each deforma-

tion with mean 3D error (in mm) and RMS 3D error (in

mm).

7.1. Synthetic Data

We synthesize elastic deformations on a simulated

silicone-made object of size 100 × 100 × 10 mm3. The

object is composed of 432 linear tetrahedral elements char-

acterized by a Young’s Modulus E = 2500 Pa and a Pois-

son’s ratio ν = 0.45. We apply forces on the simulated

object to produce deformed shapes with a plan elonga-

tion in a range between 40% and 120% and a depth elas-

tic deformation between 30% to 50%. Video sequences

of 640 × 480 images are acquired using a virtual camera

with focal length fu = fv = 500 and principal point at

(uc, vc) = (320, 240). On this dataset we run the fol-

lowing experiments: (1) sensitivity to elastic paramaters:

we produce elastic deformations for each of the abovemen-

tioned method by varying the value of a Young’s Modulus

E in the range E × 10−1 to E × 104 and a Poisson’s ra-

tio ν from 0.05 to 0.49 2 while keeping the same amount

of boundary conditions. (2) robustness to image noise and

lack of features: a Gaussian noise with standard deviation

gstd ∈ {1px, 2px, 3px} is added to the features. In addi-

tion, the number of these features was randomly reduced to

reach 40% of the initial number (144 features).

For each set we compute a 3D mean error (in mm) as the

vertex-to-vertex distance between the reconstructed mesh

and the ground-truth mesh. The corresponding plots are

reported in Figures 4 and the resulting shapes with error

measurements are illustrated in Figure 3.

Our LM method produce the lowest errors w.r.t other

methods. We can notice that the recovery error with LM

and LMnoF are quasi-independent to Young’s modulus and

Poisson’s ratio values, while their variation strongly impacts

FM and FMnoF techniques. The results also show that, de-

pending on the simulation, fixing a subset of the boundary

conditions highly reduces the errors. Which suggest that a

correct placement of fixed boundary conditions can be as

important as the physical modeling. This difference is even

more important when the fixed nodes represents a large part

of the object.

We can also notice in figure 5 that our method works well

with a reduced number of boundary conditions perturbed

2Note that the values ν = 0 and ν = 0.5 are excluded since the lame

coefficient η = Eν/(1 + ν)(1− 2ν)

with noise, where the impact of these perturbations on the

3D mean error is less than 1 mm. This demonstrates that

the LM approach is appropriate to poorly textured surfaces

as it will be shown with real data.

3D mesh overlay Our LM method CVX method

3D mesh overlay Our LM method LAP method

Figure 10: Results on inelastic data with smoothly deform-

ing papers with rich textures. [better seen in color]

7.2. Real Data with Ground Truth

We test our approach with real data from the silicone-

elastic dataset [8]. This dataset consists of a silicone-made

object deformed following several configurations with ex-

tensibility ranging from 25% to 120%. The silicone strip

has a size of 100 × 100 × 10 mm3 and its stiffness is char-

acterized by a Young’s Modulus E = 250000 Pa and a

Poisson’s ratio ν = 0.45. For each configuration a video

sequence with image resolution of 640 × 480 is acquired

with a monocular camera at 30 fps. We only exploit the first

and last frames of this video sequence. The 3D shape at fi-

nal state is provided and is considered as ground truth. The

resulting 3D shapes are illustrated in Figures 6, 7, 8, 9 and

the comparison is reported in 1.

The LM method gives the lowest errors (Deformation

1, Deformation 2 and Deformation 4), or very close to the

FM method (Deformation 3), with errors below 2 mm. In

general, FM method gives relatively good results. Inext

method that was designed for isometric deformations, fails

at recovering the 3D shape especially with Deformation 4

where large elastic deformations occur. The LLS method

gives good results but limited to linear elasticity. The inte-

gration of fixed boundary conditions reduces the error for

both FM and LM. The LM approach is used without spe-

cific material properties while the FM approach requires to

set the stiffness of external forces represented as springs and

material properties represented by the stiffness matrix to

reach an equilibrium between internal and external forces.

