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Figure 1: We describe a detector that can find around 800 faces out of the reportedly 1000 present, by making use of novel

characterizations of scale, resolution, and context to find small objects. Detector confidence is given by the colorbar on the

right: can you confidently identify errors?

Abstract

Though tremendous strides have been made in object

recognition, one of the remaining open challenges is detect-

ing small objects. We explore three aspects of the problem in

the context of finding small faces: the role of scale invari-

ance, image resolution, and contextual reasoning. While

most recognition approaches aim to be scale-invariant, the

cues for recognizing a 3px tall face are fundamentally dif-

ferent than those for recognizing a 300px tall face. We take

a different approach and train separate detectors for differ-

ent scales. To maintain efficiency, detectors are trained in a

multi-task fashion: they make use of features extracted from

multiple layers of single (deep) feature hierarchy. While

training detectors for large objects is straightforward, the

crucial challenge remains training detectors for small ob-

jects. We show that context is crucial, and define templates

that make use of massively-large receptive fields (where

99% of the template extends beyond the object of interest).

Finally, we explore the role of scale in pre-trained deep

networks, providing ways to extrapolate networks tuned

for limited scales to rather extreme ranges. We demon-

strate state-of-the-art results on massively-benchmarked

face datasets (FDDB and WIDER FACE). In particular,

when compared to prior art on WIDER FACE, our results

reduce error by a factor of 2 (our models produce an AP

of 81% while prior art ranges from 29-64%).

1. Introduction

Though tremendous strides have been made in object

recognition, one of the remaining open challenges is detect-

ing small objects. We explore three aspects of the prob-
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Figure 2: Different approaches for capturing scale-invariance. Traditional approaches build a single-scale template that is

applied on a finely-discretized image pyramid (a). To exploit different cues available at different resolutions, one could

build different detectors for different object scales (b). Such an approach may fail on extreme object scales that are rarely

observed in training (or pre-training) data. We make use of a coarse image pyramid to capture extreme scale challenges in (c).

Finally, to improve performance on small faces, we model additional context, which is efficiently implemented as a fixed-size

receptive field across all scale-specific templates (d). We define templates over features extracted from multiple layers of a

deep model, which is analogous to foveal descriptors (e).

lem in the context of face detection: the role of scale in-

variance, image resolution and contextual reasoning. Scale-

invariance is a fundamental property of almost all current

recognition and object detection systems. But from a prac-

tical perspective, scale-invariance cannot hold for sensors

with finite resolution: the cues for recognizing a 300px tall

face are undeniably different that those for recognizing a

3px tall face.

Multi-task modeling of scales: Much recent work in

object detection makes use of scale-normalized classifiers

(e.g., scanning-window detectors run on an image pyra-

mid [5] or region-classifiers run on “ROI”-pooled image

features [7, 18]). When resizing regions to a canonical tem-

plate size, we ask a simple question –what should the size

of the template be? On one hand, we want a small template

that can detect small faces; on the other hand, we want a

large template that can exploit detailed features (of say, fa-

cial parts) to increase accuracy. Instead of a “one-size-fits-

all” approach, we train separate detectors tuned for differ-

ent scales (and aspect ratios). Training a large collection

of scale-specific detectors may suffer from lack of training

data for individual scales and inefficiency from running a

large number of detectors at test time. To address both con-

cerns, we train and run scale-specific detectors in a multi-

task fashion : they make use of features defined over mul-

tiple layers of single (deep) feature hierarchy. While such

a strategy results in detectors of high accuracy for large ob-

jects, finding small things is still challenging.

How to generalize pre-trained networks? We pro-

vide two remaining key insights to the problem of find-

ing small objects. The first is an analysis of how best to

extract scale-invariant features from pre-trained deep net-

works. We demonstrate that existing networks are tuned for

objects of a characteristic size (encountered in pre-training

datasets such as ImageNet). To extend features fine-tuned

from these networks to objects of novel sizes, we employ a

simply strategy: resize images at test-time by interpolation

and decimation. While many recognition systems are ap-

plied in a “multi-resolution” fashion by processing an image

pyramid, we find that interpolating the lowest layer of the

pyramid is particularly crucial for finding small objects [5].

Hence our final approach (Fig. 2) is a delicate mixture of

scale-specific detectors that are used in a scale-invariant

fashion (by processing an image pyramid to capture large

scale variations).

