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Abstract

Owing to prominence as a diagnostic tool for probing the

neural correlates of cognition, neuroimaging tensor data

has been the focus of intense investigation. Although many

supervised tensor learning approaches have been proposed,

they either cannot capture the nonlinear relationships of

tensor data or cannot preserve the complex multi-way struc-

tural information. In this paper, we propose a Multi-way

Multi-level Kernel (MMK) model that can extract discrimi-

native, nonlinear and structural preserving representations

of tensor data. Specifically, we introduce a kernelized

CP tensor factorization technique, which is equivalent to

performing the low-rank tensor factorization in a possibly

much higher dimensional space that is implicitly defined by

the kernel function. We further employ a multi-way nonlin-

ear feature mapping to derive the dual structural preserving

kernels, which are used in conjunction with kernel machines

(e.g., SVM). Extensive experiments on real-world neuroim-

ages demonstrate that the proposed MMK method can effec-

tively boost the classification performance on diverse brain

disorders (i.e., Alzheimer’s disease, ADHD, and HIV).

1. Introduction

In many neurological and neuropsychiatric disorders,

brain involvement, including irreversible loss of brain tis-

sue and deterioration in cognitive function [14], has dele-

terious consequences for judgment and function. For brain

disease diagnosis and detection of early anomalies, recent

years have witnessed an intensive development in nonin-

vasive neuroimaging techniques, e.g., functional Magnetic

∗This work was done while the first author was at the University of

Illinois at Chicago.
†Corresponding author.

Resonance Imaging (fMRI) and structural Diffusion Tensor

Imaging (DTI). A neruoimaging sample is naturally a third-

order tensor consisting of 3D voxels, and each voxel con-

tains an intensity value that is proportional to the strength

of the signal emitted by the corresponding location in the

brain volume [4]. Since the 3D images are often specified in

high-dimensional space (exponential to the dimensionality

of each mode in the tensor), traditional vector-based meth-

ods prone to overfitting, especially for small sample size

problems [5, 35]. How to extract compact and discrimina-

tive representations from the original tensor data has drawn

significant attention in the study of neuroimaging analysis.

In the literature, several supervised tensor learning al-

gorithms have been proposed. Early approaches which

can preserve tensor structures are based upon linear mod-

els [8, 9, 12, 37], while the neuroimaging data is usually

not linearly separable. Recently, several tensor-based ker-

nel methods have been developed [25, 28, 29, 36]. Most of

them focus on learning kernel via vector/matrix unfolding

along each mode of the tensor data. However, the multi-

way structural information such as the spatial arrangement

of voxels will be lost in the unfolding procedures.

In order to capture the underlying patterns in tensor data,

tensor factorization methods have been widely used [4, 17,

19]. However, most of the existing works either focus on

the unsupervised exploratory analysis or to deal with linear

tensor-based models. Recently, [13] employed the CAN-

DECOMP/PARAFAC (CP) factorization to foster the use

of kernel methods for supervised tensor learning. Although

the CP factorization provides a good approximation to the

original tensor data, it only concerned with multilinear for-

mulas. Thus, the nonlinear relationships in the tensor object

can hardly be modeled.

In this paper, we propose a novel Multi-way Multi-level

Kernel (MMK) model to learn discriminative, nonlinear and
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Figure 1. Overview of MMK. Given two input tensor data X and

Y , MMK first applies kernelized CP factorization to extract the

nonlinear representations X ′ and Y ′, by sharing the kernel ma-

trices of each mode, respectively, KX , KY , and KZ during the

decomposition process. Then the extracted representations are em-

bedded into the dual structural preserving kernel.

structural preserving representations of 3D neuroimaging

data for brain disease classification. Figure 1 illustrates the

proposed MMK model. Different from conventional meth-

ods, our approach is based upon kernelized tensor factor-

ization that can fully capture the multi-way nonlinear struc-

tures of tensor data. Inspired by the Representer’s Theo-

rem [26], we present a new scheme of kernelized CP (KCP)

factorization, which leverages the prior knowledge of fea-

ture correlation of each mode to extract a nonlinear rep-

resentation from implicitly defined kernel space. Further-

more, we employ a multi-way nonlinear feature mapping to

derive the dual structural preserving kernels in the tensor

product feature space. The derived kernels are used in con-

juction with kernel machines (e.g., SVM) to solve the tensor

data classification problems.

