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Abstract

In this work, we propose a novel way of efficiently lo-

calizing a sports field from a single broadcast image of the

game. Related work in this area relies on manually anno-

tating a few key frames and extending the localization to

similar images, or installing fixed specialized cameras in

the stadium from which the layout of the field can be ob-

tained. In contrast, we formulate this problem as a branch

and bound inference in a Markov random field where an

energy function is defined in terms of semantic cues such

as the field surface, lines and circles obtained from a deep

semantic segmentation network. Moreover, our approach is

fully automatic and depends only on a single image from

the broadcast video of the game. We demonstrate the effec-

tiveness of our method by applying it to soccer and hockey.

1. Introduction

Sports analytics is used to increase a team’s competi-

tive edge by gaining insight into the different aspects of its

playing style and the performance its players. For exam-

ple, sports analytics was a major component of Germany’s

successful World Cup 2014 campaign. Another important

application is to improve scouting by identifying talented

prospects in junior leagues and assessing their competitive

capabilities and potential fit in a future team’s roster. Sports

analytics is also beneficial in fantasy leagues, giving fantasy

players access to statistics that can enhance their game play.

Even more impressive is the global sports betting market,

which is worth up to trillion dollors according to Statista.

A holy grail for sports analytics is the ability to auto-

matically extract valuable statistics from visual information

alone. Being able to identify team formations and strategies

as well as assessing the performance of individual players

is reliant upon understanding where the actions are taking

place in 3D space. This requires accurate correspondence

between the playing field seen by the camera and the metric

model of the field.

Most approaches to player detection [21, 27, 20, 16],

game event recognition [5, 22], and team tactical analysis

[18, 4, 15] perform field localization by either semi-manual

methods [13, 32, 2, 31, 30, 7, 19, 1, 12] or by obtaining

the game data from fixed and calibrated camera systems in-

stalled around the venue.

In this paper, we tackle the challenging task of field lo-

calization from a single broadcast image. We propose a

method that requires no manual initialization and is applica-

ble to any video of the game recorded with a single camera.

Our approach bypasses the reliance on humans annotating

keyframes for each new game or installing expensive cam-

eras around the arena. The input to our system is a single

image and the 3D model of the field, and the output is the

mapping that takes the image to the model. In particular,

we frame the field localization problem as inference in a

Markov Random Field with potentials derived from a deep

semantic segmentation network.

We parametrize the field in terms of four rays, cast from

two orthogonal vanishing points. The rays correspond to

the outer lines of the field and thus define the field’s pre-

cise localization. Our MRF energy uses several potentials

that exploit semantic segmentation clues such as the field

surface, the line and circle markings as well as geometric

agreement between the lines and circles found in the image

and those defined by the known model of the field. All of

our potentials can be efficiently computed. We perform in-

ference with branch-and-bound, achieving on average less

than half a second running time per frame. The weights in

our MRF are learned using S-SVM [28].

For evaluation, we apply our method to the sports of soc-

cer and hockey. A soccer game is usually held in an open

stadium exposed to different weather and lighting condi-

tions which might create difficulties in identifying the im-

portant markings of the field. Furthermore, the texture and

pattern of the grass in a soccer field differs from one stadium

to another. A hockey rink in comparison is mostly white and

has much smaller dimensions compared to a soccer field.

On the other hand, there are usually superimposed adver-

tisements and texts on the rink which are different from one

arena to another. Our deep semantic segmentation network

learns to filter out all these different sources of noise and
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(a)

Figure 1: We obtain semantic segmentation of the field

which is fed as evidence for fast localization into an MRF

with geometric priors.

(a) (b)

Figure 2: (a) Field parametrization in terms of 4 rays yi. (b)

The grid

provide strong evidence to be used in the MRF inference.

Some examples are shown in Figure 7. We note however

that our method is sports agnostic and is easily extendable

as long as the sport venue has known dimensions and prim-

itive markings such as lines and circles.

