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Abstract

Despite the recent advances in large-scale video analy-

sis, action detection remains as one of the most challeng-

ing unsolved problems in computer vision. This snag is in

part due to the large volume of data that needs to be ana-

lyzed to detect actions in videos. Existing approaches have

mitigated the computational cost, but still, these methods

lack rich high-level semantics that helps them to localize

the actions quickly. In this paper, we introduce a Seman-

tic Cascade Context (SCC) model that aims to detect ac-

tion in long video sequences. By embracing semantic pri-

ors associated with human activities, SCC produces high-

quality class-specific action proposals and prune unrelated

activities in a cascade fashion. Experimental results in Ac-

tivityNet unveils that SCC achieves state-of-the-art perfor-

mance for action detection while operating at real time.

1. Introduction

Imagine you would like to find and share videos in your

digital archives about the remarkable moments you had

playing beach volleyball in Hawaii (refer to Figure 1). To

do this, you have to scan every video and determine whether

or not the moments you are looking for are present in each

video. To optimize your search time, you would probably

scroll through the archives quickly and stop to check time

instances, where you saw a beach, volleyball net, or vol-

leyball. At those times, you would scroll or play the video

slower to determine whether this part of the video is one of

the special moments you are looking for. If it is not, you re-

sume the coarse-to-fine temporal search through the videos,

until you have exhausted them all.

This particular search problem not only afflicts people

looking for memorable moments, but it also hinders var-

ious real-world tasks ranging from consumer video sum-

marization to surveillance, crowd monitoring, and elderly

care. There is obviously a need for efficient and accurate

automated methods that can search and retrieves events and

activities in video collections, formally known in the vision

community as action/activity detection in long untrimmed

videos. Despite the great research efforts that have been
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Figure 1. Playing beach volleyball is more than the sum of peo-

ple running, jumping, and hitting a ball. It inherently implies an

outdoors beach, a volleyball net, a volleyball and humans inter-

acting in a particular way. Our approach leverages this rich and

discriminative semantic information (namely objects and places)

to determine when activities of interest occur in long, untrimmed

videos in an efficient and effective way.

made on the topic of action recognition and detection, the

goal of accurate and fast detection remains elusive in our

automated visual systems.

First attempts in action detection apply activity classi-

fiers exhaustively over the video at each time location and

at multiple temporal scales [8, 10, 32]. Despite the good

detection performance they achieve in small-scale and con-

trolled scenarios, this computationally expensive approach

is infeasible for large-scale video analysis applications. To

overcome the computational demand of these traditional

methods and inspired by progress in the object detection

domain [18, 35, 36], recent approaches [5, 9, 37] develop

methods that quickly scan a video to generate temporal seg-

ments, where general activities are likely to exist. In doing

so, activity classifiers are only applied to few candidate seg-

ments, thus, significantly reducing the computational over-

head. However, these detection approaches ignore semantic

context priors (e.g. objects and scenes) in localizing actions,

even though they have been shown to be quite effective in
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describing actions and boosting action classification perfor-

mance [19, 21, 29, 50]. In this paper, we embed the use of

semantic context in the detection action process.

Consider again the video sequence in Figure 1.The exis-

tence of the volleyball, net, and beach in a video frame is

a good semantic prior that lends visual evidence encourag-

ing a detection of the playing beach volleyball action to in-

clude this frame. In other words, we argue that (i) semantic

context in the form of action-object and action-scene rela-

tionships (e.g. co-occurrence) can help guide the temporal

localization of actions in an untrimmed video. Moreover,

the lack of this context can also be informative. For exam-

ple, knowing that video frames do not contain a dog and are

taken indoors discourage the detection of the walking the

dog and shoveling snow actions. In addition to improving

localization, we also argue that (ii) action-object and action-

scene relationships can be exploited to quickly prune out or

disregard actions that are unlikely to exist in a video seg-

ment without applying an expensive action classifier. This

cascaded approach is especially useful when the number

of action classes is large, as is the case in many activity

datasets nowadays (e.g. ActivityNet [4]). In fact, we realize

that claims (i)-(ii) are validated by observing how humans

scroll through long videos, while searching for particular

action classes (more details in Section 3).