The main contributions of this work are summarized as

follows:

• We propose KCP factorization as a new and system-

atic method for decomposing tensors of arbitrary order,

which casts kernel learning methods into the frame-

work of CP factorization. The proposed KCP can ef-

fectively capture the complex nonlinear relationships

between tensor modes.

• We introduce MMK model that integrates KCP factor-

ization and tensor kernel methods for practical tensor

data classification.

• Extensive empirical studies on neurological disorder

prediction for three different diseases (Alzheimer’s

disease, ADHD and brain damage by HIV) demon-

strate the proposed approach significantly outperforms

other related state-of-the-art classification methods.

The rest of the paper is organized as follows. We briefly

review on related works of kernel learning and tensor fac-

torization in Section 2. We introduce the preliminary con-

cepts in Section 3. Then we give the problem formulation

and present the proposed MMK approach in section 4. In

Section 5, we report the experiment results. Finally, we con-

clude the paper in Section 6.

2. Related Work

Tensor factorization is a higher-order extension of ma-

trix factorization that elicit intrinsic multi-way structure and

capture the underlying patterns in tensor data. There are

many excellent works for tensor factorization [3, 4, 17, 38]

The two most commonly used factorization techniques are

CP and Tucker [17, 27, 32]. Compared to Tucker, CP is

more frequently used due to its properties of uniqueness

and simplicity [12, 15, 31]. A comprehensive survey on

tensor factorization can be found in [17]. However, the ex-

isting works are mainly based on multilinear factorization

schemes, and are difficult to model nonlinear relationships

and to discover complex patterns in data.

Supervised tensor learning has been extensively stud-

ied in recent years. For example, [31] proposed a super-

vised tensor learning framework, which extends the stan-

dard linear SVM learning framework to tensor patterns by

constructing multilinear models. Under this learning frame-

work, several linear tensor-based models [2, 9, 12, 18, 37]

are developed, whereas the problem of how to build nonlin-

ear models directly on tensor data has not been well stud-

ied. In order to apply kernel modeling for tensor data, sev-

eral works [25, 28, 29, 36] have been presented to con-

vert the tensors into vectors (or matrices), which are then

used to construct kernels. However, this kind of conver-

sion will result in the following two problems: 1) break

the natural multi-way structure and correlation in the origi-

nal data [7, 22]; 2) lead to the curse of dimensionality and

small sample size problems [11, 35]. The problem of how to

build kernel modeling directly on tensor data has not been

well studied. Most recent attempt in this direction is related

to CP factorization proposed in [13], while it has the same

drawback as CP factorization.

3. Preliminaries

In this section, we briefly introduce some preliminary

knowledge from tensor algebra. For a deeper introduction

to the concepts and terminology, we refer to [17]. Table 1

summarizes the important symbols for handy reference.

3.1. Notation and Basic Operations

To facilitate the distinction, scalars are denoted by low-

ercase letters (a, b, · · · ;α, β, · · · ), vectors by bold lower-

case letters (a,b, · · · ), matrices by bold uppercase letters
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Table 1. Important Notations

Symbol Definition and Description

a or α lowercase letter represents scale

a boldface lowercase letter represents vector

A boldface uppercase letter represents matrix

A calligraphic letter represents tensor

⊗ denotes the outer product

⊙ denotes the Khatri-Rao product

〈·, ·〉 denotes the inner product

J·K denotes the CP factorization

Φ(·) denotes the feature mapping

κ(·, ·) denotes the kernel function

(A,B, · · · ), and tensors by calligraphic letters (A,B, · · · ).
The order of a tensor is the number of dimensions, also

known as modes or ways. An N -th order tensor is repre-

sented asA ∈ R
I1×I2×···×IN , where In is the cardinality of

its n-th mode, n ∈ {1, 2, · · · , N}. An element of a vector

a, a matrix A, or a tensor A is denoted by ai, ai,j , ai,j,k,

etc., depending on the number of modes. The outer prod-

uct, Khatri-Rao product and inner product are denoted by

⊗, ⊙ and 〈·, ·〉, respectively.

