
Fried Binary Embedding for High-Dimensional Visual Features

Weixiang Hong Junsong Yuan Sreyasee Das Bhattacharjee

School of Electrical and Electronic Engineering,

Nanyang Technological University, Singapore

{wxhong,JSYUAN}@ntu.edu.sg, sreya.iitm@gmail.com

Abstract

Most existing binary embedding methods prefer com-

pact binary codes (b-dimensional) to avoid high compu-

tational and memory cost of projecting high-dimensional

visual features (d-dimensional, b < d). We argue that

long binary codes (b ∼ O(d)) are critical to fully utilize

the discriminative power of high-dimensional visual fea-

tures, and can achieve better results in various tasks such

as approximate nearest neighbour search. Generating long

binary codes involves large projection matrix and high-

dimensional matrix-vector multiplication, thus is memory

and compute intensive. To tackle these problems, we pro-

pose Fried Binary Embedding (FBE) to decompose the pro-

jection matrix using adaptive Fastfood transform, which is

the multiplication of several structured matrices. As a re-

sult, FBE can reduce the computational complexity from

O(d2) to O(d log d), and memory cost from O(d2) to O(d),
respectively. More importantly, by using the structured ma-

trices, FBE can regulate the projection matrix against over-

fitting and lead to even better accuracy than using uncon-

strained projection matrix (like ITQ [4]) with the same long

code length. Experimental comparisons with state-of-the-

art methods over various visual applications demonstrate

both the efficiency and performance advantages of the FBE.

1. Introduction

Recently, the vision community has devoted a lot of at-

tention to binary embedding [22, 4, 3, 25, 28, 21] due to

the explosive growth in visual data, which makes efficient

searching and storing to be urgent requirements. Binary

embedding aims at encoding high-dimensional feature vec-

tors to compact binary codes, while preserving the pair-wise

similarities of the original high-dimensional features. By

encoding high-dimensional features into binary codes, one

can perform efficient searching with the Hamming distance

computation; meanwhile, the storage cost is also signifi-

cantly reduced. Since it is NP-hard to directly learn the

optimal binary codes [22], most existing binary embedding

methods work on a two-stage strategy: projection and quan-

tization. Specifically, given a feature vector x ∈ R
d, these

methods first multiply x with a projection matrix R ∈ R
b×d

to produce a low-dimensional vector of b dimensions, then

quantize this low-dimensional vector to b-dimensional bi-

nary codes by assigning it to its nearest vertex in Hamming

space.

Although compact binary codes are preferred to save the

storage, recent works have demonstrated that long-bit codes

can bring superior performance than compact ones, espe-

cially when the visual features are of thousands of dimen-

sions. For example, the long binary codes of 4096 dimen-

sions can achieve mAP at 82% on DNN-4096 dataset [23],

while the mAP of 256-dimensional binary codes is only

51%.

However, generating long binary codes requires a large

projection matrix, which leads to two challenges: (1) the

high computational cost of high-dimensional matrix-vector

multiplication, and (2) the risk of overfitting. For the first

challenge, it has been noticed that for input feature vector

of dimensionality d, the length b of binary codes required

to achieve reasonable accuracy is usually O(d) [17, 3, 25].

When d is large and b ∼ O(d), the projection matrix

R ∈ R
b×d could involve millions or even billions of param-

eters. Such a high cost is not favored when we encode a big

dataset of visual features, or when computational resource

is a concern, e.g., at the mobile platform. For the second

challenge, there have been efforts to address it by regulat-

ing the projection matrix and reducing the degree of free

parameters. Interestingly, such regularizations may also

bring fast matrix-vector multiplication, which will benefit

the computation efficiency as well. Representative works

include Circulant Binary Embedding(CBE) [25], Bilinear

Projection(BP) [3], Fast Orthogonal Projection(KBE) [28]

and Sparse Projection(SP) [23], etc. To be more spe-

cific, CBE [25] utilizes circulant matrix to accelerate the

matrix-vector multiplication, BP [3] constrains the projec-

tion matrix to be Kronecker product of two smaller matri-

ces, while SP [23] seeks for a sparse projection matrix. Al-

12749

though CBE [25] and BP [3] show promising encoding ef-

ficiency, they achieve inferior accuracy to dense projection

method (like ITQ [4]) using the same code length. While

SP [23] is competitive when compared with dense projec-

tion method in terms of performance. Unfortunately, it still

suffers from the O(d2) computational cost.

To address the two challenges above, we propose a novel

approach, Fried Binary Embedding (FBE), for generating

effective long binary codes efficiently. The idea is to de-

compose the projection matrix R using the adaptive Fast-

food transform [12, 24], which is the multiplication of sev-

eral structured matrices. Structured matrix typically con-

sists of dependent entries, which means that a fixed “bud-

get of freedom” is distributed across the matrix. The in-

volvement of structured matrices leads to fast matrix-vector

multiplications by using Fast Fourier Transform or its vari-

ants. Moreover, the ultimate projection matrix R would

have restricted freedom due to the inherent structure in each

of its components. For example, when encoding a 4096-

dimensional feature vector into 4096-bit binary codes, our

FBE has only 12,288 tunable parameters, which are only

1% of Sparse Projection [23] and 0.1% of ITQ [4]. Re-

stricted freedom is naturally against overfitting, thus can

probably lead to good generalization performance. Another

side benefit of FBE is that structured matrix can be effi-

ciently stored with linear complexity O(d), or even do not

need to be explicitly stored. As a result, the memory cost of

storing R is also significantly reduced.