For soccer, we collected a dataset of images taken from

20 different games played in the World cup 2014. We also

test on an annotated hockey dataset collected by Sportlogiq,

a sports analytics company based in Canada. We show that

our approach significantly outperforms all baselines, while

our ablation study shows the importance of all our model’s

components. In the following, we start with a discussion of

related literature, and then describe our method.

2. Related Work

A variety of approaches have been developed in industry

and academia to tackle the field localization problem. In the

industry, companies such as Pixelot and Prozone have pro-

posed a hardware approach to field localization by develop-

ing advanced calibrated camera systems that are installed in

a sporting venue. This requires expensive equipment, which

is only possible at the highest performance level. Alterna-

tively, companies such as Stathleates rely entirely on human

workers for establishing the homography between the field

and the model for every frame of the game.

In the academic setting, the common approach to field

registration is to first initialize the system by either search-

ing over a large parameter space (e.g. camera parame-

ters) or by manually establishing a homography for vari-

ous representative keyframes of the game and then propa-

gating this homography throughout the consecutive frames.

In order to avoid accumulated errors, the system needs

to be reinitialized by manual intervention. Many meth-

ods have been developed which exploit geometric primi-

tives such as lines and/or circles to estimate the camera

parameters[13, 32, 2, 31, 30]. These approaches rely on

hough transforms or RANSAC and require manually speci-

fied color and texture heuristics.

An approach to limit the search space of the camera pa-

rameters is to find the two principal vanishing points corre-

sponding to the field lines [10, 9] and only look at the lines

and intersection points that are in accordance with these

vanishing points and which satisfy certain cross ratios. The

efficacy of the method was demonstrated only on goal areas

where there are lots of visible lines. However, this approach

faces problems for views of the centre of the field, where

there are usually fewer lines and thus one cannot estimate

the vanishing point reliably.

In [6], the authors proposed an approach that matches

images of the game to 3D models of the stadium for ini-

tial camera parameter estimation [6]. However, these 3D

models only exist in well known stadiums, limiting the ap-

plicability of the proposed approach.

Recent approaches, applied to Hockey, Soccer and

American Football [7, 19, 1, 12] require a manually spec-

ified homography for a representative set of keyframe im-

ages per recording. In contrast, in this paper we propose a

method that only relies on images taken from a single cam-

era. Also no temporal information or manual initialization

is required. Our approach could be used, for example in

conjunction with [7, 19] to produce automatically smooth

high quality field estimates of video.

3. 3D Field Registration

The goal of this paper is to automatically compute the

transformation between a broadcast image of a sports field,

and the 3D geometric model of the field.

In this section, we first show how to parameterize the

problem by making use of the vanishing points, reducing

the effective number of degrees of freedom to be estimated.

We then formulate the problem as energy minimization in

a Markov random field that encourages agreement between

the model and the image in terms of field semantic segmen-

tation cues as well as the location of the primitives (i.e.,

lines and circles) that mark the field. Furthermore, we show

that inference can be solved exactly and very efficiently via

the branch and bound algorithm.

3.1. Field Model and Parameterization

Assuming that the ground is planar, the field can be rep-

resented by a 2D rectangle embedded in 3D space. The

rectangle can be defined by two long horizontal line seg-

ments and two shorter vertical line segments. Each field has

also a set of vertical and horizontal lines as well as circular

shapes defining different zones in the game.

The transformation between the field in the broadcast

image and our 3D model can be parameterized with a ho-

mography H , which is a 3 × 3 invertible matrix defining

a bijection that maps lines to lines between 2D projective
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(a) (b)

Figure 3: (a) In each plot, the green area corresponds to

grass and grey area to non-grass pixels. Field Fy is the

region inside the highlighted lines. The yellow region is

the percentage of counted grass/non-grass pixels. (b) The

red line is the largest possible field and the blue line is the

smallest field.

spaces [8]. The matrix H has 8 degrees of freedom and en-

capsulates the transformation of the broadcast image to the

field model. One way to estimate this homography matrix is

to detect points and lines in the image and associating them

with points and lines in the model. Given these correspon-

dences, the homography can be estimated in closed form us-

ing the Direct Linear Transform (DLT) algorithm [8]. While

a closed form solution is very attractive, the problem lies in

the fact that the association of lines/points between the im-

age and the model is not known a priori. Thus, in order

to solve for the homography, one needs to evaluate all pos-

sible assignments. As a consequence DLT-like algorithms

are typically used in the scenario where a nearby solution

is already known (from a keyframe or previous frame), and

search is done over a small set of possible associations.