Given two tensors X = x(1) ⊗ · · · ⊗ x(N) and Y =
y(1) ⊗ · · · ⊗ y(N), it holds that

〈
X ,Y

〉
=

N∏

i=1

〈
x(i),y(i)

〉
(1)

Matricization or unfolding is the process to transform a

tensor into a matrix such that all of the columns along a cer-

tain mode are rearranged to form a matrix [16]. The mode-n

matricization of a tensor X ∈ R
I1×I2×···×IN is denoted by

X(n) ∈ R
In×ΠN

i 6=n
Ii , which can be obtained by permuting

the dimensions of X as [In, I1, · · · , In−1, In+1, · · · , IN ]
and then reshaping the permuted tensor into a matrix of size

In ×ΠN
i 6=nIi [38].

3.2. CP Factorization

CANDECOMP/PARAFAC (CP) factorization is a

widely used technique for exploring and extracting the un-

derlying structure of the multi-way data, which is critical

to the development of our proposed method. Basically,

given an N -th order tensor X ∈ R
I1×I2×···×IN , CP fac-

torization approximates this tensor by N loading matrices

A(1), · · · ,A(N), such that

X ≈

R∑

r=1

a(1)r ⊗ · · · ⊗ a(N)
r = JA(1), · · · ,A(N)K (2)

where J·K is defined as the CP factorization opera-

tor for shorthand and each loading matrix A(n) =

[a
(n)
1 , · · · ,a

(n)
R ], n ∈ {1, 2, · · · , N} is of size In × R, and

R is referred to as the rank of the tensor X [6], indicating

the number of factors.

To obtain the CP factorization JA(1), · · · ,A(N)K, the

objective is to minimize the following estimation error:

L = min
A(1),··· ,A(N)

‖X − JA(1), · · · ,A(N)K‖2F (3)

However, L is not jointly convex w.r.t. A(1), · · · ,A(N). A

widely used optimization technique is the Alternating Least

Squares (ALS) algorithm, which alternatively minimize L
for each variable while fixing the other, that is,

A(n) ← argmin
A(n)

‖X(n) −A(n)(⊙N
i 6=nA

(i))T‖2F (4)

where⊙N
i 6=nA

(i) = A(N)⊙· · ·A(n−1)⊙A(n+1) · · ·⊙A(1).

4. Methodology

In a typical neuroimaging classification task, we are

given a collection of M training examples {Xi, yi}
M
i=1 ⊂

X × Y , where Xi ∈ R
I1×I2×···×IN is the input of the i-

th neuroimaging sample and yi is the corresponding class

label. The task of neuroimaging classification is to find a

function f : X → Y that correctly predicts the label of an

unseen neuroimaging sample X ∈ R
I1×I2×···×IN . In the

kernel learning scenario, this problem can be formulated as

the following optimization problem:

f∗ = arg min
f∈H

(

C

M

M∑

i=1

V (f(Xi), yi) + ‖f‖
2
H

)

(5)

where C is used to control the trade-off between the empir-

ical risk and the regularization term, H is a set of functions

forming a Hilbert space (the hypothesis space), and V (·) is

a prescribed loss function that measures how well f fits the

data. By using the Representer Theorem [26], we classically

obtain:

f∗(X ) =

M∑

i=1

ciκ(Xi,X ) (6)

where ci is the coefficient and κ(·, ·) is a positive definite

(reproducing) kernel function, defined by κ : X ×X → R

with κ(Xi,Xj) = 〈Φ(Xi),Φ(Xj)〉, where Φ : X → H is a

feature mapping function.

Notice that the kernel function becomes the only domain

specific module of the learning system. In this context, it

is therefore essential to design a kernel that adequately en-

capsulates all information necessary for prediction. In the

following, we first propose a kernelized CP factorization

model to learn the latent structural features. We then show

how to design a good kernel by leveraging the extracted la-

tent structural features.

4.1. Kernelized CP Factorization

Although tensor provides a natural representation for

multi-way data, there is no guarantee that it will be effec-

tive for kernel learning. Learning will only be successful
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if the regularities that underlie the data can be discerned by

the kernel function. From the previous analysis of the multi-

way data, we noted that the essential information contained

in the tensor is embedded in its multi-way structure. There-

fore, an important aspect of tensor based kernel learning is

to represent tensor by key structural features easier to ma-

nipulate, and design kernels on such features.

