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Abstract

People often refer to entities in an image in terms of their

relationships with other entities. For example, the black cat

sitting under the table refers to both a black cat entity and

its relationship with another table entity. Understanding

these relationships is essential for interpreting and ground-

ing such natural language expressions. Most prior work

focuses on either grounding entire referential expressions

holistically to one region, or localizing relationships based

on a fixed set of categories. In this paper we instead present

a modular deep architecture capable of analyzing referen-

tial expressions into their component parts, identifying en-

tities and relationships mentioned in the input expression

and grounding them all in the scene. We call this approach

Compositional Modular Networks (CMNs): a novel archi-

tecture that learns linguistic analysis and visual inference

end-to-end. Our approach is built around two types of neu-

ral modules that inspect local regions and pairwise interac-

tions between regions. We evaluate CMNs on multiple ref-

erential expression datasets, outperforming state-of-the-art

approaches on all tasks.

1. Introduction

Great progress has been made on object detection, the

task of localizing visual entities belonging to a pre-defined

set of categories [8, 23, 22, 6, 16]. But the more general

and challenging task of localizing entities based on arbi-

trary natural language expressions remains far from solved.

This task, sometimes known as grounding or referential ex-

pression comprehension, has been explored by recent work

in both computer vision and natural language processing

[19, 10, 24]. Given an image and a natural language ex-

pression referring to a visual entity, such as the young man

wearing green shirt and riding a black bicycle, these ap-

proaches localize the image region corresponding to the en-

tity that the expression refers to with a bounding box.

Referential expressions often describe relationships be-
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Figure 1. Given an image and an expression, we learn to parse the

expression into vector representation of subject qsubj , relationship

qrel and object qobj with attention, and align these textual compo-

nents to image regions with two types of modules. The localization

module outputs scores over each individual region while the rela-

tionship module produces scores over region pairs. These outputs

are integrated into final scores over region pairs, producing the top

region pair as grounding result. (Best viewed in color.)

tween multiple entities in an image. In Figure 1, the expres-

sion the woman holding a grey umbrella describes a woman

entity that participates in a holding relationship with a grey

umbrella entity. Because there are multiple women in the

image, resolving this referential expression requires both

finding a bounding box that contains a person, and ensur-

ing that this bounding box relates in the right way to other

objects in the scene. Previous work on grounding refer-

ential expressions either (1) treats referential expressions

holistically, thus failing to model explicit correspondence

between textual components and visual entities in the im-

age [19, 10, 24, 32, 20], or else (2) relies on a fixed set of
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entity and relationship categories defined a priori [17].

In this paper, we present a joint approach that explic-

itly models the compositional linguistic structure of referen-

tial expressions and their groundings, but which nonetheless

supports interpretation of arbitrary language. We focus on

referential expressions involving inter-object relationships

that can be represented as a subject entity, a relationship and

an object entity. We propose Compositional Modular Net-

works (CMNs), an end-to-end trained model that learns lan-

guage representation and image region localization jointly

as shown in Figure 1. Our model differentiably parses the

referential expression into a subject, relationship and ob-

ject with three soft attention maps, and aligns the extracted

textual representations with image regions using a modu-

lar neural architecture. There are two types of modules in

our model, one used for localizing specific textual compo-

nents by outputting unary scores over regions for that com-

ponent, and one for determining the relationship between

two pairs of bounding boxes by outputting pairwise scores

over region-region pairs. We evaluate our model on mul-

tiple datasets, and show that our model outperforms both

natural baselines and previous work.

2. Related work

Grounding referential expressions. The problem of

grounding referential expressions can be naturally formu-

lated as a retrieval problem over image regions [19, 10, 24,

7, 32, 20]. First, a set of candidate regions are extracted

(e.g. via object proposal methods like [28, 4, 12, 35]). Next,

each candidate region is scored by a model with respect to

the query expression, returning the highest scoring candi-

date as the grounding result. In [19, 10], each region is

scored based on its local visual features and some global

contextual features from the whole image. However, local

visual features and global contextual from the whole image

are often insufficient to determine whether a region matches

an expression, as relationships with other regions in the im-

age must also be considered. Two recent methods [32, 20]

go beyond local visual features in a single region, and con-

sider multiple regions at the same time. [32] adds contex-

tual feature extracted from other regions in the image, and

[20] proposes a model that grounds a referential expression

into a pair of regions. All these methods represent language

holistically using a recurrent neural network: either gener-

atively, by predicting a distribution over referential expres-

sions [19, 10, 32, 20], or discriminatively, by encoding ex-

pressions into a vector representation [24, 7]. This makes it

difficult to learn explicit correspondences between the com-

ponents in the textual expression and entities in the image.

