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Abstract

We propose a novel algorithm for weakly supervised se-

mantic segmentation based on image-level class labels only.

In weakly supervised setting, it is commonly observed that

trained model overly focuses on discriminative parts rather

than the entire object area. Our goal is to overcome this

limitation with no additional human intervention by retriev-

ing videos relevant to target class labels from web reposi-

tory, and generating segmentation labels from the retrieved

videos to simulate strong supervision for semantic segmen-

tation. During this process, we take advantage of image

classification with discriminative localization technique to

reject false alarms in retrieved videos and identify relevant

spatio-temporal volumes within retrieved videos. Although

the entire procedure does not require any additional super-

vision, the segmentation annotations obtained from videos

are sufficiently strong to learn a model for semantic seg-

mentation. The proposed algorithm substantially outper-

forms existing methods based on the same level of supervi-

sion and is even as competitive as the approaches relying

on extra annotations.

1. Introduction

Semantic segmentation has recently achieved prominent

progress thanks to Deep Convolutional Neural Networks

(DCNNs) [3, 21, 24, 32, 37, 41]. The success of DCNNs

heavily depends on the availability of a large-scale training

dataset, where annotations are given manually in general.

In semantic segmentation, however, annotations are in the

form of pixel-wise masks, and collecting such annotations

for a large number of images demands tremendous effort

and cost. Consequently, accurate and reliable segmenta-

tion annotations are available only for a small number of

classes. Fully supervised DCNNs for semantic segmenta-

tion are thus limited to those classes and hard to be extended

to many other classes appearing in real world images.

Weakly supervised approaches have been proposed to al-

leviate this issue by leveraging a vast amount of weakly an-

notated images. Among several types of weak supervision

for semantic segmentation, image-level class label has been

widely used [17, 26, 28, 29, 30] as it is readily available

from existing image databases [7, 10]. The most popular

approach to generating pixel-wise labels from an image-

level label is self-supervised learning based on the joint

estimation of segmentation annotation and model parame-

ters [6, 20, 29, 30]. However, since there is no way to mea-

sure the quality of estimated annotations, these approaches

easily converge to suboptimal solutions. To remedy this

limitation, other types of weak supervision have been em-

ployed in addition to image-level labels, e.g., bounding

box [6, 26], scribble [20], prior meta-information [28], and

segmentation ground-truths of other classes [13]. How-

ever, they often require additional human intervention to

obtain extra supervision [6, 13, 26] or employ domain-

specific knowledge that may not be well-generalized to

other classes [28].

The objective of this work is to overcome the inher-

ent limitation in weakly supervised semantic segmentation

without additional human supervision. Specifically, we pro-

pose to retrieve videos from the Web and use them as an

additional source of training data, since temporal dynam-

ics in video offers rich information to distinguish objects

from background and estimate their shapes more accurately.

More importantly, our video retrieval process is performed

fully-automatically by using a set of class labels as search

keywords and collecting videos from web repositories (e.g.,

YouTube). The result of retrieval is a collection of weakly

annotated videos as each video is given its query keyword

as video-level class label. However, it is still not straightfor-

ward to learn semantic segmentation directly from weakly

labeled videos due to ambiguous association between labels

and frames. The association is temporally ambiguous since

only a subset of frames in a video is relevant to its class

label. Furthermore, although there are multiple regions ex-

hibiting prominent motions, only a few among them might

be relevant to the class label, which causes spatial ambi-

guity. These ambiguities are ubiquitous in videos crawled

automatically with no human intervention.

The key idea of this paper is to utilize both weakly anno-

tated images and videos to learn a single DCNN for seman-

tic segmentation. Images are associated with clean class
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labels given manually, thus they can be used to alleviate the

ambiguities in web-crawled videos. Also, it is easier to esti-

mate shape and extent of object in videos thanks to motion

cues available exclusively in them. To exploit these com-

plementary benefits of the two domains, we integrate tech-

niques for discriminative object localization in images [42]

and video segmentation [27] into a single framework based

on DCNN, which generates reliable segmentation annota-

tions from videos and learns semantic segmentation for im-

age with the generated annotations.