In this paper, we take a very different approach, which

jointly solves for the association and the estimation of the

homography. Towards this goal, we first reduce the effective

number of degrees of freedom of the homography. In an

image of the field, parallel lines intersect at two orthogonal

vanishing points. By estimating the vanishing points, we

reduce the number of degree of freedom from 8 to 4. We

defer the discussion about the VP estimation to Sec. 6.

For convenience of presentation, we refer to the lines

parallel to the touchlines as horizontal lines, and the lines

parallel to the goallines as vertical lines. Let x be an im-

age of the field. Denote by vpV and vpH the (orthogonal)

vertical and horizontal vanishing points respectively.

We define a hypothesis field by four rays emanating

from the vanishing points. The rays y1 and y2 originate

from vpH and correspond to the touchlines. Similarly, the

rays y3 and y4 originate from vpV and correspond to the

goallines. As depicted in Fig. 2, a hypothesis field is con-

structed by the intersection of the four rays. Let the tu-

ple y = (y1, . . . , y4) ∈ Y be the parametrization of the

field, where we have discretized the set of possible candi-

date rays. Each ray yi falls in an interval [yiniti,min, y
init
i,max]

and Y =
∏4

i=1

{

[yiniti,min, y
init
i,max]

}

is the product space of

these four integer intervals. Thus Y corresponds to a grid.

3.2. Field Estimation as Energy Minimization

We parameterize the problem of field localization as the

one of inference in a Markov random field. In particular,

given an image x of the field, we obtain the best prediction

ŷ by solving the following inference task:

ŷ = argmax
y∈Y

wTφ(x, y) (1)

with φ(x, y) a feature vector encoding various potential

functions and w the set of corresponding weights which we

learn using structured SVMs [28]. In particular, our energy

defines different potentials encoding the priors that the field

should contain mostly field surface pixels, and high scoring

configurations prefer the projection of the field primitives

(i.e., lines, circles) to be aligned with the detected primitives

in the image (i.e. detected line segments, conic edges).

In the following we discuss the potentials in more detail.

Field Surface Potential exploits the fact that the playing

field has distinguishing appearance. For example a soccer

field is made of grass and a hockey rink is white ice.

Given a hypothesis field y, let Fy denote the field re-

stricted to the image x. We would like to maximize the

number of field surface pixels in Fy . Hence, we define a po-

tential function, denoted by φsurface−in(x, y), that counts

the percentage of total surface pixels that fall inside the

hypothesis field Fy . However, note that for any hypoth-

esis y′ with Fy ⊂ Fy′ , Fy′ would have at least as many

surface pixels as Fy . This introduces a bias towards hy-

potheses that correspond to zoom-in cameras. We thus de-

fine three additional potentials that minimize the number

of surface pixels outside the field Fy and the number of

non-surface pixels inside Fy , while maximizing the num-

ber of non-surface pixels outside Fy . We denote these po-

tentials as φsurface−out(x, y), φnon−surface−out(x, y) and

φnon−surface−in(x, y) respectively. We refer the reader to

Fig. 3 for an illustration.

Lines Potentials: The observable lines defining the dif-

ferent playing zones of the field provide strong clues on the

location of the sidelines. This is because their positions and

lengths must always adhere to some known specifications.

We define a scoring function φℓ(x, y) for each line seg-

ment ℓ to yield high values when the image evidence agrees

with the predicted line position obtained by reprojecting the

model using the hypothesis y. The exact reprojection can

be easily obtained by using the invariance property of cross

ratios [8] as depicted in Fig. 4(a) in case of soccer.