In this work, we learn to parse the language expression into

textual components in instead of treating it as a whole, and

align these components with image regions end-to-end.

Handling inter-object relationships. Recently work by

[17] trains detectors based on RCNN [8] and uses a linguis-

tic prior to detect visual relationships. However, this work

relies on fixed, predefined categories for subjects, relations,

and objects, treating entities like “bicycle” and relationships

like and “riding” as discrete classes. Instead of building

upon a fixed inventory of classes, our model handles re-

lationships specified by arbitrary natural language phrases,

and jointly learns expression parsing and visual entity lo-

calization. Although [14] also learns language parsing and

perception, it is directly based on logic (λ-calculus) and re-

quires additional classifiers trained for each predicate class.

Aside from localizing relationship expressions, [30] gener-

ates image descriptions using a recurrent network with at-

tention over image feature grids, and [25, 31] learns to ex-

tract visual relation knowledge from images.

Compositional structure with modules. Neural Mod-

ule Networks [3] address visual question answering by de-

composing the questions into textual components and dy-

namically assembling a specific network architecture for the

question from a few network modules based on the textual

components. However, this method relies on an external

language parser for textual analysis instead of end-to-end

learned language representation, and is not directly appli-

cable to the task of grounding referential expressions into

bounding boxes, since it does not explicitly output bound-

ing boxes as results. Recently, [2] improves over [3] by

learning to re-rank parsing outputs from the external parser,

but it is still not end-to-end learned since the parser is fixed

and not optimized for the task. Inspired by [3], our model

also uses a modular structure, but learns the language rep-

resentation end-to-end from words.

3. Our model

We propose Compositional Modular Networks (CMNs)

to localize visual entities described by a query referential

expression. Our model is compositional in the sense that it

localizes a referential expression by grounding the compo-

nents in the expressions and exploiting their interactions, in

accordance with the principle of compositionality of natu-

ral language – the meaning of a complex expression is de-

termined by the meanings of its constituent expressions and

the rules used to combine them [29]. Our model works in a

retrieval setting: given an image I , a referential expression

Q as query and a set of candidate region bounding boxes

B = {bi} for the image I (e.g. extracted through object pro-

posal methods), our model outputs a score for each bound-

ing box bi, and returns the bounding box with the highest

score as grounding (localization) result. Unlike state-of-the-

art methods [24, 7], the scores for each region bounding box

bi ∈ B are not predicted only from the local feature of bi,
but also based on other regions in the image. In our model,

we focus on the relationships in referential expressions that

can be represented as a 3-component triplet (subject,
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Figure 2. Detailed illustration of our model. (a) Our model learns to parse an expression into subject, relationship and object with attention

for language representation (Sec. 3.1). (b) The localization module matches subject or object with each image region and returns a unary

score (Sec. 3.2). (c) The relationship module matches a relationship with a pair of regions and returns a pairwise score (Sec. 3.3).

relationship, object), and learn to parse the ex-

pressions into these components with attention. For exam-

ple, a young man wearing a blue shirt can be parsed as the

triplet (a young man, wearing, a blue shirt). The score of a

region is determined by simultaneously looking at whether

it matches the description of the subject entity and whether

it matches the relationship with another interacting object

entity mentioned in the expression.

Our model handles such inter-object relationships by

looking at pairs of regions (bi, bj). For referential expres-

sions like “the red apple on top of the bookshelf”, we want

to find a region pair (bi, bj) such that bi matches the subject

entity “red apple” and bj matches the object entity “book-

shelf” and the configuration of (bi, bj) matches the relation-

ship “on top of”. To achieve this goal, our model is based on

a compositional modular structure, composed of two mod-

ules assembled in a pipeline for different sub-tasks: one

localization module floc(·, qloc; Θloc) for deciding whether

a region matches the subject or object in the expression,

where qloc is the textual vector representation of the sub-

ject component “red apple” or the object component “book-

shelf”, and one relationship module frel(·, ·, qrel; Θrel) for

deciding whether a pair of regions matches the relationship

described in the expression represented by qrel, the textual

vector representation of the relationship “on top of”. The

representations qsubj , qrel and qobj are learned jointly in

our model in Sec. 3.1.