The involvement of structured matrices makes the op-

timization problem difficult, thus we adopt the variable-

splitting and penalty techniques [23, 2, 20] to develop an al-

ternative optimization algorithm. We introduce an auxiliary

variable to split the original optimization problem into sev-

eral feasible sub-problems, then we iteratively solve these

sub-problems till convergence. In Section 4.4, we further

show that our algorithm provably converges to a local op-

timum. We call our approach as Fried Binary Embedding

(FBE) following Deep Fried Convnets [24] and Circulant

Binary Embedding [25]. Extensive experiments show that

our approach not only achieves competitive performance

in compact-bit case, but also outperforms state-of-the-art

methods in long-bit scenario.

2. Related Work

A good review of binary embedding can be found in [19].

Here we focus on several closely related works, including

Iterative Quantization (ITQ) [4] and its four variants. The

Iterative Quantization is essential to the understanding of

our work. The three variants of ITQ are Bilinear Projection

(BP) [3], Circulant Binary Embedding (CBE) [25], Sparse

Projection (SP) [23] and Fast Orthogonal Projection (KBE)

[28], which are state-of-the-art works for high-dimensional

binary embedding.

Iterative Quantization (ITQ) [4] aims to find the hash

codes such that the difference between the hash codes and

the data items, by viewing each bit as the quantization value

along the corresponding dimension, is minimized. It con-

sists of two steps: (1) dimension reduction via PCA; (2)

find the hash codes as well as an optimal rotation.

Bilinear Projections (BP) [3] projects a data vector by

two smaller matrices rather than a single large matrix, based

on the assumption that the data vectors are formulated by

reshaping matrices. This assumption of BP is valid for

many traditional hand-crafted features like SIFT [13], GIST

[15], VLAD [8], and Fisher Vectors [16], but is not true for

learned features such as those learned by the deep neural

network(DNN) [11, 18].

Circulant Binary Embedding (CBE) [25] imposes a

circulant structure on the projection matrix for efficient

matrix-vector multiplication. In virtue of fast Fourier trans-

form, the computational cost of CBE is only O(d log d),
much less than O(d2) of the dense projection method. It

is worth noting that CBE shares similar idea with our ap-

proach, however, both BP and CBE achieve inferior accu-

racy to dense projection method (like ITQ [4]) using the

same code length.

Fast Orthogonal Projection (KBE) [28] decomposes

the projection matrix as a series of smaller orthogonal ma-

trices. Similar to CBE [25], there exists a fast algorithm

to compute Kronecker projection with a time complexity of

O(d log d), therefore, KBE has shown great advantages in

terms of efficiency, compare with dense projection method

(like ITQ [4]).

Sparse Projection (SP) [23] introduces a sparsity reg-

ularizer to achieve efficiency in encoding. They also show

that there exist many redundant parameters in dense projec-

tion matrix. However, their method requires the percentage

of non-zero elements to be around 10% for competitive per-

formance, according to Figure 4 in [23], which can be still

suffering in case that both d and b are very large.

3. Problem Formulation

Following [19, 23], we put dimension reduction and op-

timal rotation of ITQ [4] into one integrated objective:

min
R,C

‖RX− C‖2F

s.t. RTR = I.
(1)

where X ∈ R
d×n is the dataset, C is a b-by-n matrix

containing only 1 and −1. The matrix R ∈ R
b×d serves

for both dimension reduction and rotation. ITQ [4] solves

Equation 1 via alternative update. After finding R, ITQ can

produce binary codes using the hash function below:

c = sgn(Rx), (2)

2750

where x ∈ R
d denotes a data vector, and sgn(·) is the sign

function, which outputs 1 for positive numbers and −1 oth-

erwise. For simplicity of presentation, we first make two

assumptions: (1) R ∈ R
d×d and (2) there exists some in-

teger l such that d = 2l. We will advance our discussion

towards the more generalized cases later.

Although ITQ [4] has shown promising results of binary

embedding, its computational cost of the matrix-vector mul-

tiplication in Equation 2 is O(d2), which limits its applica-

tion to high-dimensional binary embedding. To reduce the

cost of calculating Rx, we decompose the projection matrix

R using the adaptive Fastfood transform [24], i.e.,

R = SHGΠHB. (3)

Consequently, our hash function turns to be

c = sgn(SHGΠHBx). (4)

In order to explain the reason of such a decomposition,

we need to describe the component modules of the adaptive

Fastfood transform. The adaptive Fastfood transform has

three types of module:

• S, G and B are diagonal matrices of tunable parame-

ters. As a comparison, S, G and B in the original non-

adaptive Fastfood formulation [12] are random ma-

trices whose entries are computed once and kept un-

changed. Since they are diagonal matrices, the com-

putational and storage costs are only O(d).

In this work, we define D to be the set of all diagonal

matrices. For any square matrix S ∈ R
d×d, we use

its lower case letter s ∈ R
d to represent the vector

that consists of the diagonal elements of S, i.e., s =
diag(S).

• Π ∈ {0, 1}d×d is a random permutation matrix, gen-

erated by sorting random numbers. It can be imple-

mented as a lookup table, so the storage and computa-

tional costs are also O(d).