The architecture of our DCNN is motivated by [13] and

consists of two parts, each of which has its own role: an

encoder for image classification and discriminative local-

ization [42], and a decoder for image segmentation. The

two parts of the network are trained separately with differ-

ent data in our framework. The encoder is first learned from

a set of weakly annotated images. It is in turn used to fil-

ter out irrelevant frames and identify discriminative regions

in weakly annotated videos so that both temporal and spa-

tial ambiguities of the videos are substantially reduced. By

incorporating the identified discriminative regions together

with color and motion cues, spatio-temporal segments of

object candidates are obtained from the videos by a well-

established graph-based optimization technique. The video

segmentation results are then used as segmentation annota-

tions to train the decoder of our network.

The contributions of this paper are three-fold as follows.

• We propose a weakly supervised semantic segmenta-

tion algorithm based on web-crawled videos. Our al-

gorithm exploits videos to simulate strong supervision

missing in weakly annotated images, and utilizes im-

ages to eliminate noises in video retrieval and segmen-

tation processes.

• Our framework automatically collects video clips rele-

vant to the target classes from web repositories so that

it does not require human intervention to obtain extra

supervision.

• We demonstrate the effectiveness of the proposed

framework on the PASCAL VOC benchmark dataset,

where it outperforms prior arts on weakly supervised

semantic segmentation by a substantial margin.

The rest of the paper is organized as follows. We briefly

review related work in Section 2 and describe the details of

the proposed framework in Section 3. Section 4 introduces

data collection process. Section 5 illustrates experimental

results on benchmark datasets.

2. Related Work

Semantic segmentation has been rapidly improved in

past few years, mainly due to emergence of powerful end-

to-end learning framework based on DCNNs [3, 11, 21,

23, 24, 25, 41]. Built upon a fully-convolutional architec-

ture [24], various approaches have been investigated to im-

prove segmentation accuracy by integrating fully-connected

CRF [3, 21, 23, 41], deep deconvolution network [25],

multi-scale processing [3, 11], etc. However, training a

model based on DCNN requires pixel-wise annotations,

which involves expensive and time-consuming procedures

to obtain. For this reasons, the task has been mainly inves-

tigated in small-scale datasets [10, 22].

Approaches based on weakly supervised learning have

been proposed to reduce annotation efforts in fully-

supervised methods [6, 13, 17, 26, 28, 29, 30]. Among

many possible choices, image-level labels are of the form

requiring the minimum annotation cost thus have been

widely used [17, 28, 29, 30]. Unfortunately, their results

are far behind the fully-supervised methods due to miss-

ing supervision on segmentation. This gap is reduced by

exploiting additional annotations such as point supervi-

sion [2], scribble [20], bounding box [6, 26], masks from

other class [13], but they lead to increased annotation cost

that should be avoided in weakly supervised setting. Instead

of collecting extra cues from human annotator, we propose

to retrieve and exploit web-videos, which offers motion cue

useful for segmentation without the need of any human in-

tervention in collecting such data. The idea of employing

videos for semantic segmentation is new and has not been

investigated properly except [36]. Our work is differenti-

ated from [36] by (i) exploiting complementary benefits in

images and videos rather than directly learning from noisy

videos, (ii) retrieving a large set of video clips from web

repository rather than using a small number of manually

collected videos. Our experimental results show that these

differences lead to significant performance improvement.

Our work is closely related to webly-supervised learn-

ing [4, 5, 8, 18, 19, 31, 39], which aims to retrieve train-

ing examples from the resources on the Web. The idea has

been investigated in various tasks, such as concept recog-

nition [4, 5, 8, 39], object localization [5, 8, 19, 39], and

fine-grained categorization [18]. The main challenge in this

line of research is learning a model from noisy web data.

Various approaches have been employed such as curricu-

lum learning [4, 5], mining of visual relationship [8], semi-

supervised learning with a small set of clean labels [39],

etc. Our work addresses this issue using a model learned

from another domain—we employ a model learned from a

set of weakly annotated images to eliminate noises in web-

crawled videos.