According to the principle of CP factorization, it is de-

signed to conserve the original multi-way structure of the

tensor object and provide more compact and meaningful

representations. Nevertheless, it only provides a good ap-

proximation – rather than the most relevant-non-redundant

(i.e., representative, discriminative and non-redundant) fea-

tures. Besides, the standard CP factorization is only con-

cerned with multilinear formulas, and thus it is difficult to

capture the nonlinear relationships in the tensor object. To

leverage the success of kernel learning, we tailor a kernel-

ized CP (KCP) factorization, on making use of tensor char-

acteristics and mode-specific knowledge.

For simplicity and without loss of generality, we con-

sider a third-order tensor X ∈ R
I×J×K . Inspired by [1],

it is instructive to look at the three-way structure of X as

a function of three variables x, y, z, living in measurable

spaces X,Y, Z, respectively. To obtain a kernel version of

a given CP factorization X = JA,B,CK, where the ten-

sor element xi,j,k =
∑R

r=1 ai,rbj,rck,r, we define low-rank

functions g belonging to the following family

GR := {g : X × Y × Z → R

g(x, y, z) 7→

R∑

r=1

ar(x)br(y)cr(z)

s.t. ar(x) ∈ HX , br(y) ∈ HY , cr(z) ∈ HZ} (7)

where HX , HY and HZ are Hilbert spaces constructed from

specified kernels κX(·, ·), κY (·, ·) and κZ(·, ·), in X,Y and

Z, respectively. Here x, y, z can be seen as indices of mode.

By recursively using the Representer Theorem, we have

ar(x) =
∑I

i=1 αi,rκX(xi, x),

br(y) =
∑J

j=1 βj,rκY (yj , y),

cr(z) =
∑K

k=1 γk,rκZ(zk, z).

Defining vectors κ
T
X(x) := [κX(x1, x), · · · , κX(xI , x)],

κ
T
Y (y) := [κY (y1, y), · · · , κY (yJ , y)], and κ

T
Z(z) :=

[κZ(z1, z), · · · , κZ(zK , z)], along with matrices A ∈
R

I×R : ai,r := αi,r, B ∈ R
J×R : bj,r := βj,r, and

C ∈ R
K×R : ck,r := γk,r, it follows that

g(x, y, z) =

R∑

r=1

ar(x)br(y)cr(z)

=
R∑

r=1

(κT
X(x)ar)(κ

T
Y (y)br)(κ

T
Z(z)cr) (8)

Algorithm 1 Kernelized CP (KCP) Factorization

Input: Tensor object X ∈ R
I×J×K and rank R

Output: {A,B,C}
1: Allocate KX ,KY ,KZ

2: Calculate matrices {A,B,C} by using the standard CP fac-

torization

3: Set A← K
−1

X
A

4: Set B← K
−1

Y
B

5: Set C← K
−1

Z
C

Using Eq. (8), the following fitting criterion holds:

ĝ : = arg min
g∈GR

I∑

i=1

J∑

j=1

K∑

k=1

(xi,j,k − g(xi, yj , zk))
2

= min
A,B,C

‖X − JKXA,KY B,KZCK‖2F (9)

where kernel matrices KX = [κX(x1), · · · ,κX(xI)] ∈
R

I×I , KY = [κY (y1), · · · ,κY (yJ)] ∈ R
J×J , and KZ =

[κZ(z1), · · · ,κZ(zK)] ∈ R
K×K .

Eq. (9) reduces to the standard CP factorization when the

side information is discarded by selecting κX(·, ·), κY (·, ·)
and κZ(·, ·) as Kronecker delta functions (i.e., the corre-

sponding kernel matrix is the identity matrix). Essentially,

(9) yields the sought nonlinear low-rank approximation

method for g(x, y, z) in Eq. (8). We refer to Eq. (9) as KCP

factorization, and matrices {A,B,C} as latent factor ma-

trices to distinguish from loading matrices of CP method.

Note that we do not kernelize the tensor data X , and we

kernelize the memberships in the latent factors. Moreover,

it is easy to extend this result to the higher-order case.

4.2. Optimization for KCP

Basically, Eq. (9) has the same structure as the CP fac-

torization in Eq. (3), so we have a similar update rule for

solving the KCP factorization. Here, we state the following

theorem to efficiently solve Eq. (9). The overall algorithm

is summarized in Algorithm 1.

