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Abstract

Object detectors have hugely profited from moving to-
wards an end-to-end learning paradigm: proposals, fea-
tures, and the classifier becoming one neural network
improved results two-fold on general object detection.
One indispensable component is non-maximum suppression
(NMS), a post-processing algorithm responsible for merg-
ing all detections that belong to the same object. The de
facto standard NMS algorithm is still fully hand-crafted,
suspiciously simple, and — being based on greedy clus-
tering with a fixed distance threshold — forces a trade-off
between recall and precision. We propose a new network
architecture designed to perform NMS, using only boxes
and their score. We report experiments for person detection
on PETS and for general object categories on the COCO
dataset. Our approach shows promise providing improved
localization and occlusion handling.

1. Introduction

All modern object detectors follow a three step recipe:
(1) proposing a search space of windows (exhaustive by
sliding window or sparser using proposals), (2) scor-
ing/refining the window with a classifier/regressor, and (3)
merging windows that might belong to the same object.
This last stage is commonly referred to as “non-maximum
suppression” (NMS) [10, 9, 21, 7, 20, 16].

The de facto standard for NMS is a simple hand-crafted
test time post-processing, which we call GreedyNMS.
The algorithm greedily selects high scoring detections and
deletes close-by less confident neighbours since they are
likely to cover the same object. This algorithm is simple,
fast, and surprisingly competitive compared to proposed al-
ternatives.

The most notable recent performance breakthrough in
general object detection was marked by R-CNN [10], which
effectively replaced features extraction and classifiers by
a neural network, almost doubling performance on Pas-
cal VOC. Another significant improvement was to absorb

Figure 1: We propose a non-maximum suppression conv-
net that will re-score all raw detections (top). Our network
is trained end-to-end to learn to generate exactly one high
scoring detection per object (bottom, example result).

the object proposal generation into the network [21], while
other works avoid proposals altogether [21, 20], leading to
both speed and quality improvements. We can see a general
trend towards end-to-end learning and it seems reasonable
to expect further improvements by doing complete end-to-
end training of detectors. NMS is one step in the pipeline
that, for the most part, has evaded the end-to-end learn-
ing paradigm. All of the above detectors train the classifier
in a procedure that ignores the fact that the NMS problem
exists and then runs GreedyNMS as a disconnected post-
processing.

There is a need to overcome GreedyNMS due to its sig-
nificant conceptual shortcomings. GreedyNMS makes hard
decision by deleting detections and bases this decision on
one fixed parameter that controls how wide the suppression
is. A wide suppression would remove close-by high scor-
ing detections that are likely to be false positives that hurt
precision. On the other hand, if objects are close (e.g. in
crowded scenes), close-by detections can be true positives,
in which case suppression should be narrow to improve re-
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call. When objects are close-by, GreedyNMS is doomed to
sacrifice precision or recall independent of its parameter.

It is desirable to learn NMS to overcome these limita-
tions. An NMS approach based on neural network could
learn to adapt to the data distribution, overcome the trade-
off of GreedyNMS, and importantly could be incorporated
into a detector. In this paper we propose the first “pure NMS
network” which is able to do the task of non-maximum sup-
pression without image content or access to decisions of
another algorithm. Our network renders the need for final
GreedyNMS post-processing superfluous.

In section 3 we start by discussing with the underlying
issue: why is NMS needed at all? We discuss the task of
detection and how it relates to the specifics of detectors and
NMS. We identify two necessary ingredients that current
detectors are lacking and design an NMS network that con-
tains these ingredients (section 4); the result is conceptually
different than both GreedyNMS and current detectors. In
section 5, we report promising results that show that this
network is indeed capable of replacing GreedyNMS. We re-
port both single- (PETS pedestrians) and multi-class results
(COCO dataset), both showing improvements over Gree-
dyNMS.

We believe this work opens the door to true end-to-end
detectors.

2. Related work

Clustering detections. The de facto standard algorithm,
GreedyNMS, has survived several generations of detectors,
from Viola&Jones [32], over the deformable parts model
(DPM) [7], to the current state-of-the-art R-CNN family
[10, 9, 21]. Several other clustering algorithms have been
explored for the task of NMS without showing consistent
gains: mean-shift clustering [0, 35], agglomerative cluster-
ing [2], affinity propagation clustering [!7], and heuristic
variants [25]. Principled clustering formulations with glob-
ally optimal solutions have been proposed in [27, 23], al-
though they have yet to surpass the performance of Gree-
dyNMS.