We define the pairwise score spair(bi, bj) over a pair of

image regions (bi, bj) matching an input referential expres-

sion Q as the sum of three components:

spair(bi, bj) = floc(bi, qsubj ; Θloc)

+ floc(bj , qobj ; Θloc)

+ frel(bi, bj , qrel; Θrel),

(1)

where qsubj , qobj and qrel are vector representations of sub-

ject, relationship and object, respectively.

For inference, we define the final subject unary score

ssubj(bi) of a bounding of bi corresponding to the subject

(e.g. “the red apple” in “the red apple on top of the book-

shelf”) as the score of the best possible pair (bi, bj) that

matches the entire expression:

ssubj(bi) , max
bj∈B

spair(bi, bj). (2)

The subject is ultimately grounded (localized) to the highest

scoring region as b∗subj = argmaxbi∈B(ssubj(bi)).

3.1. Expression parsing with attention

Given a referential expression Q like the tall woman car-

rying a red bag, how can we decide which substrings cor-

responds to the subject, the relationship, and the object, and

extract three vector representations qsubj , qrel and qobj cor-

responding to these three components? One possible ap-

proach is to use an external language parser to parse the

referential expression into the triplet format (subject,

relationship, object) and then process each com-

ponent with an encoder (e.g. a recurrent neural network) to

extract qsubj , qrel and qobj . However, the formal represen-

tations of language produced by syntactic parsers do not al-

ways correspond to intuitive visual representations. As a

simple example, the apple on top of the bookshelf is ana-

lyzed [33] as having a subject phrase the apple, a relation-

ship on, and an object phrase top of the bookshelf, when

in fact the visually salient objects are simply the apple and

the bookshelf, while the complete expression on top of de-

scribes the relationship between them.

Therefore, in this work we learn to decompose the input

expression Q into the above 3 components, and generate

vector representations qsubj , qrel and qobj from Q through a

soft attention mechanism over the word sequence, as shown
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in Figure 2 (a). For a referential expression Q that is a

sequence of T words {wt}
T
t=1, we first embed each word

wt to a vector et using GloVe [21], and then scan through

the word embedding sequence {et}
T
t=1 with a 2-layer bi-

directional LSTM network [26]. The first layer takes as in-

put the sequence {et} and outputs a forward hidden state

h
(1,fw)
t and a backward hidden state h

(1,bw)
t at each time

step, which are concatenated into h
(1)
t . The second layer

then takes the first layer’s output sequence {h
(1)
t } as input

and outputs forward and backward hidden states h
(2,fw)
t

and h
(2,bw)
t at each time step. All the hidden states in the

first layer and second layer are concatenated into a single

vector ht =
[

h
(1,fw)
t h

(1,bw)
t h

(2,fw)
t h

(2,bw)
t

]

.

The concatenated state ht contains information from

word wt itself and also context from words before and after

wt. Then the attention weights at,subj , at,rel and at,obj for

subject, relationship, object over each word wt are obtained

by three linear predictions over ht followed by a softmax as

at,subj = exp
(

βT
subjht

)

/

T
∑

τ=1

exp
(

βT
subjhτ

)

(3)

at,rel = exp
(

βT
relht

)

/
T
∑

τ=1

exp
(

βT
relhτ

)

(4)

at,obj = exp
(

βT
objht

)

/
T
∑

τ=1

exp
(

βT
objhτ

)

(5)

and the language representations of the subject qsubj , rela-

tionship qrel and object qobj are extracted as weighed aver-

age of word embedding vectors {et} with attention weights

as qsubj =
∑T

t=1 at,subjet, and qrel =
∑T

t=1 at,relet and

qobj =
∑T

t=1 at,objet.

3.2. Localization module

As shown in Figure 2 (b), the localization module floc
outputs a score sloc = floc(b, qloc; Θloc) representing how

likely a region bounding box b matches qloc, which is either

the subject textual vector qsubj or object textual vector qobj .