Given the exact position of a line segment ℓ on the grid

Y , the score φℓ(x, y) counts the percentage of line segment

pixels that are aligned with their corresponding vanishing

point, Fig. 4(b).

Circle Potentials: A sports field usually has markings

corresponding to circular shapes. When the geometric
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(a) (b)

Figure 4: (a) For line ℓ (red) in the model, the cross ratio

CR = BD/BC must equal the cross ratio of the projec-

tion of ℓ on the grid given by C ′R′ = (A′C ′ ·B′D′)/(BC ′ ·
A′D′). The projection of the endpoints of ℓ are computed

similarly. (b) For vertical line ℓ, the potential φℓ(x, y)
counts the percentage of vpV line pixels in the yellow re-

gion for which the vertical sides are one ray away from the

ray on which ℓ falls upon.

Figure 5: For each circle C in the model, the projections

of the inner (red) and outer (blue) quadrilaterals can be ob-

tained using cross ratios. Potential φC(x, y) is the percent-

age of non-vp line pixels in the yellow region.

(a) (b)

Figure 6: (a) Finding the lower and upper bounds for a line

correspond to the min and max operations. (b) Upper/lower

bound for φCi
(x, y) is the percentage of non-vp line pix-

els in the yellow region which is restricted by the max/min

outer quadrilateral and the min/max inner quadrilateral.

model of the field undergoes a homography, these circular

shapes transform to conics in the image.

Similar to the line potentials, we seek to construct poten-

tial functions that count the percentage of supporting pixels

for each circular shape given a hypothesis field y. Unlike

the projected line segments, the projected circles are not

aligned with the grid Y . However, as shown in Fig. 5 for

soccer, we note that there are two unique inner and outer

rectangles for each circular shape in the model which trans-

form in the image x to quadrilaterals aligned with the van-

ishing points. Their position in the grid can be computed

similarly as lines using cross ratios. We define a potential

φC(x, y) for each conic as the percentage of circular pixels

inside the region defined by the two quadrilaterals.

4. Exact Inference via Branch and Bound

Note that the cardinality of our configuration space

Y , i.e. the number of hypothesis fields, is of the order

O(N2
HN2

V ), which is a very large number. Here, we show

how to solve the inference task in Eq. (1) efficiently and ex-

actly. Towards this goal, we design a branch and bound [14]

(BBound) optimization over the space Y of all parametrized

fields. We take advantage of generalizations of integral im-

ages to 3D [24] to compute our bounds very efficiently.

We next explain how BBound works. Suppose that

Y ⊂ Y is an arbitrary subset of parametrized fields. The

priority queue of the BBound algorithm is initialized with a

single set containing all the field hypotheses, i.e., Y = Y ,

along with a valid upper bound f̄(Y ). The algorithm then

proceeds iteratively by taking the top element of the priority

queue and splitting the set for that element into two disjoint

sets. These two sets are then inserted in the priority queue.

The algorithm terminates when there is a single hypothesis

on top of the priority queue. For this to be true, the bound-

ing function has to satisfy f̄(Y ) = f(Y ) when |Y | = 1.

Our BBound algorithm requires three key ingredients:

1. A branching mechanism that can divide any set into

two disjoint subsets of parametrized fields.

2. A set function f̄ such that f̄(Y ) ≥ maxy∈Y wtφ(x, y).

3. A priority queue which orders sets of parametrized

fields Y according to f̄ .

We next describe the first two components in detail.

4.1. Branching

Suppose that Y =
∏4

i=1[yi,min, yi,max] ⊂ Y is a set of

hypothesis fields. At each iteration of the branch and bound

algorithm we need to divide Y into two disjoint subsets Y1

and Y2 of hypothesis fields. This is achieved by dividing

the largest interval [yi,min, yi,max] in half and keeping the

other intervals the same.

4.2. Bounding

We need to construct a set function f̄ that upper bounds

wTφ(x, y) for all y ∈ Y where Y ⊂ Y is any subset

of parametrized fields. Since all potential function com-

ponents of φ(x, y) are positive proportions, we decom-

pose φ(x, y) into potential with strictly positive weights and

those with weights that are either zero or negative:

wTφ(x, y) = wT
negφneg(x, y) + wT

posφpos(x, y) (2)

with wneg , wpos the vector of negative and positive weights.