How best to encode context? Finding small objects is

fundamentally challenging because there is little signal on

the object to exploit. Hence we argue that one must use

image evidence beyond the object extent. This is often for-

mulated as “context”. In Fig. 3, we present a simple human

experiment where users attempt to classify true and false

positive faces (as given by our detector). It is dramatically

clear that humans need context to accurately classify small

faces. Though this observation is quite intuitive and highly

explored in computer vision [16, 21], it has been notori-

ously hard to quantifiably demonstrate the benefit of con-

text in recognition [4, 6, 22]. One of the challenges ap-

pears to be how to effectively encode large image regions.

We demonstrate that convolutional deep features extracted

from multiple layers (also known as “hypercolumn” fea-

tures [8, 14]) are effective “foveal” descriptors that capture

both high-resolution detail and coarse low-resolution cues

across large receptive field (Fig. 2 (e)). We show that high-

resolution components of our foveal descriptors (extracted

from lower convolutional layers) are crucial for such accu-

rate localization in Fig. 5.

Our contribution: We provide an in-depth analysis of

image resolution, object scale, and spatial context for the

purposes of finding small faces. We demonstrate state-

of-the-art results on massively-benchmarked face datasets

(FDDB and WIDER FACE). In particular, when compared

to prior art on WIDER FACE, our results reduce error by a

factor of 2 (our models produce an AP of 81% while prior

art ranges from 29-64%).
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Figure 3: On the left, we visualize a large and small face,

both with and without context. One does not need context

to recognize the large face, while the small face is dramat-

ically unrecognizable without its context. We quantify this

observation with a simple human experiment on the right,

where users classify true and false positive faces of our pro-

posed detector. Adding proportional context (by enlarging

the window by 3X) provides a small improvement on large

faces but is insufficient for small faces. Adding a fixed con-

textual window of 300 pixels dramatically reduces error on

small faces by 20%. This suggests that context should be

modeled in a scale-variant manner. We operationalize this

observation with foveal templates of massively-large recep-

tive fields (around 300x300, the size of the yellow boxes).

2. Related work

Scale-invariance: The vast majority of recognition

pipelines focus on scale-invariant representations, dating

back to SIFT[15]. Current approaches to detection such as

Faster RCNN [18] subscribe to this philosophy as well, ex-

tracting scale-invariant features through ROI pooling or an

image pyramid [19]. We provide an in-depth exploration

of scale-variant templates, which have been previously pro-

posed for pedestrian detection[17], sometimes in the con-

text of improved speed [3]. SSD [13] is a recent technique

based on deep features that makes use of scale-variant tem-

plates. Our work differs in our exploration of context for

tiny object detection.

Context: Context is key to finding small instances as

shown in multiple recognition tasks. In object detection, [2]

stacks spatial RNNs (IRNN[11]) model context outside the

region of interest and shows improvements on small object

detection. In pedestrian detection, [17] uses ground plane

estimation as contextual features and improves detection on

small instances. In face detection, [27] simultaneously pool

ROI features around faces and bodies for scoring detections,

which significantly improve overall performance. Our pro-

posed work makes use of large local context (as opposed to

a global contextual descriptor [2, 17]) in a scale-variant way

(as opposed to [27]). We show that context is mostly useful

for finding low-resolution faces.

Multi-scale representation: Multi-scale representation

has been proven useful for many recognition tasks. [8, 14,

1] show that deep multi-scale descriptors (known as “hy-

percolumns”) are useful for semantic segmentation. [2, 13]

demonstrate improvements for such models on object detec-

tion. [27] pools multi-scale ROI features. Our model uses

“hypercolumn” features, pointing out that fine-scale fea-

tures are most useful for localizing small objects (Sec. 3.1

and Fig. 5).

RPN: Our model superficially resembles a region-

proposal network (RPN) trained for a specific object class

instead of a general “objectness” proposal generator [18].

The important differences are that we use foveal descrip-

tors (implemented through multi-scale features), we select

a range of object sizes and aspects through cross-validation,

and our models make use of an image pyramid to find ex-

treme scales. In particular, our approach for finding small

objects make use of scale-specific detectors tuned for inter-

polated images. Without these modifications, performance

on small-faces dramatically drops by more than 10% (Ta-

ble 1).