• H denotes the Walsh-Hadamard matrix, which is de-

fined recursively as

H2 :=

[

1 1
1 −1

]

and H2d :=

[

Hd Hd

Hd −Hd

]

The Fast Hadamard Transform, a variant of Fast

Fourier Transform, enables us to compute Hdx in

O(d log d) time. Note that H does not need to be ex-

plicitly stored.

As a result, the computational cost of using adaptive

Fastfood transform to compute Rx is O(d log d), while the

storage cost of storing R is only O(d). These are substantial

theoretical improvements over the O(d2) costs of ordinary

dense projection matrix.

In summary, we can attain our optimization objective by

putting Equation 1 and 3 together:

min
S,G,B,C

‖RX− C‖2F

s.t. RTR = I,

R = SHGΠHB,

S,G,B ∈ D.

(5)

4. Optimization

Due to the involvement of structured matrices, Equa-

tion 5 is a more challenging problem compared with Equa-

tion 1. Updating any entry of S,G,B could cause the viola-

tion of the orthonormal constraint on R. To find a feasible

solution, we adopt the variable-splitting and penalty tech-

niques in optimization [23, 2, 20]. Specifically, we move

the orthonormal constraint onto an auxiliary variable R̄ and

meanwhile penalize the difference between R̄X and RX. As

a result, we relax the problem in Equation 5 to the following

form:

min
S,G,B,C,R̄

‖R̄X− C‖2F + β‖R̄X− RX‖2F

s.t. R̄TR̄ = I,

R = SHGΠHB,

S,G,B ∈ D,

(6)

where β is a penalty weight. Such a relaxation is similar to

Half-Quadratic Splitting [20]. By introducing an auxiliary

variable, the original problem can be separated into feasible

sub-problems, and the solution to Equation 6 will converge

to that of Equation 5 when β → ∞ [20]. We solve Equa-

tion 6 in an alternating manner: update one variable with

others fixed.

4.1. Update C

This sub-problem is equivalent to minC‖R̄X− C‖2F =
maxC

∑

i,j(R̄X)ijCij , where i, j are the indexes of matrix

elements. Because Cij ∈ {−1, 1}, this problem can be

easily solved by Cij = sgn((R̄X)ij), or simply

C = sgn(R̄X). (7)

4.2. Update R̄

With R fixed, the two terms in Equation 6 are both

quadratic on R̄. By some derivations, the problem Equa-

tion 6 becomes:

min
R̄

‖R̄X−Y‖2F

s.t. R̄TR̄ = I,
(8)

2751

where Y = (C + βRX)/(1 + β). This problem is known

as the orthogonal procrustes problem [5] and is recently

widely studied in binary embedding [4, 3, 23].

According to [5], the procrustes problem is solvable

only if b ≥ d. For a fixed Y, Equation 8 is minimized

as following: first find the SVD of the matrix YXT as

YXT = UΣVT, then let

R̄ = UVT. (9)

In case that b < d, R̄TR̄ = I is no longer a valid constraint,

because rank(R̄TR̄) ≤ min(b, d) while rank(I) is d. Ex-

tra efforts are made to handle the case of b < d in Sparse

Projection [23]. However, we do not face such a problem

because we always have b = d in the adaptive Fastfood

transform, we would simply drop the redundant bits after

optimization, as mentioned in Section 4.4.

4.3. Update S,G,B

For S,G and B, we update one of them each time,

with other variables fixed. However, we observe that all

these three sub-problems can be regarded as unconstrained

quadratic programming problem, and share the similar form

of solution. Thus, we unify the optimization of them into

one section.

In case that R̄ and C are fixed, we could reformulate

Equation 6 as:

min
S,G,B

||SHGΠHBX− Z||2F

s.t. S,G,B ∈ D,
(10)

where Z = R̄X. To show that Equation 10 can be split into

three quadratic programming sub-problems, we first expand

the objective in Equation 10 as below:

‖SHGΠHBX− Z‖2F

= ‖SHGΠHBX‖2F − 2trace(ZTSHGΠHBX) + Constant.
(11)

‖SHGΠHBX‖2F is a Frobenius norm, so it is always non-

negative and has a quadratic form. Therefore, for anyone

of s = diag(S), g = diag(G) or b = diag(G), there

must exist one corresponding positive-semidefinite matrix

Qs,Qg or Qb ∈ R
d×d that satisfies

‖SHGΠHBX‖2F =
1

2
sTQss =

1

2
gTQgg =

1

2
bTQbb.

