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Abstract

In this work, we propose a novel way of efficiently lo-

calizing a sports field from a single broadcast image of the

game. Related work in this area relies on manually anno-

tating a few key frames and extending the localization to

similar images, or installing fixed specialized cameras in

the stadium from which the layout of the field can be ob-

tained. In contrast, we formulate this problem as a branch

and bound inference in a Markov random field where an

energy function is defined in terms of semantic cues such

as the field surface, lines and circles obtained from a deep

semantic segmentation network. Moreover, our approach is

fully automatic and depends only on a single image from

the broadcast video of the game. We demonstrate the effec-

tiveness of our method by applying it to soccer and hockey.

1. Introduction

Sports analytics is used to increase a team’s competi-

tive edge by gaining insight into the different aspects of its

playing style and the performance its players. For exam-

ple, sports analytics was a major component of Germany’s

successful World Cup 2014 campaign. Another important

application is to improve scouting by identifying talented

prospects in junior leagues and assessing their competitive

capabilities and potential fit in a future team’s roster. Sports

analytics is also beneficial in fantasy leagues, giving fantasy

players access to statistics that can enhance their game play.

Even more impressive is the global sports betting market,

which is worth up to trillion dollors according to Statista.

A holy grail for sports analytics is the ability to auto-

matically extract valuable statistics from visual information

alone. Being able to identify team formations and strategies

as well as assessing the performance of individual players

is reliant upon understanding where the actions are taking

place in 3D space. This requires accurate correspondence

between the playing field seen by the camera and the metric

model of the field.

Most approaches to player detection [21, 27, 20, 16],

game event recognition [5, 22], and team tactical analysis

[18, 4, 15] perform field localization by either semi-manual

methods [13, 32, 2, 31, 30, 7, 19, 1, 12] or by obtaining

the game data from fixed and calibrated camera systems in-

stalled around the venue.

In this paper, we tackle the challenging task of field lo-

calization from a single broadcast image. We propose a

method that requires no manual initialization and is applica-

ble to any video of the game recorded with a single camera.

Our approach bypasses the reliance on humans annotating

keyframes for each new game or installing expensive cam-

eras around the arena. The input to our system is a single

image and the 3D model of the field, and the output is the

mapping that takes the image to the model. In particular,

we frame the field localization problem as inference in a

Markov Random Field with potentials derived from a deep

semantic segmentation network.

We parametrize the field in terms of four rays, cast from

two orthogonal vanishing points. The rays correspond to

the outer lines of the field and thus define the field’s pre-

cise localization. Our MRF energy uses several potentials

that exploit semantic segmentation clues such as the field

surface, the line and circle markings as well as geometric

agreement between the lines and circles found in the image

and those defined by the known model of the field. All of

our potentials can be efficiently computed. We perform in-

ference with branch-and-bound, achieving on average less

than half a second running time per frame. The weights in

our MRF are learned using S-SVM [28].

For evaluation, we apply our method to the sports of soc-

cer and hockey. A soccer game is usually held in an open

stadium exposed to different weather and lighting condi-

tions which might create difficulties in identifying the im-

portant markings of the field. Furthermore, the texture and

pattern of the grass in a soccer field differs from one stadium

to another. A hockey rink in comparison is mostly white and

has much smaller dimensions compared to a soccer field.

On the other hand, there are usually superimposed adver-

tisements and texts on the rink which are different from one

arena to another. Our deep semantic segmentation network

learns to filter out all these different sources of noise and
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(a)

Figure 1: We obtain semantic segmentation of the field

which is fed as evidence for fast localization into an MRF

with geometric priors.

(a) (b)

Figure 2: (a) Field parametrization in terms of 4 rays yi. (b)

The grid

provide strong evidence to be used in the MRF inference.

Some examples are shown in Figure 7. We note however

that our method is sports agnostic and is easily extendable

as long as the sport venue has known dimensions and prim-

itive markings such as lines and circles.

For soccer, we collected a dataset of images taken from

20 different games played in the World cup 2014. We also

test on an annotated hockey dataset collected by Sportlogiq,

a sports analytics company based in Canada. We show that

our approach significantly outperforms all baselines, while

our ablation study shows the importance of all our model’s

components. In the following, we start with a discussion of

related literature, and then describe our method.