3. Our Framework

The overall pipeline of the proposed framework is de-

scribed in Figure 1. We adopt a decoupled deep encoder-

decoder architecture [13] as our model for semantic seg-

mentation with a modification of its attention mechanism.
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Figure 1. Overall framework of the proposed algorithm. Our algorithm first learns a model for classification and localization from a set

of weakly annotated images (Section 3.1). The learned model is used to eliminate noisy frames and generate coarse localization maps in

web-crawled videos, where the per-pixel segmentation masks are obtained by solving a graph-based optimization problem (Section 3.2).

The obtained segmentations are served as annotations to train a decoder (Section 3.3). Semantic segmentation on still images is then

performed by applying the entire network to images (Section 3.4).

In this architecture, the encoder fenc generates class predic-

tion and a coarse attention map that identifies discriminative

image regions for each predicted class, and the decoder fdec

estimates a dense binary segmentation mask per class from

the corresponding attention map. We train each component

of the architecture using different sets of data through the

procedure below:

• Given a set of weakly annotated images, we train the

encoder under a classification objective (Section 3.1).

• We apply the encoder to videos crawled on the Web

to filter out frames irrelevant to their class labels, and

generate a coarse attention map of the target class per

remaining frame. Spatio-temporal object segmentation

is then conducted by solving an optimization problem

incorporating the attention map with color and motion

cues in each relevant interval of videos (Section 3.2).

• We train the decoder by leveraging the segmentation

labels obtained in the previous stage as supervision

(Section 3.3).

• Finally, semantic segmentation on still images is per-

formed by applying the entire deep encoder-decoder

network (Section 3.4).

We also introduce a fully automatic method to retrieve rele-

vant videos from web repositories (Section 4). This method

enables us to construct a large collection of videos effi-

ciently and effectively, which was critical to improved seg-

mentation performance. Following sections describe details

of each step in our framework.

3.1. Learning to Attend from Images

Let I be a dataset of weakly annotated images. An ele-

ment of I is denoted by (x,y) ∈ I, where x is an image

and y ∈ {0, 1}C is a label vector for C pre-defined classes.

We train the encoder fenc to recognize visual concepts under

a classification objective by

min
θenc

∑

(x,y)∈I

ec(y, fenc(x; θenc)), (1)

where θenc denotes parameters of fenc, and ec is a cross-

entropy loss for classification. For fenc, we employ the pre-

trained VGG-16 network [34] except its fully-connected

layers, and place a new convolutional layer after the last

convolutional layer of VGG-16 for better adaptation to our

task. On the top of them, two additional layers, global aver-

age pooling followed by a fully-connected layer, are added

to produce predictions on the class labels. All newly added

layers are randomly initialized.

Given the architecture and learned model parameters for

fenc, image regions relevant to each class are identified

by Class Activation Mapping (CAM) [42]. Let F (x) ∈
R

(w·h)×d be output of the last convolutional layer of fenc

given x, and W ∈ R
d×C the parameters for the fully-

connected layer of fenc, respectively, where w, h and d de-

note width, height and the number of channels of F (x).
Then for a class c, image regions relevant to the class are

highlighted by CAM as follows:

α
c = F (x) ·W · yc, (2)

where · is inner product and yc ∈ {0, 1}C means a one-hot

encoded vector for class c. The output αc ∈ R
w·h refers

to an attention map for class c and highlights local image

regions relevant to class c.

3.2. Generating Segmentation from Videos

Our next step is to generate object segmentation masks

from a set of weakly annotated videos using the encoder

trained in the previous section. Let V be a set of weakly

7324



annotated videos and (V,y) ∈ V an element in V , where

V = {v1, ...,vT } is a video composed of T frames and

y ∈ {0, 1}C is the label vector. As in the image case, each

video is associated with a label vector y, but in this case it

is a one-hot encoded vector since a single keyword is used

to retrieve each video.