Contributions. The core idea of the paper is to introduce

a model that embraces rich semantic context information

that has strong associations with human activities. Specifi-

cally, the contributions are twofold. (1) We introduce a new

Semantic Context Cascade (SCC) model, which exploits

action-object and action-scene relationships to improve the

localization quality (i.e. recall) of a fast generic action pro-

posal method and to quickly prune out unrelated actions in

a cascade fashion. These two features lead to an efficient

and accurate cascade pipeline for detection. (2) When ap-

plied to ActivityNet [4], the most diverse large-scale dataset

for activity detection, our SCC model achieves state-of-the-

art performance, while significantly reducing computational

cost, as compared to state-of-the-art detectors.

2. Related Work

Modeling context for actions. Several approaches have

incorporated context cues to boost action recognition per-

formance in controlled scenarios [14, 16, 25, 26, 34, 47,

49]. Marszaek et al. [29] show the relevance of the co-

occurrence between actions and scenes to design useful vi-

sual representations for retrieving short actions in movie

clips. In a similar spirit of empowering visual features for

action understanding, [14, 19, 20, 25, 34, 47] show that im-

plicit and explicit modeling of the relationships between ob-

jects in the video allows to discriminate action occurring

in videos, especially by reducing the confusion between

actions with similar motions such as drinking and smok-

ing. More recently, Jain et al. [21] extend this idea fur-

ther by conducting a large-scale study that reveals a strong

co-occurrence between actions and a sparse number of ob-

jects. In the same spirit as this work, Wu et al. [50] use high

capacity neural networks to learn object, scene, and action

relationships with the end goal of improving activity clas-

sification. Although the efficacy of context cues has been

successfully proven to help action classifiers be more dis-

criminative, previous approaches do not explore these ideas

to tackle the challenges in action detection. To the best of

our knowledge, our work is the first to address action de-

tection by exploiting semantic information garnered from

action-object and action-scene relationships at large scale.

Action detection. Following the success and ubiquity of

2D object proposals in 2D object detectors [18], spatio-

temporal proposals [43, 48, 53] and temporal activity pro-

posals [5, 9, 30, 37] have emerged as a key pre-processing

step to avoid the exhaustive sliding window approach for

action detection [8, 10, 32]. Closely to our work, Caba

Heilbron et al. [5] introduce a sparse learning framework

to efficiently scan videos (10FPS) and produce a set of high

fidelity temporal proposals that are likely to contain actions.

The contemporary work of Shou et al. [37] provides a tem-

poral proposal module that helps a multi-stage system to

filter out background segments (60FPS). To further improve

upon the quality and computational efficiency of prior work,

Escorcia et al. [9] speed up the proposal generation step

even further by employing deep learning models and mem-

ory cells (130FPS). Another line of research has explored

the use of attention models to focus in temporal snippets of

a video [31, 52]. However, both types of approaches (i.e.

action proposals and attention models) lack an explicit en-

coding and use of action associated semantic information

(e.g. action relationships with objects and scenes), which

we argue is important in quickly detecting human activities.

3. Motivation

There is clear evidence that humans use context informa-

tion and semantic priors to successfully perform visual tasks

[3, 15]. To validate this argument in the realm of action de-

tection and to motivate our use of semantic context in a cas-

cade for improving action localization, we conduct an on-

line user study, where human subjects are given a clear and

concise task, namely to annotate the start and ending times

of particular activities in video sequences. To identify tem-

poral parts of the video where the user focuses, we log all

his/her interactions with the user interface (video browser).

Possible actions on the video level are include sliding the

time bar left or right to quickly search for the start and end-

ing time respectively, as well as, jumping directly to any

temporal point in the video.
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Figure 2. The left illustration depicts the sequence of actions that a human follows to annotate the temporal boundaries of walking the dog

in a video. Center Speed of left and right cursors against object detector response (dog). Right Example of action-object and action-scene

links. We observe a strong correlation between semantic changes (e.g. after dog appears in the video) and temporal points of the video

where the user focus. To benefit from the rich semantic information that action-object and action-scene relationships provide, we conduct

an annotation effort that links three large-scale datasets.

Our study reveals that there is a strong correlation be-

tween semantic changes and the temporal parts of the video,

where the user focuses. These temporal parts tend to be

strongly related with semantic priors of the intended activ-

ity. Consider Figure 2 (left), which illustrates an example

of the sequences of steps executed to annotate the action

walking the dog. As in this example, our study finds that

users tend to scan the video quickly until a semantic prior

associated with the action appears in the video, in this case,

the dog. This observation motivates our semantic context

cascade (SCC) model, but also motivates us to annotate se-

mantic relationships between actions, objects, and scenes.