(12)

As a result, all the three sub-problems can be regarded

as quadratic programming problems. According to Equa-

tion 12, the three quadratic programming problems of

S,G and B share the same form, so we will derive the gen-

eral solution for them first, then explain how to address each

of them specifically. Let us use W to denote anyone of

S,G or B, then all these three sub-problems can be unified

as the following form based on Equation 10 and 11:

min
W

trace(ETWDTDWE)− 2trace(KW)

s.t. W ∈ D,
(13)

where D,E and K are constant matrices whose specific val-

ues depend on W is which one of S,G and B. To rewrite

Equation 13 into a quadratic programming form like Equa-

tion 12, we need to find Q ∈ R
d×d and k ∈ R

d such that

trace(ETWDTDWE)− 2trace(KW) = wTQw − 2kTw,
(14)

where w = diag(W). The optimal solution for the right-

hand problem of Equation 14 can be easily found as:

w = Q−1k. (15)

For anyone of S,G or B, we need to find out its corre-

sponding Q and k, then put them into Equation 15 to obtain

the solution. To derive the formula of Q, let us consider the

first term in the left hand of Equation 14,

trace(ETWDTDWE)

= ‖DWE‖2F

=
d
∑

i=1

n
∑

j=1

(DWE)
2

ij

=

d
∑

i=1

n
∑

j=1

(

d
∑

s=1

d
∑

t=1

DitWttEtjDisWssEsj

)

=
d
∑

s=1

d
∑

t=1

Wtt

d
∑

i=1

n
∑

j=1

DitEtjDisEsj

Wss.

(16)

Because trace(ETWDTDWE) = wTQw, we can get

Qst =

d
∑

i=1

n
∑

j=1

DitEtjDisEsj

=
d
∑

i=1

DitDis

n
∑

j=1

EtjEsj

=
(

EET
)

st
×
(

DTD
)

st
,

(17)

or simply

Q =
(

EET
)

⊙
(

DTD
)

, (18)

where ⊙ stands for Hadamard product, i.e., C = A⊙ B ⇔
Cij = AijBij . Computing k is relatively easy. Since

trace(KW) =
∑d

i=1 KiiWii = kTw, we have

k = diag(K). (19)

Substituting Equation 18 and 19 into Equation 15, we

can obtain the update rule for w:

w =
[(

EET
)

⊙
(

DTD
)]−1

× diag(K). (20)

Now we turn to the specific cases of S,G,B respectively.

2752

Update S

In this case, we have the following D,E and K in Equa-

tion 13
DS = I,

ES = HGΠHBX,

KS = HGΠHBXZT,

(21)

so the update rule for S according to Equation 20 is

diag(S) =
[(

ESES
T
)

⊙
(

DS
TDS

)]−1
× diag(KS). (22)

Update G

In this case, we have the following D,E and K in Equa-

tion 13
DG = SH,

EG = ΠHBX,

KG = ΠHBXZTSH,

(23)

so the update rule for G according to Equation 20 is

diag(G) =
[(

EGEG
T
)

⊙
(

DG
TDG

)]−1
× diag(KG).

(24)

Update B

In this case, we have the following D,E and K in Equa-

tion 13
DB = SHGΠH,

EB = X,

KB = XZTSHGΠH,

(25)

so the update rule for B according to Equation 20 is

diag(B) =
[(

EBEB
T
)

⊙
(

DB
TDB

)]−1
×diag(KB). (26)

4.4. Discussions

In many practical applications, the input dimension d and

code length b are usually power of 2. In case that d = 2l

does not hold for any l ∈ N, we can trivially pad the vectors

with zeros until d = 2l holds. When b is not equal to d after

zero-padding, we stack ⌈b/d⌉ adaptive Fastfood transforms

and attain the desired code length by simply dropping the

extra (⌈b/d⌉ ∗ d − b) bits, where ⌈d⌉ denotes the smallest

integer greater than or equal to d. In doing so, the computa-

tional and storage costs of our FBE become O(b log d) and

O(b), respectively.1

To optimize our objective function in Equation 6, we

iteratively solve the 5 sub-problems as described in Sec-

tion 4.1–4.3. We initialize S = 1
d2 I,G = I,B = I, R̄ = R

1This strategy actually also works for Circulant Binary Embedding

[25], which is previously considered unavailable to produce binary codes

that are longer than original feature vector [23].

Algorithm 1 Fried Binary Embedding

Input: X
Output: S,G,B,Π

1: Subtract X by its mean

2: Initialize Π as random permutation matrix

3: S← 1

d2
I,B← I,G← I,R← SHGΠHB, R̄← R

4: repeat

5: C← sgn(R̄X)
6: Y ← (C + βRX)/(1 + β)
7: Perform SVD on YXT such that YXT = UΣVT

8: R̄← UVT

9: DS ← I, ES ← HGΠHBX, KS ← HGΠHBXZT

10: diag(S)←
[(

ESES
T
)

⊙
(

DS
TDS

)]

−1

× diag(KS)

11: DG ← SH, EG ← ΠHBX, KG ← ΠHBXZTSH
12: diag(G)←

[(

EGEG
T
)

⊙
(

DG
TDG

)]

−1

× diag(KG)

13: DB ← SHGΠH, EB ← X, KB ← XZTSHGΠH
14: diag(B)←

[(

EBEB
T
)

⊙
(

DB
TDB

)]

−1

× diag(KB)
15: until convergence

16: return S,G,B,Π

0 5 10 15
1.5

2

2.5

3

3.5

4

4.5
x 10

8

Iteration

O
b

je
c
ti

v
e
 F

u
n

c
ti

o
n

Figure 1: Convergence of our algorithm. The vertical axis

represents the objective function value of Equation 6 and

the horizontal axis corresponds to the number of iterations

at Algorithm 1. The optimization of R is obtained on the

training set of DNN-4096 [23].

to satisfy the orthogonal constraint. The training data is sub-

tracted with its mean prior to learning. We summarize our

proposed FBE in Algorithm 1.