This module takes the local visual feature xvis and spa-

tial feature xspatial of image region b. We extract visual

feature xv from image region b using a convolutional neu-

ral network [27], and extract a 5-dimensional spatial feature

xs = [xmin

WI
, ymin

HI
, xmax

WI
, ymax

HI
, Sb

SI
] from b using the same

representation as in [19], where [xmin, ymin, xmax, ymax]
and Sb are bounding box coordinates and area of b, and WI ,

HI and SI are width, height and area of the image I . Then,

xv and xs are concatenated into a vector xv,s = [xv xs] as

representation of region b.
Since element-wise multiplication is shown to be a pow-

erful way to combine representations from different modal-

ities [5], we adopt it here to obtain a joint vision and lan-

guage representation. In our implementation, xv,s is first

embedded to a new vector x̃v,s that has the same dimension

as qloc (which is either qsubj or qobj) through a linear trans-

form, and then element-wise multiplied with qloc to obtain

a vector zloc, which is L2-normalized into ẑloc to obtain a

more robust representation, as follows:

x̃v,s = Wv,sxv,s + bv,s (6)

zloc = x̃v,s ⊙ qloc (7)

ẑloc = zloc/‖zloc‖2 (8)

where ⊙ is element-wise multiplication between two vec-

tors. Then the score sloc is predicted linearly from ẑloc as

sloc = wT
locẑloc + bloc. (9)

The parameters in Θloc are (Wv,s, bv,s, wloc, bloc).

3.3. Relationship module

As shown in Figure 2 (c), the relationship module frel
outputs a score srel = frel(b1, b2, qrel; Θrel) representing

how likely a pair of region bounding boxes (b1, b2) matches

qrel, the representation of relationship in the expression.

In our implementation, we use the spatial features xs1

and xs2 of the two regions b1 and b2 extracted in the same

way as in localization module (we empirically find that

adding visual features of b1 and b2 leads to no noticeable

performance boost while slowing training significantly).

Then xs1 and xs2 are concatenated as xs1,s2 = [xs1 xs2],
and then processed in a similar way as in localization mod-

ule to obtain srel, as shown below:

x̃s1,s2 = Ws1,s2xs1,s2 + bs1,s2 (10)

zrel = x̃s1,s2 ⊙ qrel (11)

ẑrel = zrel/‖zrel‖2 (12)

srel = wT
relẑrel + brel. (13)

The parameters in Θrel are (Ws1,s2, bs1,s2, wrel, brel).

3.4. Endtoend learning

During training, for an image I , a referential expression

Q and a set of candidate regions B extracted from I , if the

ground-truth regions bsubj gt of the subject entity and bobj gt

of the object entity are both available, then we can optimize

the pairwise score spair in Eqn. 1 with strong supervision

using softmax loss Lossstrong .

Lossstrong = − log

(

exp (spair(bsubj gt, bobj gt))
∑

(bi,bj)∈B×B exp (spair(bi, bj))

)

(14)

However, it is often hard to obtain ground-truth regions for

both subject entity and object entity. For referential expres-

sions like “a red vase on top of the table”, often there is only
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Method Accuracy

baseline (loc module) 46.27%

our full model 99.99%

Table 1. Accuracy of our model and the baseline on the synthetic

shape dataset. See Sec. 4.1 for details.

expression=“the green square right of a red circle”

baseline - sloc ssubj sobj

(a) (b) (c) (d)

Figure 3. For the image in (a) and the expression “the green square

right of a red circle”, (b) baseline scores on each location on the 5

by 5 grid using localization module only (darker is higher), and (c,

d) scores ssubj and sobj using our full model. ssubj is highest on

the exact green square that is on the right of a red circle, and sobj

is highest on this red circle.

a ground-truth bounding box annotation b1 for the subject

(vase) in the expression, but no bounding box annotation b2
for the object (table), so one cannot directly optimize the

pairwise score spair(b1, b2). To address this issue, we treat

the object region b2 as a latent variable, and optimize the

unary score ssubj(b1) in Eqn. 2. Since ssubj(b1) is ob-

tained by maximizing over all possible region b2 ∈ B in

spair(b1, b2), this can be regarded as a weakly supervised

Multiple Instance Learning (MIL) approach similar to [20].

The unary score ssubj can be optimized with weak supervi-

sion using softmax loss Lossweak.

Lossweak = − log

(

exp (ssubj(bsubj gt))
∑

bi∈B exp (ssubj(bi))

)

(15)

The whole system is trained end-to-end with backpropa-

gation, and parameters in localization module, relationship

module, language representation and visual feature extrac-

tion (convolutional neural network) are jointly optimized.