2. Related Work

A variety of approaches have been developed in industry

and academia to tackle the field localization problem. In the

industry, companies such as Pixelot and Prozone have pro-

posed a hardware approach to field localization by develop-

ing advanced calibrated camera systems that are installed in

a sporting venue. This requires expensive equipment, which

is only possible at the highest performance level. Alterna-

tively, companies such as Stathleates rely entirely on human

workers for establishing the homography between the field

and the model for every frame of the game.

In the academic setting, the common approach to field

registration is to first initialize the system by either search-

ing over a large parameter space (e.g. camera parame-

ters) or by manually establishing a homography for vari-

ous representative keyframes of the game and then propa-

gating this homography throughout the consecutive frames.

In order to avoid accumulated errors, the system needs

to be reinitialized by manual intervention. Many meth-

ods have been developed which exploit geometric primi-

tives such as lines and/or circles to estimate the camera

parameters[13, 32, 2, 31, 30]. These approaches rely on

hough transforms or RANSAC and require manually speci-

fied color and texture heuristics.

An approach to limit the search space of the camera pa-

rameters is to find the two principal vanishing points corre-

sponding to the field lines [10, 9] and only look at the lines

and intersection points that are in accordance with these

vanishing points and which satisfy certain cross ratios. The

efficacy of the method was demonstrated only on goal areas

where there are lots of visible lines. However, this approach

faces problems for views of the centre of the field, where

there are usually fewer lines and thus one cannot estimate

the vanishing point reliably.

In [6], the authors proposed an approach that matches

images of the game to 3D models of the stadium for ini-

tial camera parameter estimation [6]. However, these 3D

models only exist in well known stadiums, limiting the ap-

plicability of the proposed approach.

Recent approaches, applied to Hockey, Soccer and

American Football [7, 19, 1, 12] require a manually spec-

ified homography for a representative set of keyframe im-

ages per recording. In contrast, in this paper we propose a

method that only relies on images taken from a single cam-

era. Also no temporal information or manual initialization

is required. Our approach could be used, for example in

conjunction with [7, 19] to produce automatically smooth

high quality field estimates of video.

3. 3D Field Registration

The goal of this paper is to automatically compute the

transformation between a broadcast image of a sports field,

and the 3D geometric model of the field.

In this section, we first show how to parameterize the

problem by making use of the vanishing points, reducing

the effective number of degrees of freedom to be estimated.

We then formulate the problem as energy minimization in

a Markov random field that encourages agreement between

the model and the image in terms of field semantic segmen-

tation cues as well as the location of the primitives (i.e.,

lines and circles) that mark the field. Furthermore, we show

that inference can be solved exactly and very efficiently via

the branch and bound algorithm.

3.1. Field Model and Parameterization

Assuming that the ground is planar, the field can be rep-

resented by a 2D rectangle embedded in 3D space. The

rectangle can be defined by two long horizontal line seg-

ments and two shorter vertical line segments. Each field has

also a set of vertical and horizontal lines as well as circular

shapes defining different zones in the game.

The transformation between the field in the broadcast

image and our 3D model can be parameterized with a ho-

mography H , which is a 3 × 3 invertible matrix defining

a bijection that maps lines to lines between 2D projective
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Figure 3: (a) In each plot, the green area corresponds to

grass and grey area to non-grass pixels. Field Fy is the

region inside the highlighted lines. The yellow region is

the percentage of counted grass/non-grass pixels. (b) The

red line is the largest possible field and the blue line is the

smallest field.

spaces [8]. The matrix H has 8 degrees of freedom and en-

capsulates the transformation of the broadcast image to the

field model. One way to estimate this homography matrix is

to detect points and lines in the image and associating them

with points and lines in the model. Given these correspon-

dences, the homography can be estimated in closed form us-

ing the Direct Linear Transform (DLT) algorithm [8]. While

a closed form solution is very attractive, the problem lies in

the fact that the association of lines/points between the im-

age and the model is not known a priori. Thus, in order

to solve for the homography, one needs to evaluate all pos-

sible assignments. As a consequence DLT-like algorithms

are typically used in the scenario where a nearby solution

is already known (from a keyframe or previous frame), and

search is done over a small set of possible associations.