Our problem formulation has only one hyperparameter

β as shown in Equation 6. To tune this hyperparameter,

we should in principle start from a small β and gradually

increase it to infinity [20]. But in our experiments, we find

that simply using a fixed β leads to comparable accuracy,

and the accuracy is very insensitive to the choice of fixed

β (we tried from 0.1 to 100). So we simply fix β = 1 for

all experiments in this paper. The experiments show such a

setting of β works well for features of various dimensions

on all datasets.

Since all 5 sub-problems (4 of them are convex) we

tackle have optimal solutions individually, our Algorithm 1

should converge fast. As shown in Figure 1, the objective

function value at each iteration in the Algorithm 1 always

decreases. Considering that the objective function value

is also lower-bounded (not smaller than 0), it validates the

convergence of our algorithm and demonstrates that it only

2753

takes a few iterations to converge. Such a fast learning pro-

cedure will benefit learning R on large datasets.

The objective function of ITQ [4]

||RX− C||2F (27)

is widely-used in hashing, because it has the physical mean-

ing, i.e., the smaller the quantization loss is, the more pre-

cisely the decimal space and binary space align, thus should

lead to better performance. However, we found that this is

not absolutely true. We monitor the quantization loss and

mAP of ITQ and FBE when we train them on DNN-4096

dataset [23]. As shown in Figure 2, ITQ has the lower quan-

tization loss as expected. However, the mAP of ITQ is go-

ing down while its quantization loss is decreasing, which

validates the existence of overfitting in high-dimensional bi-

nary embedding. Our FBE can well regulate the projection

loss, hence have higher quantization loss than ITQ, which

perhaps leads to the superior mAP of our FBE.

5. Experiments

To evaluate proposed Fried Binary Embedding (FBE),

we conduct experiments on three tasks: approximate near-

est neighbour (ANN) search, image retrieval, and image

classification, following the experiments setting in [23]. For

each task, we compare our method (FBE) with the original

Fastfood transform [12], as well as the several state-of-the-

art methods for high-dimensional visual feature embedding,

including Iterative Quantization (ITQ) [4], Bilinear Pro-

jection (BP) [3], Circulant Binary Embedding (CBE) [25],

Fast Orthogonal Projection (KBE) [28] and Sparse Projec-

tion (SP) [23]. For the original Fastfood transform [12]

where S, G and B are randomly generated instead of be-

ing optimized, we report the best performance achieved by

varying the standard deviation of the random Gaussian ma-

trix over the set {0.001, 0.005, 0.01, 0.05}. For the opti-

mized variant FBE, we learn these matrices by iterative op-

timization as described in Section 4. We use the implemen-

tations of ITQ, BP, CBE and SP that are released by their

authors.

All experiments are conducted using Matlab, while the

evaluation of encoding time is implemented in C++ with

a single thread. The server we use is equipped with Intel

Xeon CPUs E5-2630 (2.30GHz) and 96 GB memory.

5.1. Approximate Nearest Neighbor Search

5.1.1 Experiments on DNN features

Recent research advances have demonstrated the advan-

tage of deep learning features as image representations

[11, 18]. We first conduct experiments on such features.

We use the pre-trained AlexNet [11] provided by Caffe [9]

to extract deep learning features for one million images in

0 5 10 15 20 25 30

#Iteration

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

Q
u

a
n

ti
z
a

ti
o

n
 L

o
s

s

×10
8

FBE

ITQ

(a) Quantization Loss

0 5 10 15 20 25 30

#Iteration

0.78

0.8

0.82

0.84

0.86

0.88

0.9

m
A

P

FBE

ITQ

(b) mAP

Figure 2: The quantization loss and mAP of ITQ and FBE

when training on DNN-4096 dataset. While ITQ fits the

data better and better, the mAP goes lower and lower.

128 256 512 1024 2048 4096 8192 16384 32768

bits

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
A

P

FBE

Fastfood

SP

BP

CBE

ITQ

KBE

(a) mAP vs. bits

1024 4096 8192 16384 32768

bits

0

1

2

3

4

5

6

7

E
n

c
o

d
in

g
 T

im
e

 /
 m

s

FBE

SP

BP

CBE

ITQ

KBE

(b) encoding time vs. bits

Figure 3: Comparison results on DNN-4096 dataset. (a)

The change of mAP with respect to bits. (b) The change of

encoding time with respect to bits. Here Fastfood transform

is omitted because it takes the same encoding time as FBE.

For clarify, we only show the encoding time of ITQ at 1024

bits, and the encoding time of SP up to 16384 bits. Note

that BP is unavailable for the longer codes (b > d).

MIRFLICKR-1M dataset [6]. AlexNet contains five con-

volutional layers and two fully-connected (fc) layers, fol-

lowed by a softmax classifier. Using this network, we ex-

tract 4096-dimensional outputs of the second fc layer as im-

age features. Each image is resized to keep the same aspect

ratio but smaller side to be 256, and the center 224 × 224
region is used to compute features. We refer to this dataset

as DNN-4096. Extra 1,000 random samples are used as

queries. Note that each 4096-dimensional raw feature (real

number) requires a storage of 16,384 bytes (131,072 bits).