Having collected from the Web, videos in V typically

contain many frames irrelevant to associated labels. Thus,

segmenting objects directly from such videos may suffer

from noises introduced by these frames. To address this

issue, we measure class-relevance score of every frame v in

V with the learned encoder by y · fenc(v; θenc), and choose

frames whose scores are larger than a threshold. If more

than 5 consecutive frames are chosen, we consider them as

a single relevant video. We construct a set of relevant videos

V̂ , and perform object segmentation only on videos in V̂ .

The spatio-temporal segmentation of object is formu-

lated by a graph-based optimization problem. Let sti be the

i-th superpixel of frame t. For each video V ∈ V̂ , we con-

struct a spatio-temporal graph G = (S, E), where a node

corresponds to a superpixel sti ∈ S , and the edges E =
{Es, Et} connect spatially adjacent superpixels (sti, s

t
j) ∈ Es

and temporally associated ones (sti, s
t+1
j ) ∈ Et.

1 Our goal

is then reduced to estimating a binary label lti for each su-

perpixel sti in the graph G, where lti = 1 if sti belongs to

foreground (i.e., object) and lti = 0 otherwise. The label

estimation problem is formulated by the following energy

minimization:

min
L

E(L) = Eu(L) + Ep(L), (3)

where Eu and Ep are unary and pairwise terms, respec-

tively, and L denotes labels of all superpixels in the video.

Details of the two energy terms are described below.

Unary term. The unary term Eu is a linear combination

of three components that take various aspects of foreground

object into account, and is given by

Eu(L) = −λa

∑

t,i

logAt
i(l

t
i)− λm

∑

t,i

logM t
i (l

t
i)

−λc

∑

t,i

logCt
i (l

t
i), (4)

where At
i, C

t
i and M t

i denote the three components based

on attention, appearance, and motion of superpixel sti, re-

spectively. λa, λc, and λm are weight parameters to control

relative importance of the three terms.

We use the class-specific attention map obtained by

Eq. (2) to compute the attention-based term At
i. The atten-

tion map typically highlights discriminative parts of the ob-

ject class, thus provides important evidences for video ob-

ject segmentation. To be more robust against scale variation

1We define a temporal edge between two superpixels from consecutive

frames if they are connected by at least one optical flow [1].

Figure 2. Qualitative examples of attention map on video frame.

(Top: video frame, Middle: attention with single scale input, Bot-

tom: attention with multi-scale input.) Although the encoder is

trained on images, its attention maps effectively identify discrim-

inative object parts in videos. Also, multi-scale attention captures

object parts and shapes better than its single scale counterpart.

of object, we compute multiple attention maps per frame

by varying frame size. After resizing them to the original

frame size, we merge the maps through max-pooling over

scale to obtain a single attention map per frame. Figure 3.2

illustrates qualitative examples of such attention map. At
i is

defined as attention over the superpixel sti, and calculated

by aggregating the max-pooled attention values within the

superpixel.

Although the attention term described above provide

strong evidences for object localization, it tends to favor lo-

cal discriminative parts of object since the model is trained

under the classification objective in Eq. (1). To better

spread the localized attentions over the entire object area,

we additionally take object appearance and motion into ac-

count. The appearance term Ct
i is implemented by a Gaus-

sian Mixture Model (GMM). Specifically, we estimate two

GMMs based on RGB values of superpixels in the video,

one for foreground and another for background. During

GMM estimation, we first categorize superpixels into fore-

ground and background by thresholding their attention val-

ues, and construct GMMs from the superpixels with their

attention values as sample weights. The motion term M t
i

returns higher value if the superpixel exhibiting more dis-

tinct motions is labeled as foreground. We utilize inside-

outside map from [27], which identifies superpixels with

distinct motion by estimating a closed curve following mo-

tion boundary.

Pairwise term. We employ the standard Potts model [27,

33] to impose both spatial and temporal smoothness on in-

ferred labels by

Ep(L) =
∑

(st
i
,st

j
)∈Es

[lti 6= ltj ]φs(s
t
i, s

t
j)φc(s

t
i, s

t
j) + (5)

∑

(st
i
,s

t+1

j
)∈Et

[lti 6= lt+1
j ]φt(s

t
i, s

t+1
j )φc(s

t
i, s

t+1
j )
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where φs and φc denote similarity metrics based on spatial

location and color, respectively, and φt is the percentage of

pixels connected by optical flows between the two super-

pixels.