Linking detections to pixels. Hough voting establishes
correspondences between detections and the image evi-
dence supporting them, which can avoid overusing image
content for several detections [15, 1, 14, 34]. Overall per-
formance of hough voting detectors remains comparatively
low. [37, 5] combine detections with semantic labelling,
while [36] rephrase detection as a labelling problem. Ex-
plaining detections in terms of image content is a sound for-
mulation but these works rely on image segmentation and
labelling, while our system operates purely on detections
without additional sources of information.

Co-occurrence. One line of work proposes to detect pairs
of objects instead of each individual objects in order to han-

dle strong occlusion [24, 29, 19]. It faces an even more
complex NMS problem, since single and double detections
need to be handled. [22] bases suppression decisions on es-
timated crowd density. Our method does neither use image
information nor is it hand-crafted to specifically detect pairs
of objects.

Auto-context. Some methods improve object detection by
jointly rescoring detections locally [30, 4] or globally [31]
using image information. These approaches tend to produce
fewer spread-out double detections and improve overall de-
tection quality, but still require NMS. We also approach the
problem of NMS as a rescoring task, but we completely
eliminate any post-processing.

Neural networks on graphs. A set of detections can be
seen as a graph where overlapping windows are represented
as edges in a graph of detections. [|8] operates on graphs,
but requires a pre-processing that defines a node ordering,
which is ill-defined in our case.

End-to-end learning for detectors. Few works have ex-
plored true end-to-end learning that includes NMS. One
idea is to include GreedyNMS at training time [33, 12],
making the classifier aware of the NMS procedure at test
time. This is conceptually more satisfying, but does not
make the NMS learnable. Another interesting idea is to di-
rectly generate a sparse set of detections, so NMS is un-
necessary, which is done in [26] by training an LSTM that
generates detections on overlapping patches of the image.
At the boundaries of neighbouring patches, objects might
be predicted from both patches, so post-processing is still
required. [13] design a convnet that combines decisions
of GreedyNMS with different overlap thresholds, allow-
ing the network to choose the GreedyNMS operating point
locally. None of these works actually completely remove
GreedyNMS from the final decision process that outputs a
sparse set of detections. Our network is capable of perform-
ing NMS without being given a set of suppression alterna-
tives to chose from and without having another final sup-
pression step.

3. Detection and non-maximum suppression

In this section we review non-maximum suppression
(NMS) and why it is necessary. In particular, we point out
why current detectors are conceptually incapable of produc-
ing exactly one detection per object and propose two neces-
sary ingredients for a detector to do so.

Present-day detectors do not return all detections that
have been scored, but instead use NMS as a post-processing
step to remove redundant detections. In order to have true
end-to-end learned detectors, we are interested in detectors
without any post-processing. To understand why NMS is
necessary, it is useful to look at the task of detection and
how it is evaluated.
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Object detection. The task of object detection is to map
an image to a set of boxes: one box per object of interest
in the image, each box tightly enclosing an object. This
means detectors ought to return exactly one detection per
object. Since uncertainty is an inherent part of the detection
process, evaluations allow detections to be associated to a
confidence. Confident erroneous detections are penalized
more than less confident ones. In particular mistakes that
are less confident than the least confident correct detection
are not penalized at all.

Detectors do not output what we want. The detection
problem can be interpreted as a classification problem that
estimates probabilities of object classes being present for
every possible detection in an image. This viewpoint gives
rise to “hypothesize and score” detectors that build a search
space of detections (e.g. sliding window, proposals) and es-
timate class probabilities independently for each detection.
As a result, two strongly overlapping windows covering the
same object will both result in high score since they look at
almost identical image content. In general, instead of one
detection per object, each object triggers several detections
of varying confidence, depending on how well the detection
windows cover the object.