Theorem 1. Let X ∈ R
I1×I2×···×IN be an arbitrary ten-

sor and assume we have a CP factorization of X , X =
JA(1), · · · ,A(N)K such that Eq. (3) holds. Then the solu-

tion of the following problem

min
Â(1),··· ,Â(N)

‖X − JK1Â
(1), · · · ,KNÂ(N)K‖2F (10)

is

Â(n) = K−1
n A(n) (11)

where n ∈ {1, 2, · · · , N}, Kn ∈ R
In×In is known positive

definite matrix.

Proof. Let Ã(n) = KnÂ
(n) for n ∈ {1, 2, · · · , N}. When

applying the ALS approach to solve Eq. (10), we have

Ã(n) ← argmin
Ã(n)

‖X(n) − Ã(n)(⊙N
i 6=nÃ

(i))T‖2F (12)
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Figure 2. Multi-way Multi-level Kernel Modeling.

where⊙N
i 6=nÃ

(i) = Ã(N)⊙· · · Ã(n−1)⊙Ã(n+1) · · ·⊙Ã(1).

Since the objective function in (12) is strictly convex, a

unique solution exists for this problem. That is, A(n) is also

the solution of Eq. (12) and Ã(n) , A(n). Moreover, since

Kn is a positive-definite matrix, its inverse exists. Thus we

arrive at Theorem 1.

According to Theorem 1, it turns out that the minimiza-

tion of Eq. (9) can be solved by first computing the CP fac-

torization of X and then obtaining the solution of latent fac-

tor matrices on the loading matrices. There are many effi-

cient algorithms available for solving CP factorization [17],

which facilitate the implementation of KCP factorization.

We use the method (and code) of [24] to compute the CP

factorization, which is based on the ALS algorithm, cou-

pled with the line search scheme to speed up convergence.

4.3. Multiway Nonlinear Mapping

To incorporate prior known similarities across different

data samples, we use the KCP factorization to extract the

compact representations for each input tensor object, by

sharing the kernel matrices of each mode. In this way, the

discriminative latent factor matrices, which is beneficial to

the classification task, is constructed. In the following, we

illustrate how to use these extracted latent structural features

to evolve a suitable kernel for neuroimaging classification.

Let the KCP factorization of X ,Y ∈ R
I×J×K be X =

JKXA,KY B,KZCK and Y = JKXU,KY V,KZWK,

respectively. The latent factor matrices are of multi-mode

and each factor matrix is associated with a mode. It is

straightforward to express the latent factor matrices in a ten-

sor fashion by means of the outer product operator. In this

manner we will bring the latent factor matrices of different

modes into one tensor, not only to bring their own inter-

pretations, but also to include multi-way capabilities. We

define the latent tensors for X and Y as X ′ = JA,B,CK
and Y ′ = JU,V,WK, which have the same sizes as X and

Y . Inspired by the success of dual structure-preserving ker-

nel (DuSK) method [13], we assume the latent tensors are

mapped into a Hilbert space H by

Φ : X × Y × Z → R
HX×HY ×HZ (13)

where R
HX×HY ×HZ is a third-order tensor Hilbert space.

Based on the derivatives of the kernel function, it is im-

portant to note that the Hilbert space is a high-dimensional

space of the original feature space, equipped with the same

operations. Consequently, we can directly factorize tensor

data in the Hilbert space the same as original feature space.

This is equivalent to considering the following multi-way

nonlinear mapping:

Φ :

R∑

r=1

ar⊗br⊗cr 7→

R∑

r=1

Φ (ar)⊗Φ (br)⊗Φ (cr) (14)

In this respect, it corresponds to mapping the latent ten-

sors into high-dimensional tensors that retain the multi-way

structure. More generally, it can be seen as mapping the

tensor data into tensor Hilbert space and then performing

the CP factorization in the Hilbert space.

After mapping the latent tensor into the Hilbert space,

which is also essentially the tensor product space, the kernel

is just the standard inner product of tensors on that space.