Figure 2 (center) shows a typical example of how users

annotate the activity walking the dog, i.e. how they move

the cursors, accompanied with the temporal evolution of

a dog detector response. Interestingly, peaks in the detec-

tor responses (changes in object appearance) correlate with

minimum cursor speed. This behavior indicates that seman-

tic context associated with the activity class (i.e. presence

of dog) is used by the subject to quickly reach a part of

the video that aligns with this context. Then, at a much

slower pace, the user makes use of the semantic information

along with an understanding of the activity class to define

the bounds of this activity instance in the video. Details

of this study and more user examples can be found in the

supplementary material.

To benefit from action-object and action-scene associa-

tions, we first need to infer such relationships first. To do

this, we conduct an annotation effort that links three of the

largest datasets in computer vision: ImageNet [7], Activi-

tyNet [4], and Places205 [55]. Given that our target is ac-

tion detection, we annotate the set of objects and scenes

that are relevant for each category in ActivityNet. We rely

on Amazon Mechanical Turk workers to obtain multiple

textual descriptions for each category in ActivityNet [4].

Then, we post-process this information to get candidate ob-

jects and scenes that are potentially relevant to the activi-

ties. We manually define the semantic relationships (action-

object and action-scene), using the existing categories in

ImageNet[7] and Places205[55]. Figure 2 (right) shows an

example of the annotated links for the activity walking the

dog. Later, we will use the links between the hierarchical

organizations of activities, objects, and scenes to improve

the localization quality of extracted action proposals and

prune out action classes that are improbable in these propos-

als. The mined relationships from this annotation effort and

further details about the annotation protocol can be found in

the supplementary material.

4. Semantic Context Cascade (SCC) Model

Our goal is to develop a model that detects when and

which actions (among a large set) happen in a video. Our

primary challenge is to design this model in such a way that

it produces a reliable detection while keeping the computa-

tional footprint low, so it can be feasible at large-scales (i.e.

a large number of long videos and a large number of ac-

tion classes). Therefore, we propose our Semantic Context

Cascade (see Figure 3) model that exploits the efficacy of

high recall action proposals, the action discriminative cues

in a video’s semantic context (objects and scenes), and the

power of action classifiers, to perform action detection in a

cascade fashion. The cascade has three stages: (1) action

proposals, (2) semantic encoder, and (3) action classifier.

Each of these stages is intended to progressively prune can-

didate detections that have neither actionness nor relevant

semantic information.

4.1. Stage 1: Action Proposals

Action proposal methods have proven their ability to

quickly generate temporal segments at different scales with

high recall within a video [5, 9, 37]. Given that speed and

recall are crucial in our design, we choose DAPs [9] to

extract action proposals from untrimmed videos. This ap-

proach allows us to efficiently scan the video at 130FPS and

produce high fidelity action proposals at multiple scales in

a single pass. For completeness, we give a brief descrip-
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Figure 3. We propose a multi-stage cascade model to efficiently scan a video and determine when activities of interest occur. We rely on

efficient action proposals to prune out segments where it is unlikely to find activities. Later, a semantic encoder combines the temporal

information about objects and scenes along the segment with the prior knowledge about action-object and action-scene relationships to

refine its time boundaries or prune it out in a class specific way. Finally, the last pool of segments are further analyzed by an action

classifier which determines the probability that an adjusted segment belongs to a particular activity.

tion of the DAPs architecture, which contains four mod-

ules. The visual encoder represents the visual information

in a video as activations from a pre-trained C3D [41] net-

work. A sequence encoder (namely an LSTM) models the

evolution of the C3D features over time for the purpose

of generic action localization. Then, a localization module

generates start and ending times for candidate proposals of

different temporal lengths throughout the input video. Fi-

nally, the prediction module assigns a confidence score to

each action proposal, based on the probability of it contain-

ing an activity of interest. As such, the output of Stage 1

for each video is a set of np temporal proposals, denoted by

P = [p1| · · · |pnp
] where pi ∈ R

2 encodes the temporal

location of the ith proposal.

4.2. Stage 2: Semantic Encoder

Inspired by the correlation between object detector re-

sponses and the refinement of temporal activity annotations

done by humans (refer to Section 3), our semantic encoder

leverages the semantic context of each segment to improve

its localization and action likelihood as Figure 3 depicts.

Specifically, we exploit the prior knowledge coming from

the link between objects and scenes associated with activi-

ties and the temporal activations of objects and scenes along

the segment, to achieve this task in a class-specific manner.