GreedyNMS. Since the actual goal is to generate exactly
one detection per object (or exactly one high confidence
detection), a common practice (since at least 1994 [3]) is
to assume that highly overlapping detections belong to the
same object and collapse them into one detection. The pre-
dominant algorithm (GreedyNMS) accepts the highest scor-
ing detection, then rejects all detections that overlap more
than some threshold ©J and repeats the procedure with the
remaining detections, i.e. greedily accepting local maxima
and discarding their neighbours, hence the name. This al-
gorithm eventually also accepts wrong detections, which is
no problem if their confidence is lower than the confidence
of correct detections.

GreedyNMS is not good enough. This algorithm works
well if (1) the suppression is wide enough to always sup-
press high scoring detections triggered by same object and
(2) the suppression is narrow enough to never suppress high
scoring detections of the next closest object. If objects are
far apart condition (2) is easy to satisfy and a wide suppres-
sion works well. In crowded scenes with high occlusion
between objects there is a tension between wide and nar-
row suppression. In other words with one object per image
NMS is trivial, but highly occluded objects require a better
NMS algorithm.

3.1. A future without NMS

Striving for true end-to-end systems without hand
crafted algorithms we shall ask: Why do we need a hand
crafted post processing step? Why does the detector not
directly output one detection per object?

Independent processing of image windows leads to over-
lapping detection giving similar scores, this is a requirement
of robust functions: similar inputs lead to similar outputs.
A detector that outputs only one high scoring detection per
object thus has to be also conditioned on other detections:
multiple detections on the same object should be processed
jointly, so the detector can tell there are repeated detections
and only one of them should receive a high score.

Typical inference of detectors consist of a classifier that
discriminates between image content that contains an ob-
ject and image content that does not. The positive and neg-
ative training examples for this detector are usually defined
by some measure of overlap between objects and bound-
ing boxes. Since similar boxes will produce similar confi-
dences anyway, small perturbation of object locations can
be considered positive examples, too. This technique aug-
ments the training data and leads to more robust detectors.
Using this type of classifier training does not reward one
high scoring detection per object, and instead deliberately
encourages multiple high scoring detections per object.

From this analysis we can see that two key ingredients
are necessary in order for a detector to generate exactly one
detection per object:

1. A loss that penalises double detections to teach the de-
tector we want precisely one detection per object.

2. Joint processing of neighbouring detections so the de-
tector has the necessary information to tell whether an
object was detected multiple times.

In this paper, we explore a network design that accommo-
dates both ingredients. To validate the claim that these are
key ingredients and our the proposed network is capable of
performing NMS, we study our network in isolation with-
out end-to-end learning with the detector. That means the
network operates solely on scored detections without im-
age features and as such can be considered a “pure NMS
network”.

4. Doing NMS with a convnet

After establishing the two necessary requirements for a
convnet (convolutional network) to perform NMS in sec-
tion 3, this section presents our network that addresses both
(penalizing double detections in §4.1, joint processing of
detections in §4.2).

Our design avoids hard decisions and does not discard
detections to produce a smaller set of detections. Instead,
we reformulate NMS as a rescoring task that seeks to de-
crease the score of detections that cover objects that al-
ready have been detected, as in [ 1 3]. After rescoring, simple
thresholding is sufficient to reduce the set of detections. For
evaluation we pass the full set of rescored detections to the
evaluation script without any post processing.
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4.1. Loss

A detector is supposed to output exactly one high scoring
detection per object. The loss for such a detector must in-
hibit multiple detections of the same object, irrespective of
how close these detections are. Stewart and Andriluka [26]
use a Hungarian matching loss to accomplish that: success-
fully matched detections are positives and unmatched detec-
tions are negatives. The matching ensures that each object
can only be detected once and any further detection counts
as a mistake. Henderson and Ferrari [ | 2] present an average
precision (AP) loss that is also based on matching.

Ultimately a detector is judged by the evaluation crite-
rion of a benchmark, which in turn defines a matching strat-
egy to decide which detections are correct or wrong. This
is the matching that should be used at training time. Typ-
ically benchmarks sort detections in descending order by
their confidence and match detections in this order to ob-
jects, preferring most overlapping objects. Since already
matched objects cannot be matched again surplus detections
are counted as false positives that decrease the precision of
the detector. We use this matching strategy.