Following the protocol in [23], we measure the search

quality using mean Average Precision (mAP), i.e., the mean

area under the precision-recall curve. Given a query, we

perform Hamming ranking, i.e., samples in the dataset are

ranked according to their Hamming distances to the query,

based on their binary codes. The 50 nearest neighbours of

each query in the dataset using original features are defined

as the true positive samples, which are the ground truths for

us to evaluate the mAP.

In Figure 3a, we show how mAP changes with various

code length b. The proposed FBE achieves competitive

mAP at the short-bit scenario, and significantly outperforms

other state-of-the-art methods at the long-bit scenario, i.e.,

bit lengths comparable to or longer than feature dimension.

2754

bits 2048 4096 8192 16384 32768

ITQ [4] 8.3× 106 1.6× 107 3.2× 107 6.4× 107 1.2× 108

SP [23] 8.3× 105 1.6× 106 3.2× 106 6.4× 106 1.2× 107

BP [3] 6144 8192 - - -

CBE [25] 8192 8192 16384 32768 65536

KBE [28] 88 96 104 112 120

FBE(ours) 12288 12288 24576 49152 98304

Table 1: The number of tunable parameters when encoding

DNN-4096 feature to binary codes of varying lengths. Note

that BP is not applicable to generate binary codes that are

longer than the original feature vector.

For example, with 2048 bits or more, FBE performs the best

of embedding the 4096-dimensional CNN features, when

compared with SP [23], KBE [28], BP [3], CBE [25] and

ITQ [4]. Interestingly, although the performance of our

proposed method is not better than that of Fastfood trans-

form [12] below 1024 bits, it significantly outperforms Fast-

food transform [12] when above 1024 bits. This verifies that

our optimization of S,G and B to Equation 5 does improve

the performance compared with using random matrices for

S,G and B as Fastfood transform [12] does.

As shown in Figure 3b, the encoding time for comput-

ing the binary codes does not linearly increase to b. The

proposed FBE takes less encoding time compared with SP

and KBE, but not as fast as BP and CBE. Although CBE

and BP can achieve superior speedup ratios to FBE, they

have relatively low performance, and BP is unavailable for

producing the longer codes (b > d).

We compare the number of parameters of our proposed

algorithm and the baselines in Table 1. Besides the ad-

vantage of less encoding time, the proposed FBE requires

much fewer parameters to build the projection matrix R,

which reduces not only the cost of memory but also the risk

of being overfitting. For example, when encoding a 4096-

dimensional feature vector into 4096-bit binary codes, our

FBE has only 12,288 tunable parameters, which are only

1% of Sparse Projection [23] and 0.1% of ITQ [4]. Al-

though BP [3], CBE [25] and KBE [28] require even fewer

parameters than ours when producing binary codes of the

same length, these methods are inferior to the proposed FBE

in terms of performance, as shown in Figure 3a and Fig-

ure 4.

5.1.2 Experiments on traditional features

To validate the generality of our proposed FBE, besides us-

ing deep learning features, we also evaluate our method

on two datasets of traditional features. The first dataset is

GIST-960 [7], which contains one million 960-dimensional

GIST features [15] and 10,000 queries. The second dataset

is VLAD-25600 [23]. The VLAD features [8] are extracted

from 100,000 images randomly sampled from the INRIA

32 64 128 256 512 1024 2048 4096 8192

bits

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
A

P

FBE

Fastfood

SP

BP

CBE

ITQ

KBE

(a) GIST-960

1024 2048 4096 8192 16384

bits

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m
A

P

FBE

Fastfood

SP

BP

CBE

ITQ

KBE

(b) VLAD-25600

Figure 4: Comparison on traditional features. (a) The

change of mAP with respect to bits on GIST-960 dataset. (b)

The change of mAP with respect to bits on VLAD-25600

dataset.

image set [7]. The 25600-dimensional VLAD features are

generated by encoding 128-dimensional SIFT vectors [13]

to a 200-center codebook. An extra random subset of 1000

samples are used as queries in this dataset.

Figure 4 shows the approximate nearest neighbour

search results on these datasets, using the same protocol as

in Figure 3a. For each query, we retrieve the top-50 near-

est neighbors based on the hamming distance of the binary

codes, and compare it with the ground truths in the original

feature space. The proposed FBE still outperforms state-of-

the-art methods in long-bit case, meanwhile encodes high-

dimensional visual features faster than ITQ, SP and KBE.

The experiments on GIST and VLAD features show that

our method is also applicable to traditional features, demon-

strating the potential of the adaptive Fastfood transform to

high-dimensional visual features again.

5.2. Image Retrieval

We evaluate the performance of binary embedding for

the image retrieval task on the “Holidays + MIRFlickr-1M”

dataset [7]. This dataset contains 1,419 images in 500 dif-

ferent scenes, with extra one million MIRFlickr-1M images

as distracters. Another 500 query images are provided along

with their ground truth neighbours under the same scene

category. In light of the good performances reported in re-

cent image retrieval and object search works that harness

DNN features as image descriptors [1, 27, 26, 14], we rep-

resent each image by the 4096-dimensional response of the

second fc layer of AlexNet [11].

Following previous practices [8, 3, 22, 23], we treat im-

age retrieval as an ANN search problem of the encoded fea-

tures, while the ground truth neighbors are defined by scene

labels. Given a query image, we perform Hamming ranking

and evaluate mAP using the semantic ground truth.

Table 2 shows the results on the Holidays+1M dataset.