In this way, our semantic encoder improves the results of

the first stages by: rejecting proposals that are not of inter-

est, adjusting the start and end times of each proposal for

better class-specific localization, and marginalizing the cost

of computationally expensive action classifiers needed for

the pool of proposals by pruning classes that are unlikely to

exist in each action proposal.

Formalizing semantic context. We encode the annotated

action-object and action-scene relationships as a binary ma-

trix Lo ∈ {0, 1}o×c and Ls ∈ {0, 1}s×c respectively. Here,

c denotes the number of action categories we are interested

in, o the number of objects linked to the c actions, and s

the number of linked scenes. In our experiments, o, s and

c are 440, 48 and 200 respectively. For example, if action

j is linked to object i and scene k, then Lo(i, j) = 1 and

Ls(k, j) = 1; otherwise, they are 0.

Expected Stage 2 Output. In what follows, we will ex-

plore how the original proposals in P can be transformed

and pruned into the following arguments, so they are later

fed into the action classifier in Stage 3.

1. Updated Proposal Locations: A tensor PSCC ∈
R

2×m×c encodes the m ≤ np action-specific propos-

als left after filtering. Similar in spirit to the region pro-

posal network (RPN) [35], the location of each filtered

proposal is adjusted according to each action class.

2. Class-Specific Action Scores: A binary matrix

SSCC ∈ {0, 1}c×m encodes which action classifiers

per proposal need to be applied in the next stage. For

example, if column i in SSCC contains only one 1 at
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row j (i.e. SSCC(j, i) = 1), then only the action j

classifier is applied to adjusted proposal i in Stage 3.

Encoding action-object relationships.

Previous work has shown the importance of exploiting

object representations for action classification [19, 21, 50].

However, these methods use this semantic information at

the global video level for description only. Instead, we en-

code the spatiotemporal evolution of object detections in

each action proposal. To do this, we first extract generic ob-

ject proposals, namely EdgeBoxes [56], from frames within

each action proposal at 3FPS. On each object proposal, we

apply a ResNet [17] classifier finetuned on the o object

classes in ImageNet that were found to be semantically rel-

evant to the c action classes. Note that we could not fine-

tune an end-to-end object detector (e.g. Faster R-CNN [35])

here, since no ground truth object detections are available

for ActivityNet. Also, the set of o objects contains many

more classes than those in available detectors trained on Im-

ageNet [36], COCO [27], or other detection datasets.

Figure 4. To overcome false positive detections from our object

detector (top row), we exploit the spatiotemporal and appearance

consistency among object proposals over time to link and prune

them as its shown in the bottom row.

For each action proposal, we define rti to denote the

bounding box location of the ith object proposal in time
step t. We represent rti with its ResNet object score vec-
tor, denoted as φo(r

t
i) ∈ R

o. Unlike previous work that
used global object scores at the frame/video level for action
classification, we resort to object detection, so as to miti-
gate the effect of background in the representation and to
fully exploit the action-object context. Due to the inherent
challenges in video object detection [23, 42], we introduce a
simple method to link object proposals over time, such that
spurious and inconsistent detections do not contaminate the
object-based representation of the action proposal (Figure 4
illustrates this step). Inspired by Gkioxari and Malik [12],
we construct object tubes that have both spatiotemporal and
appearance consistency. To form these tubes, we define the

following linking score function:

ls(r
t
i , r

t+1
j )) = sim(φo(r

t
i ), φo(r

t+1
j )) + λov(rti , r

t+1
j )), (1)

where sim(φo(r
t
i ), φo(r

t+1
j )) is the cosine similarity be-

tween a pair of proposal object scores, and ov(rti , r
t+1
j ))

is the intersection over union between a pair of object pro-

posal bounding boxes. Similar to [12], we cast the problem

of finding the optimal path as:

R∗ = argmax
R

1

T

T−1∑

t=1

ls(r
t
i , r

t+1
j )), (2)

for i and j in {1, . . . , no}, where no is the total number of

object proposals in a frame, and R is a sequence of linked

object proposals. Equation 2 is efficiently solved using dy-

namic programming. We solve this problem at most N

times, while removing the optimal path after every iteration.

In practice, we set N = 5 in our experiments. This strat-

egy allows us to generate object tubes with spatio-temporal

appearance coherence.

Once object tubes are computed, we max pool the object

responses of the object proposals in these tubes. To main-

tain temporal information, we use a temporal grid (of 16
bins in our experiments), within which max pooling is ap-

plied. Therefore, the object-level representation of an action

proposal pi is given by matrix Fi
o ∈ R

o×16.