We use the result of the matching as labels for the clas-
sifier: successfully matched detections are positive training
examples, while unmatched detections are negative training
examples for a standard binary loss. Typically all detec-
tions that are used for training of a classifier have a label
associated as they are fed into the network. In this case
the network has access to detections and object annotations
and the matching layer generates labels, that depend on the
predictions of the network. Note how this class assignment
directly encourages the rescoring behaviour that we wish to
achieve.

Let d; denote a detection, y; € {—1, 1} indicate whether
or not d; was successfully matched to an object, and let
f denote the scoring function that jointly scores all detec-
tions on an image f ([d;]"_,) = [s;];—,. We train with the
weighted logistic loss

N
L(si, yi) = Zwyl log (1 +exp(—s; i)
i=1

Here loss per detection is coupled to the other detections
through the matching that produces y;.

The weighting w,, is used to counteract the extreme
class imbalance of the detection task. We choose the
weights so the expected class conditional weight of an ex-
ample equals a parameter E (w11 (y; = 1)) = 7.

When generalising to the multiclass setting, detections
are associated to both a confidence and a class. Since we
only rescore detections, we allow detections to be “switched
oft” but not to change their class. As a result, we only match
detections to objects of the same class, but the classifica-
tion problem remains binary and the above loss still applies.

zeros —» - loss

labels
with new score;
detections

annotations

(a) Training architecture.

zeros

new
- detection
score
e

(b) Test architecture.

Figure 2: High level diagram of the Gnet. FC denotes
fully connected layers. All features in this diagram have
128 dimensions (input vector and features between the lay-
ers/blocks), the output is a scalar.

When representing the detection scores, we use a one-hot
encoding: a zero vector that only contains the score at the
location in the vector that corresponds to the class. Since
mAP computation does not weight classes by their size, we
assign the instance weights in a way that their expected class
conditional weight is uniformly distributed.

4.2. “Chatty” windows

In order to effectively minimize the aforementioned loss,
we need our network to jointly process detections. To this
end we design a network with a repeating structure, which
we call blocks (sketched in figure 3). One block gives each
detection access to the representation of its neighbours and
subsequently updates its own representation. Stacking mul-
tiple blocks means the network alternates between allowing
every detection “talk” to its neighbours and updating its own
representation. We call this the GossipNet (Gnet), because
detections talk to their neighbours to update their represen-
tation.

There are two non-standard operations here that are key.
The first is a layer, that builds representations for pairs of
detections. This leads to the key problem: an irregular
number of neighbours for each detection. Since we want to
avoid the discretisation scheme used in [13], we will solve
this issue with pooling across detections (the second key).

Detection features. The blocks of our network take the de-
tection feature vector of each detection as input and outputs
an updated vector (see high-level illustration in figure 2).
Outputs from one block are input to the next one. The
values inside this ¢ = 128 dimensional feature vector are
learned implicitly during the training. The output of the last
block is used to generate the new detection score for each
detection.
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Figure 3: One block of our Gnet visualised for one detection. The representation of each detection is reduced and then
combined into neighbouring detection pairs and concatenated with detection pair features (hatched boxes, corresponding
features and detections have the same colour). Features of detection pairs are mapped independently through fully connected
layers. The variable number of pairs is reduced to a fixed-size representation by max-pooling. Pairwise computations are

done for each detection independently.

The first block takes an all-zero vector as input. The
detections’ information is fed into the network in the “pair-
wise computations” section of figure 3 as described below.
In future work this zero input could potentially be replaced
with image features.

Pairwise detection context. Each mini-batch consists of
all n detections on an image, each represented by a ¢ dimen-
sional feature vector, so the data has size n x ¢ and access-
ing to another detection’s representations means operating
within the batch elements. We use a detection context layer,
that, for every detection d;, generates all pairs of detections
(d;,d;) for which d; sufficiently overlaps with d; (IoU >
0.2). The representation of a pair of detections consists of
the concatenation of both detection representations and g di-
mensional detection pair features (see below), which yields
an [ = 2c¢ 4 g dimensional feature. To process each pair
of detections independently, we arrange the features of all
pairs of detections along the batch dimension: if detection
d; has k; neighbouring detection that yields a batch of size
K x I, where K = Y  (k; + 1) since we also include
the pair (d;, d;). Note that the number of neighbours k; (the
number of pairs) is different for every detection even within
one mini-batch. To reduce the variable sized neighbourhood
into a fixed size representation, our architecture uses global
max-pooling over all detection pairs that belong to the same
detection (K x [ — n x l), after which we can use normal
fully connected layers to update the detection representation
(see figure 3).