As a baseline of using the raw features, the mAP of 4096-

dimensional deep learning features is 49.5%. To maintain

such a performance, we compare our method with BP [3],

CBE [25], SP [23], KBE [28] and original Fastfood trans-

2755

mAP
Encoding time

(ms)

raw deep features (4096-d) 49.5% -

1024 bits

BP [3] 44.5% 0.41

CBE [25] 44.3% 0.85

SP [23] 44.9% 0.47

KBE [28] 45.0% 0.92

Fastfood [12] 44.7%
1.12

FBE(ours) 45.6%

4096 bits

BP [3] 46.4% 1.03

CBE [25] 46.6% 0.85

SP [23] 47.1% 1.33

KBE [28] 47.2% 1.36

Fastfood [12] 46.2%
1.12

FBE(ours) 47.2%

8192 bits

CBE [25] 47.8% 1.52

SP [23] 48.5% 3.12

KBE [28] 48.8% 2.18

Fastfood [12] 47.6%
1.88

FBE(ours) 49.3%

Table 2: Image retrieval performance on Holidays+1M.

form [12] using 1024, 4096 and 8192 bits. Our method can

lead to the best mAP in all bit lengths. In case of 8192
bits, our method has almost no degradation (49.3% mAP)

compared with the use of the raw deep learning features.

However, we do not observe better performance when us-

ing 16384 bits.

5.3. Image Classification

We further evaluate the binary codes as compact fea-

tures for image classification on CIFAR-10 dataset [10],

using top-1 accuracy as the metric. As a baseline, we ex-

tract the 4096-dimensional responses of second fc layer in

AlexNet [11] as image features. We first fine-tune the pre-

trained model provided by Caffe [9] on the training set of

CIFAR-10, then we use the fine-tuned model to generate

features for both training images and testing images. We

then learn the hashing parameters on the features of CIFAR-

10 [10] training set.

Following [23], we use one-vs-rest linear SVM as the

classifier. We observe that one-vs-rest linear SVM achieves

82.6% classification accuracy, which is higher than that

from the softmax layer (78.9%). We compare our method

with BP [3], CBE [25], SP [23], KBE [28] and original Fast-

food transform [12] using 1024, 4096, 8192 and 16384 bits.

We do not see significant improvement of the performance

when further increasing the bit length.

Table 3 lists the comparison results. The proposed FBE

performs better than BP, CBE, SP and KBE with the same

number of bits. It is worth noting that even the number of

bits is more than the input dimension 4096, these represen-

tations are still more compact than the original features. For

example, 16,384 bits require only 1/8 storage cost of raw

4096-dimensional feature of real numbers.

Classification

accuracy

Encoding time

(ms)

raw deep feature (4096-d) 82.6% -

1024 bits

BP [3] 76.6% 0.41

CBE [25] 76.3% 0.85

SP [23] 77.8% 0.47

KBE [28] 78.3% 0.92

Fastfood [12] 77.4%
1.12

FBE(ours) 79.7%

4096 bits

BP [3] 77.5% 1.03

CBE [25] 77.4% 0.85

SP [23] 78.6% 1.33

KBE [28] 79.3% 1.36

Fastfood [12] 78.3%
1.12

FBE(ours) 80.7%

8192 bits

CBE [25] 78.1% 1.52

SP [23] 79.5% 3.12

KBE [28] 80.5% 2.18

Fastfood [12] 79.0%
1.88

FBE(ours) 81.6%

16384 bits

CBE [25] 78.6% 2.63

SP [23] 80.2% 6.68

KBE [28] 81.0% 3.55

Fastfood [12] 79.3%
3.19

FBE(ours) 82.4%

Table 3: Classification accuracy on CIFAR-10 dataset.

5.4. Discussion

In the above experiments (Figure 3a,4 and Table 2,3),

we observe that the binary code length b required to achieve

graceful degradation (compared with no encoding) is usu-

ally around b ∼ O(d), which justifies the rationality of us-

ing long binary codes for high-dimensional data. Short bi-

nary codes have considerable degradation of accuracy, and

may impact the quality of real-world usage, thus in prac-

tice, it is desired to have a feasible and accurate solution to

high-dimensional binary embedding.

6. Conclusion

We propose a novel approach Fried Binary Embedding

(FBE) for high-dimensional binary embedding. By de-

composing the dense projection matrix using the adaptive

Fastfood transform, our proposed FBE reduces the original

computational and memory cost of O(d2) to O(d log d) and

O(d), respectively. Moreover, due to the inherent structure

in each of its components, the ultimate projection matrix

would have restricted freedom, which is naturally against

overfitting and shows better generalization performance in

our experiments. We introduce an auxiliary variable to split

the optimization problem with structured matrices involved

into several feasible sub-problems, then we iteratively solve

these sub-problems till convergence. We compare FBE with

several state-of-the-art methods on three tasks, including

approximate nearest neighbour (ANN) search, image re-

trieval, and image classification. Experimental results vali-

date the efficiency and accuracy advantages of our FBE.

2756

Acknowledgements

This work is supported in part by Singapore Ministry of

Education Academic Research Fund Tier 2 MOE2015-T2-

2-114 and was carried out at the Rapid-Rich Object Search

(ROSE) Lab in the Nanyang Technological University, Sin-

gapore. The ROSE Lab is supported by the National Re-

search Foundation, Singapore, under its Interactive Digital

Media (IDM) Strategic Research Programme. We grate-

fully acknowledge the support of NVAITC (NVIDIA AI

Technology Centre) for their donation of a Tesla K80 and

M60 GPU used for our research at the ROSE Lab.