Optimization. The Eq. (3) is optimized efficiently by the

Graph-cut algorithm. The weight parameters are set to λa =
2, λm = 1, and λc = 2.

3.3. Learning to Segment from Videos

Given a set of generated segmentation annotations ob-

tained in the previous section, we learn the decoder fdec for

segmentation by

min
θdec

∑

V∈V̂

∑

v∈V

es(z
c
v, fdec(α

c
v; θdec)), (6)

where θdec means parameters associated with the decoder,

zcv is a binary segmentation mask for class c of frame v, and

es is a cross-entropy loss between prediction and the gen-

erated segmentation annotation. Note that zcv is computed

from the segmentation labels L estimated in the previous

section.

We adopt the deconvolutional network [12, 13, 25] as our

model for decoder fdec, which is composed of multiple lay-

ers of deconvolution and unpooling. It takes the multi-scale

attention map α
c
v of frame v as an input, and produces a bi-

nary segmentation mask of class c in the original resolution

of the frame. Since our multi-scale attention α
c
v already

captures dense spatial configuration of object as illustrated

in Figure 3.2, our decoder does not require the additional

densified-attention mechanism introduced in [13]. Note that

the decoder is shared by all classes as no class label is in-

volved in Eq. (6).

The decoder architecture we adopt is well-suited to our

problem for the following reasons. First, the use of attention

as input makes the optimization in Eq. (6) robust against in-

complete segmentation annotations. Because a video label

identifies only one object class, segmentation annotations

generated from the video ignore objects irrespective of the

labeled class. The decoder will get confused during training

if such ignored objects are considered as background since

they may be labeled as non-background in other videos. By

using the attention as input, the decoder does not care seg-

mentation of such ignored objects and is thus trained more

reliably. Second, our decoder learns class-agnostic segmen-

tation prior as it is shared by multiple classes during train-

ing [12]. Since static objects (e.g., chair, table) are not well-

separated from background by motion, their segmentation

annotations are sometimes not plausible for training. The

segmentation prior learned from other classes is especially

useful to improve the segmentation quality of such classes.

3.4. Semantic Segmentation on Images

Given encoder and decoder obtained by Eq. (1) and (6),

semantic segmentation on still images is performed by the

entire model. Specifically, given an input image x, we first

identify a set of class labels relevant to the image by thresh-

olding the encoder output fenc(x; θenc). Then for each iden-

tified label c, we compute attention map α
c by Eq. (2), and

generate corresponding foreground probability map from

the output of decoder fdec(α
c; θdec). The final per-pixel

label is then obtained by taking pixel-wise maximum of

fdec(α
c; θdec) for all identified classes.

4. Video Retrieval from Web Repository

This section describes details of the video collection

procedure. Assume that we have a set of weakly anno-

tated images I, which is associated with predefined seman-

tic classes. Then for each class, we collect videos from

YouTube using the class label as a search keyword to con-

struct a set of weakly annotated videos V . However, videos

retrieved from YouTube are quite noisy in general because

videos are often lacking side-information (e.g. surrounding

text) critical for text-based search, and class labels are usu-

ally too general to be used as search keywords (e.g. per-

son). Although our algorithm is able to eliminate noisy

frames and videos using the procedures described in Sec-

tion 3.2, examining all videos requires tremendous process-

ing time and disk space, which should be avoided to con-

struct a large-scale video data.

We propose a simple, yet effective strategy that effi-

ciently filters out noisy examples without looking at whole

videos. To this end, we utilize thumbnails and key-frames,

which are global and local summaries of a video, respec-

tively. In this strategy, we first download thumbnails rather

than entire videos of search results, and compute classifica-

tion scores of the thumbnails using the encoder learned from

I. Since a video is likely to contain informative frames if

its thumbnail is relevant to the associated label, we down-

load the video if classification score of its thumbnail is

above a predefined threshold. Then for each downloaded

video, we extract key-frames2 and compute their classifica-

tion scores using the encoder to select only informative ones

among them. Finally, we extract frames within two seconds

around each of selected key-frames to construct a video for

V . Videos in V may still contain irrelevant frames, which

are handled by the procedure described in Section 3.2. We

observe that videos collected by the above method are suf-

ficiently clean and informative for learning.