Detection pair features. The features for each detection
pair used in the detection context consists of several prop-
erties of a detection pair: (1) the intersection over union
(IoU), (2-4) the normalised distance in x and y direction
and the normalised 12 distance (normalized by the average
of width and height of the detection), (4-5) scale difference
of width and height (e.g. log (w;/w;)), (6) aspect ratio dif-
ference log (a;/a;), (7-8) the detection scores of both de-
tections. In the multi-class setup, each detection provides a

scores vector instead of a scalar thus increasing the number
of pair features. We feed all these raw features into 3 fully
connected layers, to learn the g detection pair features that
are used in each block.

Block. A block does one iteration allowing detections to
look at their respective neighbours and updating their repre-
sentation (sketched in figure 3). It consists of a dimension-
ality reduction, a pairwise detection context layer, 2 fully
connected layers applied to each pair independently, pool-
ing across detections, and two fully connected layers, where
the last one increases dimensionality again. The input and
output of a block are added as in the Resnet architecture
[11]. The first block receives zero features as inputs, so
all information that is used to make the decision is boot-
strapped from the detection pair features. The output of the
last block is used by three fully connected layers to predict
a new score for each detection independently (figure 2).

Parameters. Unless specified otherwise our networks have
16 blocks. The feature dimension for the detection features
is 128 and is reduced to 32 before building the pairwise
detection context. The detection pair features also have
32 dimensions. The fully connected layers after the last
block output 128 dimensional features. When we change
the feature dimension, we keep constant the ratio between
the number of features in each layer, so indicating the de-
tection feature dimension is sufficient.

Message passing. The forward pass over serveral stacked
blocks can be interpreted as message passing. Every de-
tection sends messages to all of its neighbours in order to
negotiate which detection is assigned an object and which
detections should decrease their scores. Instead of hand-
crafting the message passing algorithm and its rules, we de-
liberately let the network latently learn the messages that
are being passed.
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4.3. Remarks

The Gnet is fundamentally different than GreedyNMS in
the sense that all features are updated concurrently, while
GreedyNMS operates sequentially. Since Gnet does not
have access to GreedyNMS decisions (unlike [13]), it is sur-
prising how close performance of the two algorithms turns
out to be in section 5. Since we build a potentially big net-
work by stacking many blocks, the Gnet might require large
amounts of training data. In the experiments we deliberately
choose a setting with many training examples.

The Gnet is a pure NMS network in the sense that it has
no access to image features and operates solely on detec-
tions (box coordinates and a confidence). This means the
Gnet cannot be interpreted as extra layers to the detector.
The fact that it is a neural network and that it is possible to
feed in a feature vector (from the image or the detector) into
the first block makes it particularly suitable for combining
it with a detector, which we leave for future work.

The goal is to jointly rescore all detections on an im-
age. By allowing detections to look at their neighbours and
update their own representation, we enable conditional de-
pendence between detections. Together with the loss that
encourages exactly one detection per object, we have sat-
isfied both conditions from section 3. We will see in sec-
tion 5 that the performance is relatively robust to parameter
changes and works increasingly well for increasing depth.

5. Experiments

In this section we experimentally evaluate the proposed
architecture on the PETS and COCO dataset. We report
results for persons, and as well for the multi-class case.
Person category is by far the largest class on COCO, and
provides both crowded images and images with single per-
sons. Other than overall results, we also report separately
high and low occlusion cases. We are interested in perfor-
mance under occlusion, since this is the case in which non-
maximum suppression (NMS) is hard. All-in-all we show
a consistent improvement over of GreedyNMS, confirming
the potential of our approach.

All results are measured in average precision (AP),
which is the area under the recall-precision curve. The
overlap criterion (for matching detections to objects) is tra-
ditionally 0.5 IoU (as for Pascal VOC, noted as APy 5).
COCO also uses stricter criteria to encourage better locali-
sation quality, one such metric averages AP evaluated over
several overlap criteria in the range [0.5, 0.95] in 0.05 incre-
ments, which we denote by AP-2°.