We define the upper bound on Eq. (2) to be the sum of

an upper bounds on the positive features and a lower bound

on the negative ones,

f̄(Y ) = wT
negφ̄

neg(x, Y ) + wT
posφ̄

pos(x, Y ) (3)
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It is trivial to see that this is a valid bound. In what follows,

we construct a lower bound and an upper bound for all the

potential functions of our energy.

Bounds for the Field Surface Potentials: Let y∩ :=
(y1,max, y2,min, y3,max, y4,min) be the smallest possible

field in Y , and let y∪ := (y1,min, y2,max, y3,min, y4,max)
be the largest. We now show how to construct the bounds

for φsurface−in(x, y), and note that one can construct the

other surface potential bounds in a similar fashion. Recall

that φsurface−in(x, y) counts the percentage of surface pix-

els inside the field. Since any possible field y ∈ Y is con-

tained within the smallest and largest possible fields y∩ and

y∪ (Fig. 3b), we can define the the upper bound as the per-

centage of surface pixels inside the largest possible field and

the lower bound as the percentage of surface pixels inside

the smallest possible field. Thus:

φ̄pos
surface−in(x, Y ) = φsurface−in(x, y∩)

φ̄neg
surface−in(x, Y ) = φsurface−in(x, y∪) (4)

We refer the reader to Fig. 3(b) for an illustration.

Bounds for the Line Potentials: We compute our bounds

by finding a lower bound and an upper bound for each line

independently. Since the method is identical for all the

lines, we will illustrate it only for the left vertical penalty

line ℓ of (Fig. 4a) in case of soccer. For a hypothesis set of

fields Y , we find the upper bound φ̄pos
ℓ (x, Y ) by computing

the maximum value of φℓ(x, y) in the horizontal direction

(i.e. along the rays from vpV ) but only for the maximal ex-

tended projection of ℓ in the vertical direction (i.e. along the

rays from vpH ). This is demonstrated in (Fig. 6a). Find-

ing a lower bound consists instead of finding the minimum

φℓ(x, y) for minimally extended projections of ℓ.
Note that for a set of hypothesis fields Y , this task re-

quires a linear search over all the possible rays in the hori-

zontal (for vertical lines) at each iteration of BBound. How-

ever, as the branch and bound continues, the search space

becomes smaller and finding the maximum becomes faster.

Bounds for the Circle Potentials: Referring back to the

definition of the circle potentials φC(x, y) provided in sec-

tion 3.2 and a set of hypothesis fields Y , we aim to con-

struct lower and upper bounds for each circle potential. For

an upper bound, we simply let φpos
C (x, Y ) be the percentage

of circle pixels contained in the region between the small-

est inner and largest outer quadrilaterals as depicted in (Fig.

6b). A lower bound is obtained in a similar fashion.

4.3. Integral Accumulators for Efficient Potentials
and Bounds

We construct 2D accumulators corresponding to the field

surface pixels, horizontal line pixels, vertical line pixels,

and circle pixels. In contrast to [29], and in the same spirit

of [24], our accumulators are aligned with the two orthog-

onal vanishing points and count the fraction of features in

the regions of x corresponding to quadrilaterals restricted

by two rays from each vanishing point.

The computation of a potential function over any region

in Y thus boils down to four accumulator lookups. Since

we defined all the lower and upper bounds in terms of their

corresponding potential functions, we use the same accu-

mulators to compute the bounds in constant time.

4.4. Learning

We use structured support vector machine (SSVM) to

learn the parameters w of the log linear model. Given a

dataset composed of training pairs
{

x(n), y(n)
}N

i=1
, we ob-

tain w by minimizing the augmented loss of [28] in which

we have a regularization parameter C > 0 and a loss fuc-

tion ∆ : Y × Y → R
+ ∪ {0} that measures the distance

between the ground truth labeling y(n) and a prediction ŷ,

with ∆(y(n), y) = 0 if and only if y = y(n). In particu-

lar, we employ the parallel cutting plane implementation of

[23].