Our model is implemented using TensorFlow [1] and our

code is available at http://ronghanghu.com/cmn.

4. Experiments

We first evaluate our model on a synthetic dataset to ver-

ify its ability to handle inter-object relationships in refer-

ential expressions. Next we apply our method to real im-

ages and expressions in the Visual Genome dataset [13]

and Google-Ref dataset [19]. Since the task of answering

pointing questions in visual question answering is similar

to grounding referential expressions, we also evaluate our

model on the pointing questions in the Visual-7W dataset

[34].

4.1. Analysis on a synthetic dataset

Inspired by [3], we first perform a simulation exper-

iment on a synthetic shape dataset. The dataset con-

sists of 30000 images with simple circles, squares and

triangles of different sizes and colors on a 5 by 5 grid,

and referential expressions constructed using a template

of the form [subj] [relationship] [obj], where

[subj] and [obj] involve both shape classes and at-

tributes and [relationship] is some spatial relation-

ships such as “above”. The task is to localize the corre-

sponding shape region described by the expression on the

5 by 5 grid. Figure 3 (a) shows an example in this dataset

with the synthetic expression “the green square right of a

red circle”. In the synthesizing procedure, we make sure

that the shape region being referred to cannot be inferred

simply from [subj] as there will be multiple matching

regions, and the relationship with another region described

by [obj] has to be taken into consideration.

On this dataset, we train our model with weak super-

vision by Eqn. 15 using the ground-truth subject region

bsubj gt of the subject shape described in the expression.

Here the candidate region set B are the 25 possible loca-

tions on the 5 by 5 grid, and visual features are extracted

from the corresponding cropped image region with a VGG-

16 network [27] pretrained on ImageNET classification. As

a comparison, we also train a baseline model using only the

localization module, with a softmax loss on its output sloc
in Eqn. 9 over all 25 locations on the grid, and language

representation qloc obtained by scanning through the word

embedding sequence with a single LSTM network and tak-

ing the hidden state at the last time step same as in [24, 9].

This baseline method resembles the supervised version of

GroundeR [24], and the main difference between this base-

line and our model is that the baseline only looks at a re-

gion’s appearance and spatial property but ignores pairwise

relationship with other regions.

We evaluate with the accuracy on whether the pre-

dicted subject region b∗subj matches the ground-truth region

bsubj gt. Table 1 shows the results on this dataset, where our

model trained with weak supervision (the same as the super-

vision given to baseline) achieves nearly perfect accuracy—

significantly outperforming the baseline using a localization

module only. Figure 3 shows an example, where the base-

line can localize green squares but fails to distinguish the

exact green square right of a red circle, while our model suc-

cessfully finds the subject-object pair, although it has never

seen the ground-truth location for the object entity during

training.

4.2. Localizing relationships in Visual Genome

We also evaluate our method on the Visual Genome

dataset [13], which contains relationship expressions anno-

tated over pairs of objects, such as “computer on top of ta-

1119
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Method training supervision P@1-subj P@1-pair

baseline subject-GT 41.20% -

baseline subject-object-GT - 23.37%

our full model subject-GT 43.81% 26.56%

our full model subject-object-GT 44.24% 28.52%

Table 2. Performance of our model on relationship expressions in

Visual Genome dataset. See Sec. 4.2 for details.

ble” and “person wearing shirt”.

On the relationship annotations in Visual Genome, given

an image and an expression like “man wearing hat”, we

evaluate our method in two test scenarios: retrieving the

subject region (“man”) and retrieving the subject-object

pair (both “man” and “hat”). In our experiment, we take

the bounding boxes of all the annotated entities in each im-

age (around 35 per image) as candidate region set B at both

training and test time, and extract visual features for each

region from fc7 output of a Faster-RCNN VGG-16 network

[23] pretrained on MSCOCO detection dataset [15]. We use

the same training, validation and test split as in [11].

Since there are ground-truth annotations for both subject

region and object region in this dataset, we experiment with

two training supervision settings: (1) weak supervision by

only providing the ground-truth region of the subject en-

tity at training time (subject-GT in Table 2) and optimizing

unary subject score ssubj with Eqn. 15 and (2) strong su-

pervision by providing the ground-truth region pair of both

subject and object entities at training time (subject-object-

GT in Table 2) and optimizing pairwise score spair with

Eqn. 14.