2We utilize reference frames used to compress the video [38] as key-

frames for computational efficiency. This enables selection and extraction

of informative video intervals without decompressing a whole video.
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5. Experiments

5.1. Implementation Details

Dataset. We employ the PASCAL VOC 2012 dataset [10]

as the set of weakly annotated images I, which contains

10,582 training images of 20 semantic categories. The

video retrieval process described in Section 4 collects 4,606

videos and 960,517 frames for the raw video set V when we

limit the maximum number of videos to 300 and select up

to 15 key-frames per video. The classification threshold for

choosing relevant thumbnails and key-frames is set to 0.8,

which favors precision more than recall.

Optimization. We implement the proposed algorithm

based on Caffe [15] library. We use Adam optimization [16]

to train our network with learning rate 0.001 and default

hyper-parameter values proposed in [16]. The size of mini-

batch is set to 14.

5.2. Results on Semantic Segmentation

This section presents semantic segmentation results on

the PASCAL VOC 2012 benchmark [10]. We employ

comp6 evaluation protocol, and measure the performance

based on mean Intersection Over Union (mIoU) between

ground-truth and predicted segmentation.

5.2.1 Internal Analysis

We first compare variants of our framework to verify impact

of each component in the framework. Table 1 summarizes

results of the internal analysis.

Impact of Separate Training. We compare our approach

with [36], which also employs weakly annotated videos, but

unlike ours, learns a whole model directly from the videos.

For fair comparison, we train our model using the same set

of videos from the YouTube-object dataset [31], which is

collected manually from YouTube for 10 PASCAL object

classes. Under the identical condition, our method substan-

tially outperforms [36] as shown in Table 1. This result

empirically demonstrates that our separate training strategy

successfully takes advantage of the complementary benefits

of image and video domains, while [36] cannot.

Impact of Video Collection. Replacing a set of videos

from [31] to the one collected from Section 4 improves the

performance by 6% mIoU, although the videos are collected

automatically with no human intervention. It shows that (i)

our model learns better object shapes from a larger amount

of data and (ii) our video collection strategy is effective in

retrieving informative videos from noisy web repositories.

Impact of Domain Adaptation. Examples in I and V
have different characteristics: (i) They have different biases

and data distributions, and (ii) images in I can be labeled

by multiple classes while every video in V is annotated by a

single class (i.e., search keyword). So we adapt our model

Table 1. Comparisons between variants of the proposed framework

on the PASCAL VOC 2012 validation set. DA stands for domain

adaptation on still images.

method video set DA mIoU

MCNN [36] [31] Y 38.1

[31] N 49.2

Ours YouTube N 55.2

YouTube Y 58.1

trained on V to the domain of I. To this end, we apply

the model to generate segmentation annotations of images

in I, and fine-tune the network using the generated annota-

tions as strong supervision. By the domain adaptation, the

model learns context among multiple classes (e.g. person

rides bicycle) and different data distribution, which leads to

the performance improvement by 3% mIoU.

5.2.2 Comparisons to Other Methods

The performance of our framework is quantitatively com-

pared with prior arts on weakly supervised semantic seg-

mentation in Table 2 and 3. We categorize approaches

based on types of annotations used in training. Ours de-

note our methods described in 4th row of Table 1. Note that

MCNN [36] utilizes manually collected videos [31] where

associations between labels and videos are not as ambigu-

ous as those in our case.

Our method substantially outperforms existing ap-

proaches based on image-level labels, improving the state-

of-the-art result by more than 7% mIoU. Performance of our

method is even as competitive as the approaches based on

extra supervision, which rely on additional human interven-

tion. Especially, our method outperforms some approaches

based on relatively stronger supervision (e.g., point supervi-

sion [2] and segmentation annotations of other classes [13]).