Encoding action-scene relationships. Similar to objects,

scenes have also demonstrated the ability to distinguish be-

tween human actions [29]. To encode scene information in

an action proposal, we use a VGG network for large scale

place recognition (VGGPlaces) [45], which is trained on the

Places205 dataset [55]. For every proposal pi, we com-

pute its VGGPlaces scene scores per time step. We max

pool these scores 16 temporal bins spanning the whole ac-

tion proposal uniformly. Therefore, the scene-level repre-

sentation of an action proposal pi is given by the matrix

Fi
s ∈ R

s×16

Incorporating semantic context. Here, we aim to incor-
porate the semantic context available in Lo and Ls to prune
action categories that are unlikely to be in action proposal
pi. To do this, we simply enrich pi with action-specific
features according to Equation (3).

ψ
i
j =

[

g(Fi
o,Lo(:, j))

g(Fi
s,Ls(:, j))

]

∀i = 1, . . . , np; ∀j = 1, . . . , c (3)

where g(A,b) performs an elementwise (Hadamard) vec-

tor product between each column of A and vector b. In

our case, g(Fi
o,Lo(:, j)) simply zeros out the effect of all

object-level features corresponding to objects not associ-

ated with action j within the linking matrix Lo. A simi-

lar idea holds for g(Fi
s,Ls(:, j)). In doing this, ψi

j can be

viewed as the overall representation of the ith action pro-

posal for the jth action class. For each action class j, we
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train a 1-vs-all SVM classifier on the set of all ψj features

to predict the action labels of proposals in our training set.

As a cascade, this set of weak classifiers serves the pur-

pose of reducing the number of false positives being fed

into Stage 3. For each action proposal at testing time, we

apply all these classifiers to compute c action confidence

scores. In practice, we set a minimum threshold τ on these

scores, so as to select a sparse number of action classes that

are likely to be present in each proposal. Consequently,

an action proposal pi, whose c action scores are less than

τ is pruned from the original set of proposals. As such,

m semantically consistent proposals remain from the orig-

inal np and their thresholded scores are reserved in matrix

SSCC ∈ {0, 1}c×m.

In addition to giving each action proposal a class-specific

score, we learn a regression function that fits the ψj features

in the training set to the ground truth start and end locations

of each proposal belonging to class j. Follow the parameter-

ization of [11] but adjusted to temporal proposal, this class-

specific regression function refines the location of proposal

pi based on c action categories. One regression model is

learned per action category.At testing time, we only trans-

form the action proposals for the classes selected in SSCC

to produce the updated class-specific locations PSCC .

4.3. Stage 3: Action Classifier

Much progress has been made in designing robust and

highly accurate action classifiers [2, 6, 28, 38, 44, 46, 51].

So ideally, any of these classifiers can be used here. How-

ever, this would require sophisticated features to be ex-

tracted, which would significantly impact runtime. Alter-

natively, we reuse the visual representation used in Stage 1

(i.e. C3D features) and adopt the approach of Xu et al. [51]

to build our final action classifier. The additional overhead

in applying this classifier is minimal, as compared to using

other more extravagant models.

To train this multi-class classifier, we augment the train-

ing ground-truth with action proposals, whose temporal in-

tersection over union (tIoU) with the ground truth detections

is greater than 0.7. Similarly, the set of negative examples

is enlarged using action proposals with tIoU < 0.3. Here,

we train linear SVM classifiers, using the C3D features en-

coded using VLAD [22].

At test time, we only apply the action classifiers selected

in SSCC at adjusted temporal locations PSCC . By this

mean, the localization performance of our action classifier

is boosted at a marginal cost depending on SSCC as it is

shown in Section 5. Finally, our localization results are

further processed following standard practices such as non-

maximum suppression (NMS) and multiply the detection

scores by a class-specific length prior [33].

5. Experiments

Dataset. Traditional datasets for action detection [13, 54]

contain only a small number of action categories (mostly

sports), where the importance of semantic priors for large

scale activity detection might not be fully appreciated. Re-

cently, two large-scale datasets for video analysis [1, 24]

were released to the vision community. Both datasets in-

clude activity/concept annotations at a global video level.