5.1. PETS: Pedestrian detection in crowds

Dataset. PETS [8] is a dataset consisting of several
crowded sequences. It was used in [13] as a roughly sin-
gle scale pedestrian detection dataset with diverse levels
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Figure 5: Performance on the PETS test set for different
occlusion ranges.

of occlusion. Even though we aim for a larger and more
challenging dataset we first analyse our method in the setup
proposed in [13]. We use the same training and test set as
well as the same detections from [28], a model built specif-
ically to handle occlusions. We reduce the number of de-
tections with an initial GreedyNMS of 0.8 so we can fit the
joint rescoring of all detections into one GPU. (Note that
these detections alone lead to bad results, worse than “Gree-
dyNMS > 0.6 in 4, and this is very different to having input
of GreedyNMS of 0.5 as an input like in [13]).

Training. We train a model with 8 blocks and a 128 di-
mensional detection representation for 30k iterations, start-
ing with a learning rate of 10~2 and decrease it by 0.1 every
10k iterations.

Baselines. We compare to the (typically used) classic
GreedyNMS algorithm using several different overlap
thresholds, and the Strong Tnet from [13]. Since all meth-
ods operate on the same detections, the results are fully
comparable.

Analysis. Figure 4 compares our method with the Gree-
dyNMS baseline and the Tnet on the PETS test set. Start-
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ing from a wide GreedyNMS suppression with the threshold
1 = 0 shows almost a step function, since high scoring true
positives suppress all touching detections at the cost of also
suppressing other true positives (low recall). Gradually in-
creasing ¢ improves the maximum recall but also introduces
more high scoring false positives, so precision is decreasing.
This shows nicely the unavoidable trade-off due to having
a fixed threshold ¥} mentioned in section 3. The reason for
the clear trade-off is the diverse occlusion statistics present
in PETS.

Tnet performs better than the upper envelope of the
GreedyNMS, as it essentially recombines output of Gree-
dyNMS at a range of different thresholds. In comparison
our Gnet performs slightly better, despite not having access
to GreedyNMS decisions at all. Compared to the best Gree-
dyNMS performance, Gnet is able to improve by 4.8 AP.

Figure 5 shows performance separated into high and low
occlusion cases. Again, the Gnet performs slightly better
than Tnet. Performance in the occlusion range [0, 0.5) looks
very similar to the performance overall. For the highly oc-
cluded cases, the performance improvement of Gnet com-
pared to the best GreedyNMS is bigger with 7.3 AP. This
shows that the improvement for both Gnet and Tnet is
mainly due to improvements on highly occluded cases as
argued in section 3.

5.2. COCO: Person detection

Dataset. The COCO datasets consists of 80k training and
40k evaluation images. It contains 80 different categories
in unconstrained environments. We first mimic the PETS
setup and evaluate for persons only, and report multi-class
results in section 5.3.

Since annotations on the COCO test set are not available
and we want to explicitly show statistics per occlusion level,
we train our network on the full training set and evaluate us-
ing two different subsets of the validation set. One subset is
used to explore architectural choices for our network (mini-
val, 5k images') and the most promising model is evaluated
on the rest of the validation set (minitest, 35k images).

We use the Python implementation of Faster R-CNN
[21]? for generating detections. We train a model only on
the training set, so performance is slightly different than the
downloadable model, which has been trained on the training
and minitest sets. We run the detector with default param-
eters, but lower the detection score threshold and use de-
tection before the typical non-maximum suppression step.
There is no further preprocessing.

Training. We train the Gnet with ADAM for 2 - 106 itera-
tions, starting with a learning rate of 10~* and decreasing

'We use the same as used by Ross Girshick https://github.
com/rbgirshick/py-faster-rcnn/tree/master/data.
thtps://qithub.com/rbqirshick/py—faster—rcrm
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minival. Average over six runs, error bars show the stan-

dard deviation.