3. Exploring context and resolution

In this section, we present an exploratory analysis of the

issues at play that will inform our final model. To frame

the discussion, we ask the following simple question: what

is the best way to find small faces of a fixed-size (25x20)?.

By explicitly factoring out scale-variation in terms of the

desired output, we can explore the role of context and the

canonical template size. Intuitively, context will be crucial

for finding small faces. Canonical template size may seem

like a strange dimension to explore - given that we want to

find faces of size 25x20, why define a template of any size

other than 25x20? Our analysis gives a surprising answer

of when and why this should be done. To better understand

the implications of our analysis, along the way we also ask

the analogous question for a large object size: what is the

best way to find large faces of a fixed-size (250x200)?.

Setup: We explore different strategies for building

scanning-window detectors for fixed-size (e.g., 25x20)

faces. We treat fixed-size object detection as a binary

heatmap prediction problem, where the predicted heatmap

at a pixel position (x, y) specifies the confidence of a fixed-

size detection centered at (x, y). We train heatmap predic-

tors using a fully convolutional network (FCN) [14] defined

over a state-of-the-art architecture ResNet [9]. We explore

multi-scale features extracted from the last layer of each

res-block, i.e. (res2cx, res3dx, res4fx, res5cx) in terms of

ResNet-50. We will henceforth refer to these as (res2, res3,

res4, res5) features. We discuss the remaining particulars of

our training pipeline in Section 5.
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Figure 4: Modeling additional context helps, especially for

finding small faces. The improvement from adding context

to a tight-fitting template is greater for small faces (18.9%)

than for large faces (1.5%). Interestingly smaller receptive

fields do better for small faces, because the entire face is

visible. The green box represents the actual face size, while

dotted boxes represent receptive fields associated with fea-

tures from different layers (cyan = res2, light-blue = res3,

dark-blue = res4, black = res5). Same colors are used in

Figures 5 and 7.

3.1. Context

Fig. 4 presents an analysis of the effect of context, as

given by the size of the receptive field (RF) used to make

heatmap prediction. Recall that for fixed-size detection

window, we can choose to make predictions using features

with arbitrarily smaller or larger receptive fields compared

to this window. Because convolutional features at higher

layers tend to have larger receptive fields (e.g., res4 features

span 291x291 pixels), smaller receptive fields necessitate

the use of lower layer features. We see a number of general

trends. Adding context almost always helps, though even-

tually additional context for tiny faces (beyond 300x300

pixels) hurts. We verified that this was due to over-fitting

(by examining training and test performance). Interestingly,

smaller receptive fields do better for small faces, because

the entire face is visible - it is hard to find large faces if one

looks for only the tip of the nose. More importantly, we

analyze the impact of context by comparing performance

of a “tight” RF (restricted to the object extent) to the best-

scoring “loose” RF with additional context. Accuracy for

small faces improves by 18.9%, while accuracy for large

faces improves by 1.5%, consistent with our human exper-

iments (that suggest that context is most useful for small

instances). Our results suggest that we can build multi-

task templates for detectors of different sizes with identi-

cal receptive fields (of size 291x291), which is particularly

simple to implement as a multi-channel heatmap prediction

problem (where each scale-specific channel and pixel posi-

Figure 5: Foveal descriptor is crucial for accurate detection

on small objects. The small template (top) performs 7%

worse with only res4 and 33% worse with only res5. On the

contrary, removing foveal structure does not hurt the large

template (bottom), suggesting high-resolution from lower

layers is mostly useful for finding small objects!

tion has its own binary loss). In Fig. 5, we compare between

descriptors with and without foveal structure, which shows

that high-resolution components of our foveal descriptors

are crucial for accurate detection on small instances.

3.2. Resolution

We now explore a rather strange question. What if we

train a template whose size intentionally differs from the

target object to be detected? In theory, one can use a

“medium”-size template (50x40) to find small faces (25x20)

on a 2X upsampled (interpolated) test image. Fig. 7 actu-

ally shows the surprising result that this noticeably boosts

performance, from 69% to 75%! We ask the reverse ques-

tion for large faces: can one find large faces (250x200) by

running a template tuned for “medium” faces (125x100) on

test images downsampled by 2X? Once again, we see a no-

ticeable increase in performance, from 89% to 94%!