Hence, we can derive a dual structural preserving kernel

function as follows:

κ(X ′,Y ′) = κ(

R∑

r=1

ar ⊗ br ⊗ cr ,

R∑

r=1

ur ⊗ vr ⊗wr)

= 〈Φ(

R∑

r=1

ar ⊗ br ⊗ cr),Φ(

R∑

r=1

ur ⊗ vr ⊗wr)〉

= 〈

R∑

r=1

Φ(ar)⊗ Φ(br)⊗ Φ(cr),

R∑

r=1

Φ(ur)⊗ Φ(vr)⊗ Φ(wr)〉

=
R∑

i=1

R∑

j=1

κ(ai,uj)κ(bi,vj)κ(ci,wj) (15)

By virtue of its derivation, we see that such a kernel func-

tion can take the multi-way structure within tensor flexibil-

ity into consideration. In general, this kernel is an extension
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of the conventional kernels in the vector space to the tensor

space, and each vector kernel function can be applied in this

framework for tensor classification in conjunction with ker-

nel machines (e.g., SVM). Different kernel functions spec-

ify different hypothesis spaces or even different knowledge

embeddings of the data and thus can be viewed as captur-

ing different notions of correlations. In particular, it can be

regarded as computing the inner product after l successive

applications of the nonlinear mapping Φ(·):

κl(x,y) = 〈Φ(Φ(· · ·Φ(x)))
︸ ︷︷ ︸

l times

,Φ(Φ(· · ·Φ(y)))
︸ ︷︷ ︸

l times

〉 (16)

Intuitively, if the base kernel function κ(x,y) =
〈Φ(x),Φ(y)〉 mimics the computation in a single-level net-

work, then the iterated mapping in Eq. (16) should mimic

the computation in a multi-level network.

Finally, by putting everything together, we obtain the

general version of our multi-way multi-level kernel (MMK)

modeling, as illustrated in Figure 1 and Figure 2. Com-

pared to DuSK method [13], which models the relation-

ships between tensor samples by using a single-level kernel

on the low-rank approximation (i.e., loading matrices), the

proposed method models the nonlinear and structural infor-

mation not only between tensor samples but also within the

tensor sample itself, by using a multi-way multi-level kernel

on the latent structural features (i.e., latent factor matrices).

5. Experiments and Results

In order to empirically evaluate the effectiveness of the

proposed MMK approach in addressing the neuroimaging

classification, we conduct extensive experiments on three

real-life neuroimaging (fMRI) datasets and compare with

eight existing state-of-the-art methods. In the following, we

introduce the datasets used in our analysis and describe the

experimental settings. Then we present the experimental

results as well as the analysis.

5.1. Data Collection and Preprocessing

We consider three resting-state fMRI datasets as follows:

• Alzheimer’s Disease (ADNI): This dataset is collected

from the Alzheimer’s Disease Neuroimaging Initia-

tive1, which consists of records of patients with Mild

Cognitive Impairment (MCI) and Alzheimer’s Disease

(AD). We downloaded all 33 records of resting-state

fMRI images and applied SPM8 2 to preprocess data.

For each individual, the first ten volumes were re-

moved, functional images were realigned to the first

volume, slice timing corrected, and spatially smoothed

1http://adni.loni.usc.edu/
2http://www.l.ion.ucl.ac.uk/spm/software/spm8/
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Figure 3. (a) Visualization of an fMRI image from four angles, (b)

An illustration of third-order tensor of an fMRI image.

with an 8-mm FWHM Gaussian kernel and normal-

ized to the MNI template. We then adopted REST3

to perform temporally band-pass filtering (0.01− 0.08
Hz) and remove the linear trend of time series. After

this, we averaged each individual over time domain,

resulting in 33 samples of size 61× 73× 61. We treat

AD+MCI as the negative class, and the normal brains

as positive class. Finally, followed by [13], we scaled

each individual to [0, 1]. Note that normalization is of

extreme importance for group analyses, since the brain

of every individual is different.

• Human Immunodeficiency Virus Infection (HIV): This

dataset is collected from Chicago Early HIV Infection

Study in Northwestern University [33], which contains

83 fMRI brain images of patients with early HIV in-

fection (negative) and normal controls (positive). We

used the same preprocessing steps as in ADNI dataset,

resulting in 83 samples of size 61× 73× 61.

• Attention Deficit Hyperactivity Disorder (ADHD):

This dataset is collected from ADHD-200 global

competition dataset4, which contains the resting-state

fMRI images of 200 subjects, either ADHD patients

(negative) or normal controls (positive). We averaged

each individual over time domain, resulting in 200
samples of size 58× 49× 47.