Similar to the experiment on the synthetic dataset in Sec.

4.1, we also train a baseline model that only looks at local

appearance and spatial properties but ignores pairwise rela-

tionships. For the first evaluation scenario of retrieving the

subject region, we train a baseline model using a localiza-

tion module only by optimizing its output sloc for ground-

truth subject region with softmax loss (the same training su-

pervision as subject-GT). For the second scenario of retriev-

ing the subject-object pair, we train two such baseline mod-

els optimized with subject ground-truth and object ground-

truth respectively, to localize of the subject region and ob-

ject region separately with each model and at test time com-

bine the predicted subject region and predicted object region

from each model be the subject-object pair (same training

supervision as subject-object-GT).

We evaluate with top-1 precision (P@1), which is the

percentage of test instances where the top scoring predic-

tion matches the ground-truth in each image (P@1-subj for

predicted subject regions matching subject ground-truth in

the first scenario, and P@1-pair for predicted subject and

object regions both matching the ground-truth in the second

scenario). The results are summarized in Table 2, where

it can be seen that our full model outperforms the baseline

expression=“tennis player wears shorts”

expression=“building behind bus”

expression=“car has tail light”

expression=“window on front of building”

(a) ground-truth (b) our prediction (c) attention weights

Figure 4. Visualization of grounded relationship expressions in the

Visual Genome dataset, trained with weak supervision (subject-

GT). (a, b) ground-truth region pairs and our predicted region pairs

respectively (subject in red solid box and object in green dashed

box). (c) attention weights in Eqn. 3–5 for subject, relationship

and object (darker is higher).

using only localization modules in both evaluation scenar-

ios. Note that in the second evaluation scenario of retrieving

subject-object pairs, our weakly supervised model still out-

performs the baseline trained with strong supervision.

Figure 4 shows some examples of our model trained

with weak supervision (subject-GT) and attention weights

in Eqn. 3–5. It can be seen that even with weak supervi-

sion, our model still generates reasonable attention weights

over words for subject, relationship and object.

4.3. Grounding referential expressions in images

We apply our model to the Google-Ref dataset [19], a

benchmark dataset for grounding referential expressions.

As this dataset does not explicitly contain subject-object

pair annotation for the referential expressions, we train our

model with weak supervision (Eqn. 15) by optimizing

the subject score ssubj using the expression-level region

ground-truth. The candidate bounding box set B at both

training and test time are all the annotated entities in the

image (which is the “Ground-Truth” evaluation setting in

[19]). As in Sec. 4.2, fc7 output of a MSCOCO-pretrained

Faster-RCNN VGG-16 network is used for visual feature

extraction. Similar to Sec. 4.1, we also train a GroundeR-
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Method P@1

Mao et al. [19] 60.7%

Yu et al. [32] 64.0%

Nagaraja et al. [20] 68.4%

baseline (loc module) 66.5%

our model (w/ external parser) 53.5%

our full model 69.3%

Table 3. Top-1 precision of our model and previous methods on

Google-Ref dataset. See Sec. 4.3 for details.

like [24] baseline model with localization module which

looks only at a region’s local features.

In addition, instead of learning a linguistic analysis end-

to-end as in Sec. 3.1, we also experiment with parsing the

expression using the Stanford Parser [33, 18]. An expres-

sion is parsed into subject, relationship and object compo-

nent according to the constituency tree, and the components

are encoded into vectors qsubj , qrel and qobj using three sep-

arate LSTM encoders, similar to the baseline and [24].

Following [19], we evaluate on this dataset using the

top-1 precision (P@1) metric, which is the fraction of the

highest scoring subject region matching the ground-truth

for the expression. Table 3 shows the performance of our

model, baseline model and previous work. Note that all the

methods are trained with the same weak supervision (only

a ground-truth subject region). It can be seen that by in-

corporating inter-object relationships, our full model out-

performs the baseline using only localization modules, and

works better than previous state-of-the-art methods.

Additionally, replacing the learned expression parsing

and language representation in Sec. 3.1 with an external

parser (“our model w/ external parser” in Table 3) leads to

a significant performance drop. We find that this is mainly

because existing parsers are not specifically tuned for the

referring expression task—as noted in Sec. 3.1, expressions

like chair on the left of the table are parsed as (chair, on,

the left of the table) rather than the desired triplet (chair, on

the left of, the table). In our full model, the language repre-

sentation is end-to-end optimized with other parts, while it

is hard to jointly optimize an external language parser like

[33] for this task.