One explanation is that we have different amounts of

training data for different object sizes, and we expect bet-

ter performance for those sizes with more training data.

A recurring observation in “in-the-wild” datasets such as

WIDER FACE and COCO [12] is that smaller objects

greatly outnumber larger objects, in part because more

small things can be labeled in a fixed-size image. We verify

this for WIDER FACE in Fig. 9 (gray curve). While imbal-

anced data may explain why detecting large faces is easier

with medium templates (because there are more medium-

sized faces for training), it does not explain the result for

small faces. There exists less training examples of medium

faces, yet performance is still much better using a medium-

size template.

We find that the culprit lies in the distribution of object

scales in the pre-trained dataset (ImageNet). Fig. 6 reveals

that 80% of the training examples in ImageNet contain ob-

jects of a “medium” size, between 40 to 140px. Specifically,

we hypothesize that the pre-trained ImageNet model (used
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Figure 6: The distribution of average object scales in

the ImageNet dataset (assuming images are normalized to

224x224). More than 80% categories have an average ob-

ject size between 40 and 140 pixel. We hypothesize that

models pre-trained on ImageNet are optimized for objects

in that range.

for fine-tuning our scale-specific detectors) is optimized for

objects in that range, and that one should bias canonical-

size template sizes to lie in that range when possible. We

verify this hypothesis in the next section, where we describe

a pipeline for building scale-specific detectors with varying

canonical resolutions.

4. Approach: scale-specific detection

It is natural to ask a follow-up question: is there a gen-

eral strategy for selecting template resolutions for particu-

lar object sizes? We demonstrate that one can make use of

multi-task learning to “brute-force” train several templates

at different resolution, and greedily select the ones that do

the best. As it turns out, there appears to be a general strat-

egy consistent with our analysis in the previous section.

First, let us define some notation. We use t(h,w, σ) to

represent a template. Such a template is tuned to detect

objects of size (h/σ,w/σ) at resolution σ. For example,

the right-hand-side Fig 7 uses both t(250, 200, 1) (top) and

t(125, 100, 0.5) (bottom) to find 250x200 faces.

Given a training dataset of images and bounding boxes,

we can define a set of canonical bounding box shapes that

roughly covers the bounding box shape space. In this pa-

per, we define such canonical shapes by clustering, which

is derived based on Jaccard distance d(Eq. (1)):

d(si, sj) = 1− J(si, sj) (1)

where, si = (hi, wi) and sj = (hj , wj) are a pair of bound-

ing box shapes and J represents the standard Jaccard simi-

larity (intersection over union overlap).

Now for each target object size si = (hi, wi), we ask:

what σi will maximize performance of ti(σihi, σiwi, σi)?
To answer, we simply train separate multi-task models for

each value of σ ∈ Σ (some fixed set) and take the max

Figure 7: Building templates at original resolution is not op-

timal. For finding small (25x20) faces, building templates

at 2x resolution improves overall accuracy by 6.3%; while

for finding large (250x200) faces, building templates at 0.5x

resolution improves overall accuracy by 5.6%.

Method Easy Medium Hard

RPN 0.896 0.847 0.716

HR-ResNet101 (Full) 0.919 0.908 0.823

HR-ResNet101 (A+B) 0.925 0.914 0.831

Table 1: Pruning away redundant templates does not hurt

performance (validation). As a reference, we also included

the performance of a vanilla RPN as mentioned in Sec. 2.

Please refer to Fig. 10 for visualization of (Full) and (A+B).

for each object size. We plot the performance of each

resolution-specific multi-task model as a colored curve in

Fig. 9. With optimal σi for each (hi, wi), we retrain one

multi-task model with “hybrid” resolutions (referred to as

HR), which in practice follows the upper envelope of all the

curves. Interestingly, there exist natural regimes for differ-

ent strategies: to find large objects (greater than 140px in

height), use 2X smaller canonical resolution. To find small

objects (less than 40px in height), use 2X larger canonical

template resolution. Otherwise, use the same (1X) resolu-

tion. Our results closely follow the statistics of ImageNet

(Fig. 6), for which most objects fall into this range.