The loss function is defined very similarly to

φsurface−in(x, y). Here, we segment the grid Y to

field vs. non-field cells by reprojecting the ground truth

field into the image.

Then given a hypothesis field y, we define the loss for a

training instance (x(n), y(n)) to be similar to the field sur-

face potential where instead of field surface pixels we con-

sider real field vs. non-real field in cell in the grid Y . As

a consequence, this loss can be computed using integral ac-

cumulators, and loss augmented inference can be performed

efficiently and exactly using our BBound.

5. Semantic Segmentation

Our method relies on detecting important features of the

field such as the field surface, lines and circles in the pres-

ence of noise. For example in soccer, we have to deal with

the different textures and patterns of grass in different sta-

diums as well as different lighting conditions. Moreover,

when detecting line and circle pixels, one has to deal with

the spurious edges due to players and their shadows. Also,

lots of soccer games are played in daytime in the presence

of shadows which changes the color of parts of the grass

and creates random edges. Most of the existing approaches

use heuristics based on color and hue information to obtain

these features which in turn might hinder generalization to

unseen circumstances.

In this work, we opt for a simpler solution by training

a semantic segmentation network that reliably detects these

important features. We create GT segmentation labels for

our images by using their ground truth homographies. For
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soccer, we have six classes of vertical lines, horizontal lines,

side circles, middle circle, grass and crowd. For hockey,

we specify nine classes of vertical lines, upper horizontal

sideline, lower boundary between the crowd and the rink,

middle circle, face off spots and circles, the rink, the crowd,

and the 4 quarter circles cornering the field. Some of the

segmentation results are shown in Figure 7.

For our network, we take the trained 16-layer VGG net-

work [25] and keep the first 7 convolution layers. We re-

move the pooling operations in these layers but use dilated

convolutions [33] to keep the dimensions of the output lay-

ers the same as the input image. We add 5 extra convolution

layers with the first three layers being 3x3 dilated convolu-

tions. The last two layers have 3x3 and 1x1 filters without

any dilation. Each added layer would have L output chan-

nels where L is the number of pixel categories. We use

batch normalization after each layer and apply Relu non-

linearities throughout the network. The final output layer,

which is the same dimension as the input, would give a soft-

max score for the category of each pixel. We minimize the

cross entropy loss of each pixel in order to learn the weights.

We skipped downsampling to keep the global structure of

the field and used dilated convolutions in order to have big-

ger receptive fields.

One difficulty of learning in this task is the class im-

balance of the lines and circle contours with respect to the

field surface and the crowd. For instance, each ground truth

line segment would have a width of 1 pixel. We tackled

this in two ways: First, we artificially dilated each ground

truth line segment to have a width of 10 pixels. Thus our

ground truth would be a region around the line segment as

opposed to the line segment alone. Second, we modified the

cross entropy loss of each pixel to be L =
∑L

ℓ=1 q̂ℓ log q
sℓ
ℓ .

where q̂ and q are the ground truth and score of the pixel

respectively and sℓ is a fixed penalty term for rare cate-

gories. We finally train the network with an initial learning

rate of 0.01 and the RMSProp optimizer [26] until the mean

IOU on a validation set stops increasing. The network was

trained on a single GPU of DGX1 and it took almost day

for both soccer and hockey.

6. Vanishing Point Estimation

In a Manhattan world, such as a soccer stadium or a

hockey arena, there are three principal orthogonal vanish-

ing points. Our goal is the find the two orthogonal vanish-

ing points vpV and vpH that correspond to the vertical and

horizontal lines on the field. Since we know which pixels

belong to the vertical and horizontal lines from our seman-

tic segmentation network, we fit line segments to these pix-

els and deploy the line voting procedure of [11] to find the

vanishing points. This procedure is robust when there are

enough clues for each vanishing point. That is if the camera

is zooming on a segment of the field where there are no line

G L C Mean±Sd Val IOU Mean Test IOU

Shared

X X 0.83±0.017 0.79

X X 0.88±0.016 0.84

X X X 0.88±0.016 0.83

Not Shared X X X 0.88±0.01 0.83

Table 1: G correspond to 4 weights for each grass potential.