In this paper, we take a very different approach, which

jointly solves for the association and the estimation of the

homography. Towards this goal, we first reduce the effective

number of degrees of freedom of the homography. In an

image of the field, parallel lines intersect at two orthogonal

vanishing points. By estimating the vanishing points, we

reduce the number of degree of freedom from 8 to 4. We

defer the discussion about the VP estimation to Sec. 6.

For convenience of presentation, we refer to the lines

parallel to the touchlines as horizontal lines, and the lines

parallel to the goallines as vertical lines. Let x be an im-

age of the field. Denote by vpV and vpH the (orthogonal)

vertical and horizontal vanishing points respectively.

We define a hypothesis field by four rays emanating

from the vanishing points. The rays y1 and y2 originate

from vpH and correspond to the touchlines. Similarly, the

rays y3 and y4 originate from vpV and correspond to the

goallines. As depicted in Fig. 2, a hypothesis field is con-

structed by the intersection of the four rays. Let the tu-

ple y = (y1, . . . , y4) ∈ Y be the parametrization of the

field, where we have discretized the set of possible candi-

date rays. Each ray yi falls in an interval [yiniti,min, y
init
i,max]

and Y =
∏4

i=1

{

[yiniti,min, y
init
i,max]

}

is the product space of

these four integer intervals. Thus Y corresponds to a grid.

3.2. Field Estimation as Energy Minimization

We parameterize the problem of field localization as the

one of inference in a Markov random field. In particular,

given an image x of the field, we obtain the best prediction

ŷ by solving the following inference task:

ŷ = argmax
y∈Y

wTφ(x, y) (1)

with φ(x, y) a feature vector encoding various potential

functions and w the set of corresponding weights which we

learn using structured SVMs [28]. In particular, our energy

defines different potentials encoding the priors that the field

should contain mostly field surface pixels, and high scoring

configurations prefer the projection of the field primitives

(i.e., lines, circles) to be aligned with the detected primitives

in the image (i.e. detected line segments, conic edges).

In the following we discuss the potentials in more detail.

Field Surface Potential exploits the fact that the playing

field has distinguishing appearance. For example a soccer

field is made of grass and a hockey rink is white ice.

Given a hypothesis field y, let Fy denote the field re-

stricted to the image x. We would like to maximize the

number of field surface pixels in Fy . Hence, we define a po-

tential function, denoted by φsurface−in(x, y), that counts

the percentage of total surface pixels that fall inside the

hypothesis field Fy . However, note that for any hypoth-

esis y′ with Fy ⊂ Fy′ , Fy′ would have at least as many

surface pixels as Fy . This introduces a bias towards hy-

potheses that correspond to zoom-in cameras. We thus de-

fine three additional potentials that minimize the number

of surface pixels outside the field Fy and the number of

non-surface pixels inside Fy , while maximizing the num-

ber of non-surface pixels outside Fy . We denote these po-

tentials as φsurface−out(x, y), φnon−surface−out(x, y) and

φnon−surface−in(x, y) respectively. We refer the reader to

Fig. 3 for an illustration.

Lines Potentials: The observable lines defining the dif-

ferent playing zones of the field provide strong clues on the

location of the sidelines. This is because their positions and

lengths must always adhere to some known specifications.

We define a scoring function φℓ(x, y) for each line seg-

ment ℓ to yield high values when the image evidence agrees

with the predicted line position obtained by reprojecting the

model using the hypothesis y. The exact reprojection can

be easily obtained by using the invariance property of cross

ratios [8] as depicted in Fig. 4(a) in case of soccer.

Given the exact position of a line segment ℓ on the grid

Y , the score φℓ(x, y) counts the percentage of line segment

pixels that are aligned with their corresponding vanishing

point, Fig. 4(b).

Circle Potentials: A sports field usually has markings

corresponding to circular shapes. When the geometric
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