Unfortunately, temporal boundaries of where the activities

occur within the video are not available. Consequently, we

choose to use ActivityNet [4], the largest available dataset

for human activity analysis, in our experiments. Not only

does ActivityNet include human activity annotations at the

video level, but it also contains curated start and ending

times of activities. These temporal annotations were gener-

ated based on a crowd-sourcing effort on Amazon Mechani-

cal Turk. This dataset is quite diverse in terms of the type of

activities too. For example, activities range from sports cat-

egories like long jump to household categories such as Vac-

uuming floor. In the last year, the authors released different

versions of the dataset. In our experiments, we specifically

use release 1.3 of ActivityNet which includes 200 activity

classes and 19994 videos.

Implementation details. To make our findings repro-

ducible, we describe here the implementation details of our

SCC model. In our action proposal stage, we first extract

DAPs proposals for the whole ActivityNet dataset. To filter

out nearby action proposals, we apply non-maximum sup-

pression with a tIoU threshold greater than 0.7. We reduce

the total number of proposals per video by selecting only

the top-100 scoring proposals. Our semantic encoder re-

lies on EdgeBoxes [56] to extract the set of object proposals

that feed our object tube module. Given that few objects are

linked per activity, we limit the number of object tubes, N ,

to five per action proposal. Finally, our action classifiers

are trained using a vocabulary of 512 k-means centers and

the VLAD codes undergo power and L2 normalization.

Baseline. Our baseline is a model that extracts the action

proposals followed by the action classifier. In doing so, we

detach the contribution of our SCC model. In other words,

we define our baseline by turning off our semantic encoder.

We refer to this approach as SCC Baseline.

Metrics. We follow the standard evaluation protocol in Ac-

tivityNet and compute the mean Average Precision (mAP)

at different tIoU thresholds, i.e. 0.5, 0.75, 0.95, and average

them from 0.5 to 0.95. To isolate the contribution of each

of the early stages, we also report recall at the same tIoU

thresholds used to compute mAP.

5.1. Experimental Analysis

To validate the contributions of our SCC model, we con-

duct a series of experiments evaluated on the validation set
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Figure 5. The left diagram shows the relevance of semantic context, in terms of gains in mAP and Recall, for temporal activity detection.

On the right, we show the recall and detection performance in terms of the number of classifiers evaluated for each proposal at the last

stage. In that order of ideas, we conclude that our SCC offers not only a efficient way to detect activities, it also mitigates the drop of

performance by pruning out harmful actions for each segment.

of ActivityNet. We first compare the performance of SCC

against our baseline. Then, we study several SCC variants

with the end goal of isolating the contribution of each mod-

ule in Stage 2 (semantic encoder).

Does SCC help? SCC significantly outperforms its base-

line model (SCC Baseline) not only in terms of recall, but

also in detection performance (mAP). Figure 5 (Left) com-

pares both approaches in terms of recall and mAP at dif-

ferent tIoU thresholds. SCC achieves a large performance

improvement at higher tIoU thresholds, which is attributed

to SCC’s ability to adjust temporal locations/scales when

generating class-specific action proposals.

How many classes are fed to the action classifier? Not

only does SCC generate high fidelity class-specific action

proposals, it allows the selection of a sparse number of ac-

tion classes to be fed to our action classifier. The sparsity

is controlled by the minimum action score threshold τ . In

Figure 5 (Right), we plot the mAP and recall of SCC with

varying values of τ . When τ = 0, all 200 action classes are

fed to the classifier. Conversely, when τ increases, the num-

ber of classes that remain decreases. Interestingly, the recall

and mAP of our method are not significantly affected when

more than 75% of the classes are pruned out, thus, validat-

ing the importance of semantic context in the cascade. In

fact, SCC achieves its highest performance when only 40
classes out of 200 are passed to the action classifier.

We investigate the factors that enable our SCC model

to succeed. Table 1 compares the performance of different

variants of our SCC model. Each variant is described and

studied in-depth next.

Object tubes matter. We argue that globally encoding ob-

ject scores deteriorates our action-object relationships. To

demonstrate this, we report the performance of our SCC

model when the object tubes are discarded. In other words,

we obtain the object level representation Fi
o by max pooling

Recall (%) mAP (%)

SCC Variant @50 @75 @95 @Avg @50 @75 @95 @Avg

w/o object tubes 72.8 38.1 16.9 42.4 36.6 16.3 4.1 19.1

w/o regressor 72.5 34.8 15.9 41.9 39.8 15.9 3.1 19.9

w/o semantics 69.8 37.2 17.5 42.1 37.6 16.8 4.1 20.1

rnd semantics 40.3 29.6 10.7 30.5 29.1 10.0 1.7 10.7

full model 75.4 41.3 18.9 46.3 40.0 17.9 4.7 21.7

Table 1. Ablation study showing the relevance of all the compo-

nents of our semantic encoder stage.

over all the raw object proposal scores. As shown in Table

1, excluding object tubes (w/o object tubes) from our SCC

model results in a significant drop in performance (recall

and mAP). This highlights the ability of our object tubes to

filter out noisy object detections.