5.2. Baselines and Metrics

We consider Gaussian RBF kernel and SVM classifier as

the constituents of our MMK method for comparison, and

use the following eight methods as baselines.

• SVM: First we implemented a naive baseline,

Gaussian-RBF kernel-based SVM, which is the most

widely used vector-based method for classification. In

the following methods, we use SVM with Gaussian

RBF kernel as the classifier, if not stated explicitly.

3http://resting-fmri.sourceforge.net
4http://neurobureau.projects.nitrc.org/ADHD200/

361

http://adni.loni.usc.edu/
http://www.ﬁl.ion.ucl.ac.uk/spm/software/spm8/
http://resting-fmri.sourceforge.net
http://neurobureau.projects.nitrc.org/ADHD200/


Table 2. Summary of compared methods. C is the trade-off parameter, σ is the kernel width parameter, R is the rank of tensor factorization.
Method SVM/SVM+PCA K3rd [25] sKL [36] FK [28] DuSK [13] STTK [23] 3D CNN [10] MMK

Data Post-processing Vectors Vectors Matrices Matrices 3D Tensor 4D Tensor 3D Tensor 3D Tensor

Correlation Exploited One-way One-way One-way One-way Multi-way Multi-way Multi-way Multi-way

Kernel Explored Single-level Single-level Single-level Single-level Single-level Single-level Multi-level Multi-level

Parameters C, σ C, σ C, σ C, σ C, σ, R C, σ, R, ERt Many* C, σ, R

• SVM+PCA: We also implemented a vector-based sub-

space learning algorithm, which first uses principal

component analysis (PCA) to reduce the input dimen-

sion and then feeds into SVM model. This method is

commonly used to deal with high-dimensional classi-

fication, in particular fMRI classificatioin [30, 34].

• K3rd: It is a vector unfolding based tensor kernel

method, which aims at exploiting the input tensor

along each mode to capture structural information and

has been used to analyze fMRI data together with

Gaussian RBF kernel [25].

• sKL: It is a matrix unfolding based tensor kernel

method that defined based on the symmetric Kullback-

Leibler divergence, and has been used to reconstruct

3D movement [36].

• FK: It is also a matrix unfolding based tensor ker-

nel method, but defined based on multilinear singular

value decomposition (MLSVD). The constituent ker-

nels are from the class of Gaussian RBF kernels [28].

• DuSK: It is the most recent tensor kernel method based

upon CP factorization, which has been used to analyze

fMRI data together with Gaussian RBF kernel [13].

• STTK: It is a variant of the DuSK method for whole-

brain fMRI classification, which views the fMRI data

as 4D spatio-temporal objects observed under different

conditions/sessions [23].

• 3D CNN: It is a 3D convolutional neural network ex-

tended from 2D version [10], which uses the convolu-

tion kernel. The convolution kernel is the cubic filters

learned from data, which has a small receptive field,

but extends through the full depth of the input volume.

Table 2 summarizes the compared methods. We per-

formed 5-fold cross-validation and used the classification

accuracy as the evaluation measure. This process was re-

peated 50 times for all methods and the average reported

as the result. We use LibSVM as a SVM tool. The op-

timal parameters for all methods were determined by grid

search. The optimal trade-off parameter is selected from

C ∈ {2−8, 2−7, · · · , 28}, the kernel width parameter is

selected from σ ∈ {2−8, 2−7, · · · , 28}, the optimal rank

R is selected from {1, 2, · · · , 10}. The parameter ERt

Table 3. Classification accuracy comparison (mean± standard de-

viation)

ADNI HIV ADHD

SVM 0.49± 0.02 0.70± 0.01 0.58± 0.00

SVM+PCA 0.50± 0.02 0.73± 0.03 0.63± 0.01

K3rd 0.55± 0.01 0.75± 0.02 0.55± 0.00

sKL 0.51± 0.03 0.65± 0.02 0.50± 0.04

FK 0.51± 0.02 0.70± 0.01 0.50± 0.00

DuSK 0.75± 0.02 0.74± 0.00 0.65± 0.01

STTK 0.76± 0.02 0.76± 0.01 0.68± 0.01

3DCNN 0.52± 0.03 0.75± 0.02 0.68± 0.02

MMK 0.81± 0.01 0.79± 0.01 0.70± 0.01

for STTK is set by default to 0.2. The optimal parame-

ter for 3D CNN, i.e., receptive field (R), zero-padding (P ),

the input volume dimensions (Width × Height × Depth,

or W × H × D ) and stride length (S) are tuned follow-

ing [10]. Covariance kernel matrices KX ,KY ,KZ are as-

sumed known.