Al Occlusion | Occlusion
[0, 0.5) [0.5, 1]
Method APO,5 AP8§5 APO,5 Angf’ APO,5 AngS
— GreedyNMS>0.5| 65.6 35.6 | 65.2 352 |353 12.1
” Gnet, 8 blocks | 67.3 36.9 | 66.9 36.7 | 36.7 13.1
< GreedyNMS>0.5| 65.0 35.5 |61.8 33.8 {303 11.0
£ Gnet, 8 blocks | 66.6 36.7 | 66.8 36.1 |33.9 124

Table 1: Comparison between Gnet and GreedyNMS on
COCO persons minival and minitest. Results for the full
set and separated into occlusion levels.

it to 1075 after 10 iterations. The detection feature di-
mension is 128, the number of blocks is specified for each
experiment.

Speed. On average we have 67.3 person detection per im-
age, which the 16 block Gnet can process in 14ms/image on
a K40m GPU and unoptimised Tensorflow code.

Baselines. We use GreedyNMS as a baseline. To show it
in its best light we tune the optimal GreedyNMS overlap
threshold on the test set of each experiment.

Analysis. Figure 6 shows AP{-25 versus number of blocks
in Gnet. The optimal GreedyNMS thresholds are 0.5 and
0.4 for low and high occlusion respectively. Already with
one block our network performs on par with GreedyNMS,
with two blocks onwards we see a ~1 AP point gain. As in
PETS we see gains both for low and high occlusions. With
deeper architectures the variance between models for the
high occlusion case seems to be decreasing, albeit we ex-
pect to eventually suffer from over-fitting if the architecture
has too many free parameters.

We conclude that our architecture is well suited to re-
place GreedyNMS and is not particularly sensitive to the
number of blocks used. Table 1 shows detailed results for
Gnet with 8 blocks. The results from the validation set
(minival) transfer well to the test case (minitest), provid-
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Figure 7: APJ2° improvement of Gnet over the best Gree-
dyNMS threshold for each of the (sorted) 80 COCO classes.
Gnet improves on ~ 70 out of 80 categories. On aver-
age Gnet provides a ~1 mAPY2° point gain over per-class
tuned GreedyNMS (23.5 — 24.3% mAP)-2%).

ing a small but consistent improvement over a well tuned
GreedyNMS. Qualitative results are included in the supple-
mentary material.

We consider these encouraging results, confirming that
indeed the Gnet is capable of properly performing NMS
without access to image features or GreedyNMS decisions.

5.3. COCO multi-class

As discussed in section 4, Gnet is directly applicable to
the multi-class setup. We use the exact same parameters and
architecture selected for the persons case. The only change
is the replacement of the score scalar by a per-class score
vector in the input and output (see §4.2). We train one multi-
class Gnet model for all 80 COCO categories.

Figure 7 shows the mAP{-25 improvement of Gnet over
a per-class tuned GreedyNMS. We obtain improved results
on the bulk of the object classes, and no catastrophic fail-
ure is observed, showing that Gnet is well suited to handle
all kind of object categories. Averaged across classes Gnet
obtains 24.3% mAP{-2°, compared to 23.5% for a test-set
tuned GreedyNMS. Overall we argue Gnet is a suitable re-
placement for GreedyNMS.

Supplementary material includes the detailed per-class
table.

6. Conclusion

In this work we have opened the door for training de-
tectors that no longer need a non-maximum suppression
(NMS) post-processing step. We have argued that NMS
is usually needed as post-processing because detectors are
commonly trained to have robust responses and process
neighbouring detections independently. We have identified
two key ingredients missing in detectors that are necessary
to build an NMS network: (1) a loss that penalises double
detections and (2) joint processing of detections.

We have introduced the Gnet, the first “pure” NMS net-
work that is fully capable of performing the NMS task with-
out having access to image content nor help from another
algorithm. Being a neural network, it lends itself to being
incorporated into detectors and having access to image fea-
tures in order to build detectors that can be trained truly
end-to-end. These end-to-end detectors will not require any
post-processing.

The experimental results indicate that, with enough
training data, the proposed Gnet is a suitable replacement
for GreedyNMS both for single- or multi-class setups. The
network surpasses GreedyNMS in particular for occluded
cases and provides improved localization.

In its current form the Gnet requires large amounts of
training data and it would benefit from future work on data
augmentation or better initialisation by pre-training on syn-
thetic data. Incorporating image features could have a big
impact, as they have the potential of informing the network
about the number of objects in the image.

We believe the ideas and results discussed in this work
point to a future where the distinction between detector and
NMS will disappear.
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