L: all the lines share the same weight. C: all the circles

share the same weight. Shared means the lines L and the

circles C have shared weights. Not Shared means that the

vertical lines have different weights than the horizontal lines

and also each circle has its own weight

Method Soccer Hockey One Hockey All

Field NN 0.68 0.70 0.80

Semantic Seg NN 0.73 0.73 0.81

Ours 0.83 0.81 0.82

Table 2: Comparison with baselines. Hockey One corre-

sponds to the experiment with only one game and Hockey

All to the experiment with all the games.

Sports Mean Time (s) Mean Iter # of States

Soccer 0.44 3328 3002 × 6002

Hockey All 0.04 565 402 × 402

Table 3: Inference time and number of iterations for branch

and bound

markings present, for example we only see grass, we can-

not find the vanishing points without temporal context from

previous frames. This is a fair assumption since this would

be a difficult task even for a human.

For soccer in particular, the field is very large and some-

times the camera faces the centre of the field where there

are not enough line segments to find the vertical vanishing

point. In this cases, we take the line segments that belong to

neither vanishing point and fit an ellipse [3] which is an ap-

proximation to the conic in the centre of the field. We then

take the 4 endpoints of the ellipses’ axes and also one ad-

ditional point corresponding to the crossing of the ellipses’

minor axis from the grass region to non-grass region to find

an approximate homography which in turn gives us an ap-

proximate vpV . For hockey, we exploit our large dataset

and also the fact that hockey arenas are very similar as com-

pared to soccer stadiums and we guide the vp estimation and

grid creating in each image as follows: First, we retrieve the

image’s nearest neighbour in the training set based on the

distance transform [17] distance of their semantic segmen-

tations. Then, we only look for vote for vanishing points

in a small region around the vanishing points of the nearest

neighbour image. We also restrict our grid such that each

interval in Y is 40 rays around the ground truth sidelines of

the nearest neighbour image. This would correspond to 404

unique states for our search space.
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Figure 7: Examples of the obtained homographies and semantic segmentations.

7. Experiments

We apply our method to soccer and hockey. For soccer,

we recorded 20 games from the World Cup 2014 held in

Brazil. Out of these games we annotated 395 images with

the ground truth fields and also the grass segmentations. We

randomly split the games into two sets with 10 games of 209

images for training and validation, and 186 images from 10

other games for the test set. We artificially augmented the

training set by flipping each image horizontally about its

centre. Thus we used 418 images for training. The images

consist of different views of the field with different grass

textures and lighting patterns. These games were held in

9 unique stadiums during day and night. There are some

games with rain and heavy shadows. We remind the reader

that these images do not have a temporal ordering. In what

follows we assess different components of our method. We

will release this dataset to the public.

For hockey, we obtained eight fully annotated games

from SportLogiq, a Canadian sports analytics company.

These 8 games are played on 7 different arenas. We conduct

two different experiments. First, we randomly divide the

games to training and test games and randomly choose 2000

images for each set with 500 images from each game. For

the second hockey experiment, we pick one of the games

in the test set, and randomly split it to two sets of respec-

tive sizes of 50 and 450. We apply the learnt segmentation

network of our large dataset to obtain semantic labels for

these images. We then learn from scratch the weights of the

MRF using these 50 examples and evaluate the mean IOU

on the other 450 images. The game and its arena are differ-

ent than those in the training set and as such the application

of the segmentation network is justified. This experiment

is a good indication of how we can take our big model and

retrain it on a smaller dataset for a new arena.

Ablation Study for Soccer: In Table 1 we present the

mean IOU score of soccer test images based on employing

different potentials in our energy function. For each set of

features, we perform 6-fold cross validation to choose the

best value of C ∈
{

2−4, 2−3, . . . , 23
}

that maximizes the

mean IOU across different folds.