Figure 5 shows some example results on this dataset. It

can be seen that although weakly supervised, our model not

only grounds the subject region correctly (solid box), but

also finds reasonable regions (dashed box) for the object

entity.

4.4. Answering pointing questions in Visual7W

Finally, we evaluate our method on the multiple choice

pointing questions (i.e. “which” questions) in visual ques-

tion answering on the Visual-7W dataset [34]. Given an

image and a question like “which tomato slice is under the

knife”, the task is to select the corresponding region from

Method Accuracy

Zhu et al. [34] 56.10%

baseline (loc module) 71.61%

our model (w/ external parser) 61.66%

our full model 72.53%

Table 4. Accuracy of our model and previous methods on the

pointing questions in Visual-7W dataset. See Sec. 4.4 for details.

a few choice regions (4 choices in this dataset) as answer.

Since this task is closely related to grounding referential ex-

pressions, our model can be trained in the same way as in

Sec. 4.3 to score each choice region using subject score

ssubj and pick the highest scoring choice as answer.

As before, we train our model with weak supervision

through Eqn. 15 and use a MSCOCO-pretrained Faster-

RCNN VGG-16 network for visual feature extraction. Here

we use two different candidate bounding box sets Bsubj and

Bobj of the subject regions (the choices) and the object re-

gions, where Bsubj is the 4 choice bounding boxes, and

Bobj is the set of 300 proposal bounding boxes extracted

using RPN in Faster-RCNN [23]. Similar to Sec. 4.3, we

also train a baseline model using only a localization module

to score each choice based only on its local appearance and

spatial properties, and a truncated model that uses the Stan-

ford parser [33, 18] for expression parsing and language

representation.

The results are shown in Table 4. It can be seen that

our full model outperforms the baseline and the truncated

model with an external parser, and achieves much higher

accuracy than previous work [34]. Figure 6 shows some

question answering examples on this dataset.

5. Conclusion

We have proposed Compositional Modular Networks, a

novel end-to-end trainable model for handling relationships

in referential expressions. Our model learns to parse input

expressions with soft attention, and incorporates two types

of modules that consider a region’s local features and pair-

wise interaction between regions respectively. The model

induces intuitive linguistic and visual analyses of referential

expressions from only weak supervision, and experimen-

tal results demonstrate that our approach outperforms both

natural baselines and state-of-the-art methods on multiple

datasets.
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ground-truth our prediction ground-truth our prediction ground-truth our prediction

expression=“a bear lying to the right of

another bear”

expression=“man in sunglasses walking

towards two talking men”

expression=“a picnic table that has a bottle of

water sitting on it”

correct correct correct

expression=“woman in a cream colored

wedding dress cutting cake”

expression=“a man going before a lady

carrying a cellphone”

expression=“pizza slice not eaten”

correct correct incorrect

expression=“a full grown brown bear near a

young bear”

expression=“black dog standing on all four

legs”

expression=“chair being sat in by a man”

correct incorrect correct

Figure 5. Examples of referential expressions in the Google-Ref dataset. The left column shows the ground-truth region and the right

column shows the grounded subject region (our prediction) in solid box and the grounded object region in dashed box. A prediction is

labeled as correct if the predicted subject region matches the ground-truth region.

ground-truth our prediction ground-truth our prediction ground-truth our prediction

question=“Which wine glass is in the man’s

hand?”

question=“Which person is wearing a helmet?” question=“Which mouse is on a pad by

computer?”

correct correct correct

question=“Which head is that of an adult

giraffe?”

question=“Which pants belong to the man

closest to the train?”

question=“Which white pillow is leftmost on

the bed?”

correct correct correct

question=“Which red shape is on a large white

sign?”

question=“Which is not a pair of a living

canine?”

question=“Which hand can be seen from under

the umbrella?”

correct incorrect correct

Figure 6. Example pointing questions in the Visual-7W dataset. The left column shows the 4 multiple choices (ground-truth answer in

yellow) and the right column shows the grounded subject region (predicted answer) in solid box and the grounded object region in dashed

box. A prediction is labeled as correct if the predicted subject region matches the ground-truth region.
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