Pruning: The hybrid-resolution multitask model in

the previous section is somewhat redundant. For exam-

ple, template (62, 50, 2), the optimal template for finding

31x25 faces, is redundant given the existence of template

(64, 50, 1), the optimal template for finding 64x50 faces.

Can we prune away such redundancies? Yes! We refer

the reader to the caption in Fig. 10 for an intuitive descrip-

tion. As Table 1 shows, pruning away redundant templates

led to some small improvement. Essentially, our model can

be reduced to a small set of scale-specific templates (tuned

for 40-140px tall faces) that can be run on a coarse image

pyramid (including 2X interpolation), combined with a set

of scale-specific templates designed for finding small faces

(less than 20px in height) in 2X interpolated images.
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Figure 8: Overview of our detection pipeline. Starting with an input image, we first create a coarse image pyramid (including

2X interpolation). We then feed the scaled input into a CNN to predict template responses (for both detection and regression)

at every resolution. In the end, we apply non-maximum suppression (NMS) at the original resolution to get the final detection

results. The dotted box represents the end-to-end trainable part. We run A-type templates (tuned for 40-140px tall faces) on

the coarse image pyramid (including 2X interpolation), while only run B-type (tuned for less than 20px tall faces) templates

on only 2X interpolated images (Fig. 10)

4.1. Architecture

We visualize our proposed architecture in Fig. 8. We

train binary multi-channel heatmap predictors to report ob-

ject confidences for a range of face sizes (40-140px in

height). We then find larger and smaller faces with a coarse

image pyramid, which importantly includes a 2X upsam-

pling stage with special-purpose heatmaps that are pre-

dicted only for this resolution (e.g., designed for tiny faces

shorter than 20 pixels). For the shared CNNs, we experi-

mented with ResNet101, ResNet50, and VGG16. Though

ResNet101 performs the best, we included performance of

all models in Table 2. We see that all models achieve sub-

stantial improvement on “hard” set over prior art, including

CMS-RCNN[27] , which also models context, but in a pro-

portional manner (Fig. 3).

Details: Given training images with ground-truth an-

notations of objects and templates, we define positive lo-

cations to be those where IOU overlap exceeds 70%, and

negative locations to be those where the overlap is below

30% (all other locations are ignored by zero-ing out the

gradient ). Note that this implies that each large object

instance generates many more positive training examples

than small instances. Since this results in a highly imbal-

anced binary classification training set, we make use of bal-

anced sampling [7] and hard-example mining [20] to ame-

liorate such effects. We find performance increased with

a post-processing linear regressor that fine-tuned reported

bounding-box locations. To ensure that we train on data

similar to test conditions, we randomly resize training data

to the range of Σ resolution that we consider at test-time

(0.5x,1x,2x) and learn from a fixed-size random crop of

Method Easy Medium Hard

ACF[23] 0.659 0.541 0.273

Two-stage CNN[25] 0.681 0.618 0.323

Multiscale Cascade CNN[24] 0.691 0.634 0.345

Faceness[24] 0.713 0.664 0.424

Multitask Cascade CNN[26] 0.848 0.825 0.598

CMS-RCNN[27] 0.899 0.874 0.624

HR-VGG16 0.862 0.844 0.749

HR-ResNet50 0.907 0.890 0.802

HR-ResNet101 0.919 0.908 0.823

Table 2: Validation performance of our models with dif-

ferent architectures. ResNet101 performs slightly better

than ResNet50 and much better than VGG16. Importantly,

our VGG16-based model already outperforms prior art by a

large margin on “hard” set.

500x500 regions per image (to take advantage of batch pro-

cessing). We fine-tune pre-trained ImageNet models on

the WIDER FACE training set with a fixed learning rate

of 10−4, and evaluate performance on the WIDER FACE

validation set (for diagnostics) and held-out testset. To gen-

erate final detections, we apply standard NMS to the de-

tected heatmap with an overlap threshold of 30%. We dis-

cuss more training details of our procedure in the supple-

mentary material. Both our code and models are available

online at https://www.cs.cmu.edu/˜peiyunh/tiny.