We make three observations. First, the inclusion of the

field surface potential does not help much. This could be
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due to the fact that it does not contain any geometric cues

for localizing the field. Second, inclusion of the circle po-

tential increases the IOU by 0.05. Third, we note that shar-

ing the weights between all the lines, and also between all

the three circles has as good of a performance as not sharing

the weights. This suggests a simpler model does the job.

Hockey Model: For hockey, we trained a model with four

weights corresponding to the field surface and a unique

weight for the middle circles, the face-off circles, the face-

off spots, the corner quarter circles, the vertical lines and

the upper sidelines. Thus we have 10 learnable weights.

We chose C = 1 in our hockey experiments. We achieve

a mean IOU of 0.82 on the large dataset and 0.81 on the

smaller dataset.

Comparison of Our Method to two Baselines: There is

currently no baseline in the literature for fully automatic

field localization. All the other methods are semi automatic

and rely on methods such as keyframe annotation and cam-

era calibration and as such are different in spirit and not

comparable to our method. We hope that by releasing the

dataset more baselines can be established. In this work, we

derive two baselines based on our segmentation method. As

the first baseline, for each test image we retrieve its nearest

neighbour (NN) image from the training set based on the

field surface segmentation IOU and apply the homography

of the training image on the test image.

For the second baseline, we retrieve the nearest neigh-

bour based on the distance transform [17] of the line and cir-

cle features obtained from the semantic segmentation net-

work. The results are shown in Table 2.

Semantic Segmentation: We achieve mean IOUs of 0.65

and 0.6 across all classes for the soccer and hockey datasets

respectively.

Speed and Number of Iterations. Our method is fast. In

Table 3 we present the mean speed and number of itera-

tions for each sport clocked on one core of Intel Xeon 5160

3GHz. We also highlight the total number of states based

on the grid size. Note that by using branch and bound we

find the exact solution in orders of magnitude less iterations

than going over all the states.

Grid Discretization: Our method depends on creating a

non-orthogonal grid from rays emanating from each van-

ishing point. Our grid has to be dense enough so that the

important lines in the image fall on the grid. To asses our

discretized grid, we take the ground truth vanishing points

of the test images in the large hockey dataset and construct

a grid for each image. Then, we consider the negative of

our loss augmented loss of section 4.4 as a potential and

perform branch and bound inference. Ideally since we have

assumed perfect vanishing points, if our grid is perfect we

Figure 8: Examples of failure cases

should obtain 100 percent mean IOU. However, we are a bit

short with a mean IOU of 0.99.

Effect of Vanishing Points Estimation: For the large

hockey dataset, we performed an experiment in which in-

stead of estimating the vanishing points, we took the ground

truth vanishing point for each image and computed the grid

and all the other features as usual. We obtained a mean IOU

of 0.9 in contrast to our 0.82 and the baselines of 0.81 and

0.8. This suggest that we can improve our method by get-

ting better vanishing points.

Qualitative Results: In Fig. 7 we project the model on

a few test images using the homography obtained with our

best features (G+L+C) for soccer and our full set of poten-

tials on hockey. We also project the image on the model of

the field. We observe great agreement between the image

and the model.

Failure Modes: Fig. 8 shows some failure modes. One

main reason for the failure modes is that circle pixels might

be classified incorrectly. The other is due to the sensitivity

on vanishing points. However, we believe that using tem-

poral information can help overcome these issues.

8. Conclusion and Future Work

In this paper, we presented a new framework for fast and

automatic sports field localization. We framed this prob-

lem as a deep semantic segmentation task that is fed into a

branch and bound method for a fast and exact inference in a

Markov Random Field. We evaluated our method on collec-

tion of broadcast images from 20 soccer games from World

Cup 2014 and eight NHL Hockey matches. We do not take

into account temporal information in our energy function.

For future work, we intend to construct temporal potential

functions and evaluate our method on video sequences. Fi-

nally, we aim to extend our method to other team sports

such as basketball, rugby and American Football.
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