These results show that segmentation annotations obtained

from videos are sufficiently strong to simulate segmentation

supervision missing in weakly annotated images. Note that

our method requires the same degree of human supervision

with image-level labels since video retrieval is conducted

fully automatically in the proposed framework.

Figure 3 illustrates qualitative results. Compared to ap-

proaches based only on image labels, our method tends to

produce more accurate predictions on object location and

boundary.

5.3. Results on Video Segmentation

To evaluate the quality of video segmentation results ob-

tained by the proposed framework, we compare our method

with state-of-the-art video segmentation algorithms on the

YouTube-object benchmark dataset [31]. We employed seg-

mentation ground-truths from [14] for evaluation, which

provides a binary segmentation masks at every 10 frames

for selected video intervals. Following protocols in the pre-
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Table 2. Evaluation results on the PASCAL VOC 2012 validation set.

Method bkg aero bike bird boat bottle bus car cat chair cow table dog horse mbk person plant sheep sofa train tv mean

Image labels:

EM-Adapt [26] 67.2 29.2 17.6 28.6 22.2 29.6 47.0 44.0 44.2 14.6 35.1 24.9 41.0 34.8 41.6 32.1 24.8 37.4 24.0 38.1 31.6 33.8

CCNN [28] 68.5 25.5 18.0 25.4 20.2 36.3 46.8 47.1 48.0 15.8 37.9 21.0 44.5 34.5 46.2 40.7 30.4 36.3 22.2 38.8 36.9 35.3

MIL+seg [30] 79.6 50.2 21.6 40.9 34.9 40.5 45.9 51.5 60.6 12.6 51.2 11.6 56.8 52.9 44.8 42.7 31.2 55.4 21.5 38.8 36.9 42.0

SEC [17] 82.4 62.9 26.4 61.6 27.6 38.1 66.6 62.7 75.2 22.1 53.5 28.3 65.8 57.8 62.3 52.5 32.5 62.6 32.1 45.4 45.3 50.7

+Extra annotations:

Point supervision [2] 80.0 49.0 23.0 39.0 41.0 46.0 60.0 61.0 56.0 18.0 38.0 41.0 54.0 42.0 55.0 57.0 32.0 51.0 26.0 55.0 45.0 46.0

Bounding box [26] - - - - - - - - - - - - - - - - - - - - - 58.5

Bounding box [6] - - - - - - - - - - - - - - - - - - - - - 62.0

Scribble [20] - - - - - - - - - - - - - - - - - - - - - 63.1

Transfer learning [13] 85.3 68.5 26.4 69.8 36.7 49.1 68.4 55.8 77.3 6.2 75.2 14.3 69.8 71.5 61.1 31.9 25.5 74.6 33.8 49.6 43.7 52.1

+Videos (unannotated):

MCNN [36] 77.5 47.9 17.2 39.4 28.0 25.6 52.7 47.0 57.8 10.4 38.0 24.3 49.9 40.8 48.2 42.0 21.6 35.2 19.6 52.5 24.7 38.1

Ours 87.0 69.3 32.2 70.2 31.2 58.4 73.6 68.5 76.5 26.8 63.8 29.1 73.5 69.5 66.5 70.4 46.8 72.1 27.3 57.4 50.2 58.1

Table 3. Evaluation results on the PASCAL VOC 2012 test set.

Method bkg aero bike bird boat bottle bus car cat chair cow table dog horse mbk person plant sheep sofa train tv mean

Image labels:

EM-Adapt [26] 76.3 37.1 21.9 41.6 26.1 38.5 50.8 44.9 48.9 16.7 40.8 29.4 47.1 45.8 54.8 28.2 30.0 44.0 29.2 34.3 46.0 39.6

CCNN [28] 70.1 24.2 19.9 26.3 18.6 38.1 51.7 42.9 48.2 15.6 37.2 18.3 43.0 38.2 52.2 40.0 33.8 36.0 21.6 33.4 38.3 35.6

MIL+seg [30] 78.7 48.0 21.2 31.1 28.4 35.1 51.4 55.5 52.8 7.8 56.2 19.9 53.8 50.3 40.0 38.6 27.8 51.8 24.7 33.3 46.3 40.6