Proposal regression helps. When the class specific regres-

sion module (w/o regressor) is turned off, we observe that

performance drastically decreases at higher tIoU thresholds

(See Table 5). This is the case, since the class specific re-

gression helps generate tighter segments, thus, translating

into better performance at higher tIoU.

Semantic context. We define two different variants to un-

veil the importance of inducing semantic context into SCC

and report results in Table 1. (1) We replace Lo and Ls with

two randomly generated binary matrices (rnd semantics).

(2) We replace Lo and Ls with two matrices of all ones.

This is equivalent to connecting all objects and scenes to

all actions (w/o semantics). As expected, performance de-

creases substantially when semantic context is replaced by

randomly generated priors. This is an intuitive result due

to the confusion introduced into the semantic encoder of

SCC. A less drastic but still significant drop is observed for

the w/o semantics variant. This verifies that using action-

object and action-scene relationships mined from Activi-

tyNet, ImageNet, and Places datasets improves the correct-

ness of class-specific scores and regression results.
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5.2. Comparison with StateoftheArt

Table 2 compares SCC against state-of-the-art detection

approaches on the ActivityNet testing set. It includes the

detection performance at different tIoU thresholds, as well

as, the runtime required at test time to process one minute

of video. SCC consistently outperforms state-of-the-art ap-

proaches, when tighter predictions are desired (i.e. for tIoU

greater than 0.5). In terms of speed, SCC reduces the com-

putational cost 10 times, as compared to the fastest existing

detection approach on ActivityNet release 1.3.

Although the UTS Team approach achieves the highest

performance at tIoU of 0.5, it fails when stricter predictions

(in terms of tIoU) are desired. Their approach strongly re-

lies on duration and location biases on the dataset to pro-

duce candidate predictions, resulting in low performance

at higher tIoU thresholds. Singh et al. [40] rely on ex-

pensive features to represent a sparse number of proposals.

This approach obtains the second best performance (after

SCC) when mAP is averaged over multiple tIoU thresh-

olds. Singh et al. [39] also requires expensive optical flow

measurements to describe the video sequence, but instead

of using proposals, they rely on an LSTM to encode the

temporal evolution of the video. This allows them to get

competitive results over different tIoU thresholds. Finally,

the University of Tokyo method uses cheap features to de-

scribe and then classify temporal segments generated using

a sliding window approach. The cheap features allow them

to reduce the computational cost, but at the price of losing

important motion description. This results in overall lower

performance as compared to other approaches. In terms of

average mAP, SCC generally outperforms the state-of-the-

art. For example, it registers a 1.5% improvement, as com-

pared to the runner up. This improvement can be considered

significant due to the difficulty of the task.

Another key property of our SCC model is that it de-

tects actions in videos quickly. As compared to previous

approaches, SCC is 10 times faster at testing time (see Ta-

ble 2). SCC is able to scan and detect videos in real-time,

which is desirable for large-scale scenarios.

Performance (mAP%) Test runtime

Approach @50 @75 @95 @Avg Seconds FPS

UTS Team 42.5 2.9 0.0 14.6 500 3.6

Singh et al. [40] 36.4 11.1 0.0 17.8 914 1.97

Singh et al. [39] 28.7 17.8 2.9 17.7 609 2.95

University of Tokyo 26.9 15.8 3.6 16.2 440 4.1

Our model 39.9 18.7 4.7 19.3 50.2 35.9

Table 2. Detection and Average Runtime performance in the test

set of ActivityNet. Interestingly, SCC not only achieves state-of-

art performance by exploiting the semantic context of activities,

it is also the most efficient alternative among current approaches.

Detailed runtime can be found in the supplementary material

w/o semanticsGround truth SCC w/o regressor

Time
Hop-scotch

Time
Mixing drinks Mixing drinks

Time
Shoveling snow

Figure 6. Qualitative results of different SCC variants. The first

two rows show examples of videos where the right action is pre-

dicted. The last row shows a typical example where SCC fails.