5. Experiments

WIDER FACE: We train a model with 25 templates on

WIDER FACE’s training set and report the performance of

our best model HR-ResNet101 (A+B) on the held-out test
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Figure 9: Template resolution analysis. X-axis represents

target object sizes, derived by clustering. Left Y-axis shows

AP at each target size (ignoring objects with more than 0.5

Jaccard distance). Natural regimes emerge in the figure: for

finding large faces (more than 140px in height), build tem-

plates at 0.5 resolution; for finding smaller faces (less than

40px in height), build templates at 2X resolution. For sizes

in between, build templates at 1X resolution. Right Y-axis

along with the gray curve shows the number of data within

0.5 Jaccard distance for each object size, suggesting that

more small faces are annotated.

set. As Fig. 11 shows, our hybrid-resolution model (HR)

achieves state-of-the-art performance on all difficulty lev-

els, but most importantly, reduces error on the “hard” set

by 2X. Note that “hard” set includes all faces taller than

10px, hence more accurately represents performance on the

full testset. We visualize our performance under some chal-

lenging scenarios in Fig. 13. Please refer to the benchmark

website for full evaluation and our supplementary material

for more quantitative diagnosis [10].

FDDB: We test our WIDER FACE-trained model on

FDDB. Our out-of-the-box detector (HR) outperforms all

published results on the discrete score, which uses a stan-

dard 50% intersection-over-union threshold to define cor-

rectness. Because FDDB uses bounding ellipses while

WIDER FACE using bounding boxes, we train a post-hoc

linear regressor to transform bounding box predictions to

ellipses. With the post-hoc regressor, our detector achieves

state-of-the-art performance on the continuous score (mea-

suring average bounding-box overlap) as well. Our regres-

sor is trained with 10-fold cross validation. Fig. 12 plots

the performance of our detector both with and without the

elliptical regressor (ER). Qualitative results are shown in

Fig. 14. Please refer to our supplementary material for a

formulation of our elliptical regressor.

Run-time: Our run-time is dominated by running a

“fully-convolutional” network across a 2X-upsampled im-

Figure 10: Pruning away redundant templates. Suppose we

test templates built at 1X resolution (A) on a coarse im-

age pyramid (including 2X interpolation). They will cover

a larger range of scale except extremely small sizes, which

are best detected using templates built at 2X, as shown in

Fig. 9. Therefore, our final model can be reduced to two

small sets of scale-specific templates: (A) tuned for 40-

140px tall faces and are run on a coarse image pyramid (in-

cluding 2X interpolation) and (B) tuned for faces shorter

than 20px and are only run in 2X interpolated images.

age. Our Resnet101-based detector runs at 1.4FPS on

1080p resolution and 3.1FPS on 720p resolution. Impor-

tantly, our run-time is independent of the number of faces

in an image. This is in contrast to proposal-based detectors

such as Faster R-CNN [18], which scale linearly with the

number of proposals.

Conclusion: We propose a simple yet effective frame-

work for finding small objects, demonstrating that both

large context and scale-variant representations are crucial.

We specifically show that massively-large receptive fields

can be effectively encoded as a foveal descriptor that cap-

tures both coarse context (necessary for detecting small ob-

jects) and high-resolution image features (helpful for local-

izing small objects). We also explore the encoding of scale

in existing pre-trained deep networks, suggesting a simple

way to extrapolate networks tuned for limited scales to more

extreme scenarios in a scale-variant fashion. Finally, we

use our detailed analysis of scale, resolution, and context

to develop a state-of-the-art face detector that significantly

outperforms prior work on standard benchmarks.
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Figure 11: Precision recall curves on

WIDER FACE “hard” testset. Com-

pared to prior art, our approach (HR) re-

duces error by 2X.
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Figure 12: ROC curves on FDDB-test. Our pre-trained detector (HR) produces

state-of-the-art discrete detections (left). By learning a post-hoc regressor that

converts bounding boxes to ellipses, our approach (HR-ER) produces state-of-

the-art continuous overlaps as well (right). We compare to only published results.

Figure 13: Qualitative results on WIDER FACE. We visualize one example for each attribute and scale. Our proposed

detector is able to detect faces at a continuous range of scales, while being robust to challenges such as expression, blur,

illumination etc. Please zoom in to look for some very small detections.

Figure 14: Qualitative results on FDDB. Green ellipses are ground truth, blue bounding boxes are detection results, and

yellow ellipses are regressed ellipses. Our proposed detector is robust to heavy occlusion, heavy blur, large appearance and

scale variance. Interestingly, many faces under such challenges are not even annotated (second example).
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