The authors thank Tan Yu for valuable discussions.

References

[1] S. D. Bhattacharjee, J. Yuan, W. Hong, and X. Ruan. Query

adaptive instance search using object sketches. In Proceed-

ings of the 2016 ACM on Multimedia Conference, pages

1306–1315. ACM, 2016.

[2] R. Courant. Variational methods for the solution of prob-

lems of equilibrium and vibrations. Bulletin of the American

Mathematical Society, 49(1):1–23, 1943.

[3] Y. Gong, S. Kumar, H. A. Rowley, and S. Lazebnik. Learning

binary codes for high-dimensional data using bilinear projec-

tions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 484–491, 2013.

[4] Y. Gong and S. Lazebnik. Iterative quantization: A pro-

crustean approach to learning binary codes. In Computer

Vision and Pattern Recognition (CVPR), 2011 IEEE Confer-

ence on, pages 817–824. IEEE, 2011.

[5] J. C. Gower and G. B. Dijksterhuis. Procrustes problems.

Number 30. Oxford University Press on Demand, 2004.

[6] M. J. Huiskes and M. S. Lew. The mir flickr retrieval eval-

uation. In Proceedings of the 1st ACM international con-

ference on Multimedia information retrieval, pages 39–43.

ACM, 2008.

[7] H. Jegou, M. Douze, and C. Schmid. Product quantization

for nearest neighbor search. IEEE transactions on pattern

analysis and machine intelligence, 33(1):117–128, 2011.

[8] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregat-

ing local descriptors into a compact image representation.

In Computer Vision and Pattern Recognition (CVPR), 2010

IEEE Conference on, pages 3304–3311. IEEE, 2010.

[9] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-

shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. In Proceed-

ings of the 22nd ACM international conference on Multime-

dia, pages 675–678. ACM, 2014.

[10] A. Krizhevsky. Learning multiple layers of features from

tiny images. 2009.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, 2012.

[12] Q. Le, T. Sarlós, and A. Smola. Fastfood-approximating ker-

nel expansions in loglinear time. In Proceedings of the inter-

national conference on machine learning, 2013.

[13] D. G. Lowe. Distinctive image features from scale-

invariant keypoints. International journal of computer vi-

sion, 60(2):91–110, 2004.

[14] J. Meng, H. Wang, J. Yuan, and Y.-P. Tan. From keyframes

to key objects: Video summarization by representative object

proposal selection. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1039–

1048, 2016.

[15] A. Oliva and A. Torralba. Modeling the shape of the scene: A

holistic representation of the spatial envelope. International

journal of computer vision, 42(3):145–175, 2001.

[16] F. Perronnin and C. Dance. Fisher kernels on visual vocab-

ularies for image categorization. In Computer Vision and

Pattern Recognition, 2007. CVPR’07. IEEE Conference on,

pages 1–8. IEEE, 2007.

[17] J. Sánchez and F. Perronnin. High-dimensional signature

compression for large-scale image classification. In Com-

puter Vision and Pattern Recognition (CVPR), 2011 IEEE

Conference on, pages 1665–1672. IEEE, 2011.

[18] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In International

conference on learning representations, 2015.

[19] J. Wang, H. T. Shen, J. Song, and J. Ji. Hashing for similarity

search: A survey. arXiv preprint arXiv:1408.2927, 2014.

[20] Y. Wang, J. Yang, W. Yin, and Y. Zhang. A new alternat-

ing minimization algorithm for total variation image recon-

struction. SIAM Journal on Imaging Sciences, 1(3):248–272,

2008.

[21] Z. Wang, L.-Y. Duan, J. Yuan, T. Huang, and W. Gao. To

project more or to quantize more: Minimizing reconstruction

bias for learning compact binary codes. International Joint

Conference on Artificial Intelligence, 2016.

[22] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In

Advances in neural information processing systems, pages

1753–1760, 2009.

[23] Y. Xia, K. He, P. Kohli, and J. Sun. Sparse projections

for high-dimensional binary codes. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 3332–3339, 2015.

[24] Z. Yang, M. Moczulski, M. Denil, N. de Freitas, A. Smola,

L. Song, and Z. Wang. Deep fried convnets. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 1476–1483, 2015.

[25] F. X. Yu, S. Kumar, Y. Gong, and S.-F. Chang. Circulant

binary embedding. In International conference on machine

learning, volume 6, page 7, 2014.

[26] T. Yu, Y. Wu, S. D. Bhattacharjee, and J. Yuan. Efficient

object instance search using fuzzy object matching. In Pro-

ceedings of the AAAI Conference on Artificial Intelligence.

AAAI Press, 2017.

[27] T. Yu, Y. Wu, and J. Yuan. Hope: Hierarchical object proto-

type encoding for efficient object instance search in videos.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2017.

[28] X. Zhang, F. X. Yu, R. Guo, S. Kumar, S. Wang, and S.-F.

Chang. Fast orthogonal projection based on kronecker prod-

uct. In Proceedings of the IEEE International Conference on

Computer Vision, pages 2929–2937, 2015.

2757