Overall, the execution time varies between 0.2 seconds and

1.7 seconds, depending on the size of the system (mesh res-

olution and number of features).
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Rest Deformed Ground truth Inext LLS FM LM

Figure 6: Deformation 1. A folding deformation is produced with an elasticity of 30%.

Rest Deformed Ground Truth Inext LLS FM LM

Figure 7: Deformation 2. The silicone strip is constrained by a beam which produced a deformation with elasticity of 25%.

Rest state Deformed state Ground Truth Inext LLS FM LM

Figure 8: Deformation 3. Constrained silicone strip by a circular obstacle leading in a deformation of 40% of elasticity.

Rest state Deformed state Ground Truth Inext LLS FM LM

Figure 9: Deformation 4. A large elongation is produced with an elasticity of 130%.

7.3. Real Data without Ground Truth

Inextensible Paper Bending Experiments on synthetic

data exhibit the invariance of our method to material prop-

erties. In order to confront our method to a real scenario,

we used the data of [21] and [16] representing a smoothly

deforming sheet of paper with rich texture. We also visually

compare with these two methods. The results illustrated in

figure 10 show that our method performs well without any

knowledge of material properties.

Poorly Textured and Occluded Silicone Strip We fur-

ther confront our method to a low textured object to high-

light its performance in this kind of scenarios (cf figure 11).

The experiment involves a soft object of 180×30×20 mm3

that is simulated with 240 linear tetrahedral elements and

unknown material properties. The object is constrained by

a rigid obstacle and elongated in-depth in several directions.

From the acquired images we used only 22 SIFT features as

boundary conditions with the full example and 16 SIFT fea-

tures with the occluded one. The results exhibits correct 3D

shape recovery in both cases (c.f figure 11).

Colliding Soft Ball Here we present our results on a soft

ball colliding the ground in slow motion (youtube video).

As for the other tests, no prior knowledge of material prop-

erties in considered. The spherical volume model is com-

posed of 512 linear P1 tetrahedral elements. The recovery

and augmentation is performed in real-time at 25 fps and is

illustrated in figure 12.
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frame #74 frame #77 frame #83 frame #90 frame #99

Figure 12: Rubber ball colliding the ground in slow motion.

Figure 11: Results on poorly textured elastic data with a

soft object (left) meshes overlay on the images and (right)

the recovered 3D shape with retexturing. [better seen in

color]

8. Discussion

Thanks to the use of a quasi-static integration scheme,

the number of physical parameters has been reduced. Al-

though it can be sufficient for many cases, it shows lim-

its when transient behaviour like oscillations or vibrations

have to be captured (the soft colliding ball in slow motion is

a good example). To this end, a dynamic integration scheme

can be used with the drawback of additional parameters, ob-

ject’s mass and damping coefficient for instance.

The major limitation of our method are the possible mis-

matched points between the rest and deformed configura-

tion. Although we clearly make the assumption that we

have m features correspondences to formalize the problem,

in practice such assumption is hard to ensure. Yet, to the

best of our knowledge, no descriptor is robust enough to

handle large elastic deformations, since these deformations

produce large geometric changes and texture variance on

objects. One possible solution will be to use a learning

approach and rely on the physical model to pre-compute

shapes and texture to feed the learning model.

Moreover, relaxing the assumption of fixed camera is an

important issue to be addressed. This implies to decompose

rigid and non-rigid motion to compute deformations while

estimating camera pose. To this end, one can pre-compute

modal shapes using modal analysis [1] or decompose the

stress tensor to extract rigid components [7].

9. Conclusion

We studied in this paper the problem of 3D recovery of

elastic surfaces from a fixed monocular camera using me-

chanical models. We present a generic method that is ro-

bust to the choice of material properties and performs well

on low textured surfaces. Our formulation unifies both me-

chanical and optical constraints by considering the problem

as a saddle point problem, and integrated boundary condi-

tions in en elagant manner. This results in a linear system

that can efficiently be solved by adjoining Lagrangian mul-

tipliers. We conducted several experiments showing con-

vincing results on elastic and inelastic deformations, and

comparisons with state-of-the art techniques. Finally, mov-

ing scope techniques that simultaneously estimate pose and

3D shape of elastic objects can benefits from the output of

this paper.
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