5.3. Classification Performance

Table 3 shows the average classification accuracy and

standard deviation of different methods on three datasets,

where the best result is highlighted in bold type. From com-

parison results, we have the following observations.

First, the classification accuracy of each method on dif-

ferent dataset can be quite different. However, the proposed

MMK method consistently outperforms all the other meth-

ods on all three datasets. This is mainly because MMK can

learn the nonlinear latent subspaces embedded within the

tensor together with considering a prior knowledge across

different data samples, while the other methods fail to ex-

plore the nonlinear relationships in the tensor object. More-

over, it can be found that MMK significantly outperforms

other methods on the ADNI dataset. The reason behind is

that this data is extremely high dimensional but with small

sample size. In neuroimaging task it is very hard for classi-

fication algorithms to achieve even moderate classification

accuracy on ADNI dataset. In particular, as can be seen

from the results, 3D CNN achieves a relatively lower ac-

curacy on ADNI dataset, which is because the deep learn-

ing method needs a large number of training data to train

the deep neural network. Medical neuroimaging datasets

do not have enough training data because of privacy. Nev-

ertheless, by making use of tensor properties, we are able

to boost the classification performance. Further, it can be
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Figure 4. Test accuracy vs. R on three neuroimaging datasets.

found that MMK always performs better than DuSK, which

empirically shows the effectiveness of feature extraction in

high-dimensional tensor data rather than approximation.

Based on these results, we can conclude that unfold-

ing tensor into vectors or matrices would lose the multi-

way structural information within tensor data, leading to

the degraded performance. While operation on tensors is

much more effective than on vectors and matrices for high-

dimensional tensor data analysis. In general, the experi-

mental results demonstrate the effectiveness and consider-

able advantages of our proposed methods in the fMRI data

classification study.

5.4. Parameter Sensitivity

Although the optimal values of the parameters in our

proposed MMK are found by grid search, it is still impor-

tant to see the sensitivity of MMK to the rank of KCP fac-

torization R. To this end, in this section we demonstrate a

sensitivity study over different R ∈ {1, 2, · · · , 10}, where

the optimal kernel width parameter and trade-off param-

eter are still selected from C ∈ {2−8, 2−7, · · · , 28} and

σ ∈ {2−8, 2−7, · · · , 28} respectively. It is obvious that the

efficiency of MMK is reduced when R is increased because

a higher value of R implies that more items are included

into kernel computations. Thus, we only demonstrate the

variation in test accuracy over different R on three datasets.

As shown in Figure 4, the rank parameter R has a signifi-

cant effect on the test accuracy and the optimal value of R

depends on the data. Despite that, the optimal value of R in

general lies in the range 2 ≤ R ≤ 5, which may provide a

good guidance for selection of the R in advance.

In summary, the parameter sensitivity study indicates

that the classification performance of MMK relies on pa-

rameter R and it is difficult to specify an optimal value for

R in advance. However, in most cases the optimal value of

R lies in a small range of values as demonstrated in [12]

and it is not time-consuming to find it using the grid search

strategy in practical applications.

6. Conclusion and Outlook

In this paper, we have introduced a multi-way multi-level

kernel (MMK) method, with an application to neuroimag-

ing classification. Different from conventional kernel meth-

ods, our approach is based on kernelized CP (KCP) factor-

ization that casts kernel learning methods into the frame-

work of CP factorization, such that the complex nonlin-

ear relationships between tensor modes can be captured.

The nonlinear representations extracted from the KCP are

embedded in the dual structural preserving kernels, which

are used in conjunction with SVM to solve the neuroimag-

ing classification problems. Extensive empirical studies

on three different neurological disorder prediction tasks

demonstrated the superiority of the proposed approach over

existing state-of-the-art methods.

In the future, we will explore situations in machine learn-

ing where tensor factorization are used, for example, multi-

source and multi-task learning [20, 21], and examine how

the KCP and MMK methods could be applied to improve

the learning performance.
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