SEC [17] 83.5 56.4 28.5 64.1 23.6 46.5 70.6 58.5 71.3 23.2 54.0 28.0 68.1 62.1 70.0 55.0 38.4 58.0 39.9 38.4 48.3 51.7

+Extra annotations:

Point supervision [2] 80.0 49.0 23.0 39.0 41.0 46.0 60.0 61.0 56.0 18.0 38.0 41.0 54.0 42.0 55.0 57.0 32.0 51.0 26.0 55.0 45.0 46.0

Bounding box [26] - - - - - - - - - - - - - - - - - - - - - 60.4

Bounding box [6] - - - - - - - - - - - - - - - - - - - - - 64.6

Transfer learning [13] 85.7 70.1 27.8 73.7 37.3 44.8 71.4 53.8 73.0 6.7 62.9 12.4 68.4 73.7 65.9 27.9 23.5 72.3 38.9 45.9 39.2 51.2

+Videos (unannotated):

MCNN [36] 78.9 48.1 17.9 37.9 25.4 27.5 53.4 48.8 58.3 9.9 43.2 26.6 54.9 49.0 51.1 42.5 22.9 39.3 24.2 50.2 25.9 39.8

Ours 87.2 63.9 32.8 72.4 26.7 64.0 72.1 70.5 77.8 23.9 63.6 32.1 77.2 75.3 76.2 71.5 45.0 68.8 35.5 46.2 49.3 58.7

Table 4. Evaluation results of video segmentation performance on

the YouTube-object benchmark.

method extra data class avg. video avg.

[35] - 23.9 22.8

[27] - 46.8 43.2

[40] bounding box 54.1 52.6

[9] bounding box 56.2 55.8

Ours image label 58.6 57.1

vious work, we measure the performance based on mIoU

over categories and videos.

The summary results are shown in Table 4. Our method

substantially outperforms previous approaches based only

on low-level cues such as motion and appearance, since the

attention map we employ provides robust and semantically

meaningful estimation of object location in video. Inter-

estingly, our method outperforms approaches using object

detector trained on bounding box annotations [9, 40] that

require stronger supervision than image-level labels. This

may be because attention map produced by our method pro-

vides more fine-grained localization of an object than coarse

bounding box predicted by object detector.

Figure 4 illustrates qualitative results of the proposed

approach. Our method generates accurate segmentation

masks under various challenges in videos, such as occlu-

sion, background clutter, objects of other classes, and so

on. More comprehensive qualitative results are available at

our project webpage3.

6. Conclusion

We propose a novel framework for weakly supervised se-

mantic segmentation based on image-level class labels only.

The proposed framework retrieves relevant videos automat-

ically from the Web, and generates fairly accurate object

masks of the classes from the videos to simulate supervision

for semantic segmentation. For reliable object segmentation

in video, our framework first learns an encoder from weakly

annotated images to predict attention map, and incorporates

the attention with motion cues in videos to capture object

shape and extent more accurately. The obtained masks are

then served as segmentation annotations to learn a decoder

for segmentation. Our method outperformed previous ap-

proaches based on the same level of supervision, and as

competitive as the approaches relying on extra supervision.
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Input Image Ground-truth SEC [17] MCNN [36] Ours

Figure 3. Qualitative results on the PASCAL VOC 2012 validation images. SEC [17] is the state of the art among the approaches relying

only on image-level class labels, and MCNN [36] exploits videos as an additional source of training data as ours does. Compared to these

approaches, our method captures object boundary more accurately and covers larger object area.

Figure 4. Qualitative results of the proposed method on the YouTube-object dataset. Our method segments objects successfully in spite of

challenges like occlusion (e.g., car, train), background clutter (e.g., bird, car), multiple instances (e.g., cow, dog), and irrelevant objects

that cannot be distinguished from target object by motion (e.g. people riding horse and motorbike).
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