5.3. Qualitative Results

Figure 6 shows qualitative results of different variants of

SCC . Specifically, we present the detection results for the

variants: w/o regressor, w/o semantics and our full model

(SCC). The first two examples correspond to detections

where all the approaches were able to predict the right class

in the video. In the top example, all the variants accurately

and tightly predict the action shoveling snow. However, for

more difficult examples (as the second row), SCC outper-

forms the variants due to its ability to regress the locations

of actions in a class-specific manner. Finally, the last row

present an example where all the variants fail. As in this

case, typical errors of SCC occurs when the intended activ-

ity does not include rich semantics. We include additional

qualitative results in the supplementary material.

6. Conclusion

We introduce the Semantic Cascade Context (SCC)

model, which is able to detect actions accurately and ef-

ficiently. SCC incorporated action-object and action-scene

relationships with the end goal of improving recall of action

proposals, while pruning out unrelated actions. Extensive

experiments demonstrate that SCC produces robust detec-

tions and reduces the runtime at test time. In future work,

we plan to explore how other vision tasks such as object de-

tection can benefit from the mined semantic relationships.

Acknowledgments. Research in this publication was sup-

ported by the King Abdullah University of Science and

Technology (KAUST) Office of Sponsored Research.

1461

http://www.cabaf.net/scc/supplementary.html
http://www.cabaf.net/scc/supplementary.html


References

[1] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici,

B. Varadarajan, and S. Vijayanarasimhan. Youtube-8m: A

large-scale video classification benchmark. arXiv preprint,

2016.

[2] F. Basura, E. Gavves, J. M. Oramas, A. Ghodrati, and

T. Tuytelaars. Modeling video evolution for action recog-

nition. In CVPR, 2015.

[3] I. Biederman, R. J. Mezzanotte, and J. C. Rabinowitz. Scene

perception: Detecting and judging objects undergoing re-

lational violations. Cognitive psychology, 14(2):143–177,

1982.

[4] F. Caba Heilbron, V. Escorcia, B. Ghanem, and J. Car-

los Niebles. Activitynet: A large-scale video benchmark for

human activity understanding. In CVPR, 2015.

[5] F. Caba Heilbron, J. C. Niebles, and B. Ghanem. Fast tem-

poral activity proposals for efficitent detection of human ac-

tions in untrimmed videos. In CVPR, 2016.

[6] F. Caba Heilbron, A. Thabet, J. C. Niebles, and B. Ghanem.

Camera motion and surrounding scene appearance as context

for action recognition. In ACCV, 2014.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database. In

CVPR, 2009.

[8] O. Duchenne, I. Laptev, J. Sivic, F. Bach, and J. Ponce. Auto-

matic annotation of human actions in video. In ICCV, 2009.

[9] V. Escorcia, F. Caba Heilbron, J. C. Niebles, and B. Ghanem.

Daps: Deep action proposals for action understanding. In

ECCV, 2016.

[10] A. Gaidon, Z. Harchaoui, and C. Schmid. Actom sequence

models for efficient action detection. In CVPR, 2011.

[11] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In CVPR, 2014.

[12] G. Gkioxari and J. Malik. Finding action tubes. In CVPR,

2015.

[13] A. Gorban, H. Idrees, Y.-G. Jiang, A. Roshan Zamir,

I. Laptev, M. Shah, and R. Sukthankar. THUMOS chal-

lenge: Action recognition with a large number of classes.

http://www.thumos.info/, 2015.

[14] A. Gupta and L. S. Davis. Objects in action: An approach

for combining action understanding and object perception.

In CVPR, 2007.

[15] P. M. S. Hacker. Events and objects in space and time. Mind,

91(361):1–19, 1982.

[16] D. Han, L. Bo, and C. Sminchisescu. Selection and context

for action recognition. In ICCV, 2009.

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016.

[18] J. Hosang, R. Benenson, P. Dollár, and B. Schiele. What

makes for effective detection proposals? IEEE transactions

on pattern analysis and machine intelligence, 38(4):814–

830, 2016.

[19] N. Ikizler-Cinbis and S. Sclaroff. Object, scene and actions:

Combining multiple features for human action recognition.

In ECCV, 2010.

[20] M. Jain, J. C. van Gemert, T. Mensink, and C. G. Snoek.

Objects2action: Classifying and localizing actions without

any video example. In ICCV, 2015.

[21] M. Jain, J. C. van Gemert, and C. G. Snoek. What do 15,000

object categories tell us about classifying and localizing ac-

tions? In CVPR, 2015.

[22] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and
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